The Gołab-Schinzel Functional Equation Restricted to Half-Lines

By

Peter Kahlig and Janusz Matkowski

Abstract

Under some regularity conditions, we determine solutions of the functional equation
\[f(x + yf(x)) = f(x)f(y), \quad x, y \in \mathbb{R}, \]
on domains restricted to half-lines.

Key words and phrases: Gołab-Schinzel functional equation, restricted domain, iterative functional equation, Euler equation, system of iterative equations, convex solution, monotonic solution, one-to-one solution.

1. Introduction

The Gołab-Schinzel functional equation
\[f(x + yf(x)) = f(x)f(y), \quad x, y \in \mathbb{R}, \]
had appeared in connection with determining some subgroups or subsemigroups of the affine group (ST. GOŁAB and A. SCHINZEL [7], cf. also J. ACZÉL and J. DHOMBRES [1], Chapter 19), and was considered by many authors (cf. for instance [2], [4], [5], [8]). It is known that the nontrivial continuous solution \(f: \mathbb{R} \rightarrow \mathbb{R} \) is either of the form
\[f(x) = cx + 1, \quad \text{or} \quad f(x) = \max(cx + 1, 0), \quad x \in \mathbb{R}, \]
with a real constant c. Recently, motivated by some applications [9],
the solutions of the Gołąb-Schinzel equation on restricted domains
like $\{(x,y): x \geq 0, y \geq 0\}$ or $\{(x,y): x > 0, y > 0\}$ have been
determined ([3], [6], [12], [13], [14]).

The present paper is concerned with a stronger limitation of the
variables in the Gołąb-Schinzel equation. Restricting this equation to
the half-lines
\[\{(x,y): x = 1, \ y = t, \ t > 0\} \quad \text{and} \quad \{(x,y): x = t, \ y = 1, \ t > 0\}, \]
and setting
\[b := f(1), \]
we obtain two functional equations in a single variable (of iterative type)
\[f(1 + bt) = bf(t), \]
\[\quad (1) \]
and
\[f(t + f(t)) = bf(t). \]
\[\quad (2) \]
Equation (1) is a classical homogeneous linear equation (cf. [10], pp.
58, 106), and equation (2) is a composite equation which for $b = 1$
becomes the well-known Euler equation related to invariant curves
(cf. [10], p. 286).

In Section 2 we consider equation (1). Using the general solution,
we show that, under some regularity assumptions, the solution of
equation (1) is proportional to the basic solution of the original
Gołąb-Schinzel functional equation.

In Section 3 we deal with equation (2). It turns out that, under some
regularity conditions, the solution of equation (2) is the sum of the
basic solution of the Gołąb-Schinzel equation and a constant.

The most interesting result is given in Section 4. Assume that $b > 1$
and $a > 0$ are fixed. Applying iterative methods, we show that if a
function $f: (a, \infty) \to (0, \infty)$ is one-to-one in a neighbourhood of
infinity and satisfies both equations (1) and (2), then $f(t) = (b - 1)t + 1$
for all $t > a$. A generalization of this result is also given.

2. Linear Equation

We begin with the following

Theorem 1. Let $b > 0$, $b \neq 1$, and let
\[a := \frac{1}{1 - b} \quad \text{if} \ b < 1, \]
and let $a \geq \frac{1}{1 - b}$ be arbitrarily fixed if $b > 1$.
A function $f: (a, \infty) \to \mathbb{R}$ satisfies the equation
\[f(1 + bt) = bf(t), \quad t > a, \quad (3) \]
iff there is a log b-periodic function $p: \mathbb{R} \to \mathbb{R}$ such that
\[f(t) = [(b - 1)t + 1]p\left(\log \left(t - \frac{1}{b - 1}\right)\right) \quad \text{for } t > a; \]
moreover, f is positive (nonnegative) iff so is p.

Proof. Assume first that the function $f: (a, \infty) \to \mathbb{R}$ is a solution of equation (3). Since $f_0: (a, \infty) \to \mathbb{R}$,
\[f_0(t) := (b - 1)t + 1 \]
satisfies equation (3), the function $g: (a, \infty) \to \mathbb{R}$ given by
\[g := \frac{f}{f_0} \]
satisfies the functional equation
\[g(1 + bt) = g(t), \quad t > a. \]
(The particular solution f_0 of equation (3) in the case $0 < b < 1$ is negative and in the case $b > 1$ is positive on the interval under consideration, hence $g = f/f_0$ can be formed.) Writing the latter equation in the form
\[g\left(\exp\left(\log \left(t + \frac{1}{b - 1}\right) + \log b\right) - \frac{1}{b - 1}\right) = g\left(\exp\left(\log \left(t + \frac{1}{b - 1}\right)\right) - \frac{1}{b - 1}\right), \]
we infer that the function p defined by
\[p(u) := g\left(\exp u - \frac{1}{b - 1}\right) \]
is log b-periodic, that is,
\[p(u + \log b) = p(u). \]
Since $f(t) = f_0(t)g(t)$, we hence obtain
\[f(t) = [(b - 1)t + 1]p\left(\log t - \frac{1}{b - 1}\right), \quad t > a. \]
It is easy to verify that for an arbitrary log \(b \)-periodic function \(p: \mathbb{R} \to \mathbb{R} \), the function \(f \) given by this formula is a solution of equation (3) in \((a, \infty)\). This completes the proof.

Remark 1. For a fixed \(t_0 > \frac{1}{1-b} \) and for every real function \(f_0 \) defined on the closed interval with endpoints \(t_0 \) and \(1 + bt_0 \) and such that \(f_0(1 + bt_0) = bf_0(t_0) \), there is a unique solution \(f: (\frac{1}{1-b}, \infty) \to \mathbb{R} \) of equation (3) which is an extension of \(f_0 \). Moreover, if \(f_0 \) is continuous or (and) monotonic then so is \(f \). Thus the continuous and monotonic solution of equation (3) depends on an arbitrary function (cf. M. Kuczma [10], e.g. sect. III. 4 and sect. V. 3).

Remark 2. For \(b = 1 \) equation (3) becomes an equation for \(1 \)-periodic functions.

As a simple consequence of Theorem 1 we obtain the following

Corollary 1. Let \(b \in (0, 1) \) and \(a = \frac{1}{1-b} \) be fixed. If \(f: (a, \infty) \to [0, \infty) \) is a decreasing solution of equation (3), then \(f = 0 \) in \((a, \infty)\).

Theorem 2. Let \(b > 1 \) and \(a \geq \max(0, \frac{1}{1-b}) \) be fixed. Suppose that \(f: (a, \infty) \to \mathbb{R} \) is a solution of equation (3). If the function

\[
(a, \infty) \ni t \to \frac{f(t)}{t},
\]

is monotonic in \((\alpha, \infty)\) for some \(\alpha > a \), or there exists a finite

\[
\lim_{t \to \infty} \frac{f(t)}{t},
\]

then there is a \(c \in \mathbb{R} \), such that

\[
f(t) = c[(b-1)t + 1], \quad t > a.
\]

Proof. By Theorem 1 there is a log \(b \)-periodic function such that

\[
\frac{f(t)}{t} = \left((b-1) + \frac{1}{t} \right) p\left(\log t - \frac{1}{b-1} \right), \quad t > a.
\]

Since \(\lim_{t \to \infty} ((b-1) + \frac{1}{t}) = b-1 \), the assumed monotonicity of this function implies that \(p \) must be constant. The remaining part is obvious. This completes the proof.

Applying some well-known properties of convex functions we hence obtain

Corollary 2. Let \(b > 1 \) and \(a \geq \max(0, \frac{1}{1-b}) \) be fixed. If \(f: (a, \infty) \to \mathbb{R} \) is a solution of equation (3) and it is convex or
concave in an interval \((\alpha, \infty)\) for some \(\alpha > a\), then there is a \(c \in \mathbb{R}\) such that
\[
f(t) = c[(b - 1)t + 1], \quad t > a.
\]

Proof. Suppose that \(f\) is convex in an interval \((\alpha, \infty)\) for some \(\alpha > a\). By the well-known properties of convex functions, the one-sided derivatives \(f'_-\) and \(f'_+\) exist in \((\alpha, \infty)\) and are nondecreasing. In view of Theorem 1 we have
\[
f(t) = [(b - 1)t + 1]p\left(\log t - \frac{1}{b - 1}\right), \quad t > a,
\]
where \(p\) is a log \(b\)-periodic function. It follows that \(p'_-\) and \(p'_+\) exist too. Denoting by \(p'\) one of these one-sided derivatives we infer that
\[
f'(t) = (b - 1)p\left(\log t - \frac{1}{b - 1}\right) + \frac{(b - 1)t + 1}{t}p'\left(\log t - \frac{1}{b - 1}\right)
\]
is nondecreasing in \((\alpha, \infty)\). Replacing here \(t\) by \(e^{t+n\log b}\) and taking into account that \(p\) and \(p'\) are log \(b\)-periodic, we hence obtain that, for every positive integer \(n\), the function
\[
f'(e^{t+n\log b}) = (b - 1)p\left(t - \frac{1}{b - 1}\right) + \frac{(b - 1)e^{t+n\log b} + 1}{e^{t+n\log b}}p'\left(t - \frac{1}{b - 1}\right)
\]
is nondecreasing in \((\alpha, \infty)\). Letting \(n \to \infty\) we infer that the function \((b - 1)(p + p')\) is nondecreasing in \((\alpha, \infty)\). The periodicity of \(p\) and \(p'\) implies that \(p + p'\) is constant. Thus there is a \(c \in \mathbb{R}\) such that
\[
p + p' = c.
\]
Since \(p'\) denotes a one-sided derivative, it follows that \(p'_- = p'_+\) and, consequently, \(p\) is differentiable. Solving the above differential equation for \(p\) and taking into account that \(p\) is periodic we conclude that \(p\) is constant. This completes the proof.

3. Composite Equation

In this section we deal with the composite functional equation (2). We begin with the following

Theorem 3. Let \(b \in (-1, 1)\), \(b \neq 0\), be fixed. If \(f: \mathbb{R} \to \mathbb{R}\) is a continuous solution of the functional equation
\[
f(t + f(t)) = bf(t), \quad t \in \mathbb{R},
\]
possessing only one zero, then there is a \(c \in \mathbb{R} \) such that

\[
f(t) = (b - 1)t + c, \quad t \in \mathbb{R}.
\]

Proof. From (2), by induction, we obtain

\[
f\left(t + \frac{1 - b^n}{1 - b} f(t)\right) = b^n f(t), \quad t \in \mathbb{R},
\]

for all positive integers \(n \). Letting \(n \to \infty \), and taking into account that \(f \) is continuous and \(|b| < 1 \), we get

\[
f\left(t + \frac{1}{1 - b} f(t)\right) = 0, \quad t \in \mathbb{R}.
\]

Denoting by \(t_0 \) the only zero of the function \(f \), we have

\[
t + \frac{1}{1 - b} f(t) = t_0, \quad t \in \mathbb{R}.
\]

Setting \(c := (1 - b)t_0 \) we obtain the desired formula.

In the case \(b = 1 \) equation (2) becomes the well-known Euler functional equation. Recall the following (cf. M. Kuczma [10], p. 286)

Theorem 4 (Kuratowski, Wagner). The only solutions \(f: \mathbb{R} \to \mathbb{R} \) of the functional equation

\[
f(t + f(t)) = f(t), \quad t \in \mathbb{R},
\]

possessing the Darboux property, are constant functions.

In the case \(b > 1 \) we have the following

Theorem 5. Let \(b > 1 \), and \(a > 0 \) be fixed. If \(f: (a, \infty) \to [0, \infty) \) is a solution of the functional equation

\[
f(t + f(t)) = bf(t), \quad t > a,
\]

and \(f \) is convex or concave in \((\alpha, \infty)\) for some \(\alpha > a \), then there are \(c \in \mathbb{R} \) and \(\beta \geq \alpha \) such that

\[
f(t) = (b - 1)t + c, \quad t > \beta.
\]

If moreover \(f: (a, \infty) \to (0, \infty) \) then

\[
f(t) = (b - 1)t + c, \quad t > a.
\]

Proof. By induction, for all positive integers \(n \), we have

\[
f\left(t + \frac{b^n - 1}{b - 1} f(t)\right) = b^n f(t), \quad t > a.
\]
If $f = 0$ in (a, ∞) then there is nothing to prove. In the opposite case there is a $t_0 > a$ such that $f(t_0) > 0$. Putting

$$t_n := t_0 + \frac{b^n - 1}{b - 1}f(t_0), \quad n \in \mathbb{N},$$

we get

$$f(t_n) = b^n f(t_0), \quad n \in \mathbb{N}.$$

Consequently,

$$\frac{f(t_{n+1}) - f(t_n)}{t_{n+1} - t_n} = \frac{b^{n+1}f(t_0) - b^n f(t_0)}{(t_0 + \frac{b^{n+1}-1}{b-1}f(t_0)) - (t_0 + \frac{b^n-1}{b-1}f(t_0))}, \quad n \in \mathbb{N},$$

which simplifies to the relation

$$\frac{f(t_{n+1}) - f(t_n)}{t_{n+1} - t_n} = b - 1, \quad n \in \mathbb{N}.$$

Since

$$\lim_{n \to \infty} t_n = \infty,$$

the convexity (or concavity) of f in (α, ∞) implies that there is a $\beta \geq \alpha$ such that

$$\frac{f(t) - f(s)}{t - s} = b - 1, \quad s, t \in (\beta, \infty).$$

It follows that there is a $c \in \mathbb{R}$ such that

$$f(t) = (b - 1)t + c, \quad t > \beta. \quad (5)$$

If f is positive then for every $t > a$ there is a positive integer n such that

$$t + \frac{b^n - 1}{b - 1}f(t) > \beta.$$

Now from (4) and (5) we get

$$(b - 1)\left(t + \frac{b^n - 1}{b - 1}f(t) \right) + c = b^n f(t)$$

which simplifies to the desired relation

$$f(t) = (b - 1)t + c.$$

This completes the proof.
Theorem 6. Let $b > 0$, $b \neq 1$, be fixed. Suppose that either $f: [0, \infty) \to [f(0), \alpha]$ where $\alpha \leq \infty$, or $f: [0, \infty) \to (\alpha, f(0)]$ where $\alpha \geq -\infty$, is a bijective solution of the functional equation
\[f(t + f(t)) = bf(t), \quad t \geq 0. \]
If f^{-1} is continuous at $f(0)$ then
\[f(t) = (b - 1)t + f(0), \quad t \geq 0. \]

Proof. Suppose that $f: [0, \infty) \to [f(0), \alpha]$. The function $g := f^{-1}$ satisfies the functional equation
\[g(bs) = g(s) + s, \quad s \geq f(0), \]
and is right continuous at $f(0)$. Applying Theorem 5.1 in M. Kuczma [10], p. 106, we obtain
\[g(s) = f(0) + \frac{s}{b - 1}, \quad s \geq f(0). \]
Since an argument to show the remaining statement is analogous, this completes the proof.

Similarly, applying Theorem 5.3 in M. Kuczma [10], p. 108, we can prove

Theorem 7. Let $b > 0$, $b \neq 1$, be fixed. Suppose that $f: (0, \infty) \to (\alpha, \beta)$ where $-\infty \leq \alpha < \beta \leq \infty$. If f is a homeomorphic solution of the functional equation
\[f(t + f(t)) = bf(t), \quad t > 0, \]
then
\[f(t) = (b - 1)t + f(0), \quad t > 0. \]

4. A System of Functional Equations

From the point of view of the theory of the Gołąb-Schinzel functional equation the most interesting result of this paper reads as follows.

Theorem 8. Let $b > 1$, and $a > 0$ be fixed. Suppose that $f: (a, \infty) \to (0, \infty)$ satisfies the pair of functional equations
\[f(1 + bt) = bf(t), \quad f(t + f(t)) = bf(t), \quad t > a. \quad (6) \]
If f is one-to-one in a neighbourhood of ∞, then
\[f(t) = (b - 1)t + 1, \quad t > a. \]
Proof. Suppose that \(f: (a, \infty) \to (0, \infty) \) satisfying system (6) is one-to-one in an interval \((\beta, \infty)\) for some \(\beta \geq a \). Iterating the first equation we obtain
\[
f\left(\sum_{k=0}^{n} b^k + b^{n+1} t\right) = b^{n+1} f(t), \quad t > a, \ n \in \mathbb{N}.
\]
Similarly, iterating the second equation, we get
\[
f\left(t + \left(\sum_{k=0}^{n} b^k\right)f(t)\right) = b^{n+1} f(t), \quad t > a, \ n \in \mathbb{N}.
\]
Both these equations imply that
\[
f\left(\sum_{k=0}^{n} b^k + b^{n+1} t\right) = f\left(t + \left(\sum_{k=0}^{n} b^k\right)f(t)\right), \quad t > a, \ n \in \mathbb{N}. \tag{7}
\]
Take an arbitrary \(t > a \). Since \(f(t) > 0 \) and \(b > 1 \) there is a positive integer \(n \) such that
\[
\sum_{k=0}^{n} b^k + b^{n+1} t > \beta, \quad t + \left(\sum_{k=0}^{n} b^k\right)f(t) > \beta.
\]
Now the injectivity of \(f \) in \((\beta, \infty)\) and relation (7) imply that
\[
\sum_{k=0}^{n} b^k + b^{n+1} t = t + \left(\sum_{k=0}^{n} b^k\right)f(t),
\]
which simplifies to the relation
\[
f(t) = (b - 1)t + 1,
\]
as desired. The proof is completed.

Now, replacing the injectivity condition by a much weaker one, we prove a generalization of the previous result.

Theorem 9. Let \(b > 1 \), and \(a > 0 \) be fixed. Suppose that \(f: (a, \infty) \to (0, \infty) \) satisfies the pair of functional equations (6). If there exist \(\alpha \geq a \) and \(M > 0 \) such that, for all \(t_1, t_2 > \alpha \),
\[
f(t_1) = f(t_2) \Rightarrow |t_1 - t_2| \leq M,
\]
then
\[
f(t) = (b - 1)t + 1, \quad t > a.
\]
Proof. Let us fix arbitrarily $t > a$ and put

$$t_{1,n} := \sum_{k=0}^{n} b^k + b^{n+1} t, \quad t_{2,n} := t + \left(\sum_{k=0}^{n} b^k \right) f(t).$$

According to (7) we have

$$f(t_{1,n}) = f(t_{2,n}), \quad n \in \mathbb{N}.$$

As

$$\lim_{n \to \infty} t_{1,n} = \infty = \lim_{n \to \infty} t_{2,n},$$

for sufficiently large n, we have $t_{1,n}, t_{2,n} > \alpha$. From the assumed implication we obtain that, for all sufficiently large $n \in \mathbb{N}$,

$$|t_{2,n} - t_{1,n}| = \frac{b^{n+1} - 1}{b - 1} |f(t) - 1 - (b - 1)t| \leq M.$$

Since $\lim_{n \to \infty} b^{n+1} = \infty$, we infer that

$$f(t) - 1 - (b - 1)t = 0,$$

which completes the proof.

5. Final Remarks

Restricting the Gołąb-Schinzel functional equation to the pair of half-lines $\{(x, y): x = a, y > 0\}$ and $\{(x, y): x > 0, y = a\}$ where $a > 0$ is fixed, and assuming $b := f(a)$, one gets the pair of iterative functional equations

$$f(a + bt) = bf(t), \quad f(t + af(t)) = bf(t), \quad t > 0.$$

The iteration procedure applied to each of these equations leads to two infinite systems of equations,

$$f\left(\sum_{k=0}^{n} b^k + b^{n+1} t \right) = b^{n+1} f(t), \quad t > a, \quad n \in \mathbb{N},$$

and

$$f\left(t + \left(\sum_{k=0}^{n} b^k \right) f(t) \right) = b^{n+1} f(t), \quad t > a, \quad n \in \mathbb{N}.$$

Using these systems one can prove analogous results as above.

Let us mention that the system of iterative functional equations which appears when the Gołąb-Schinzel functional equation is
restricted to the two parallel lines \(x = a \) and \(x = b \) was considered in [11].

Acknowledgement

The authors are grateful for constructive remarks of Professor Ludwig Reich.

References

Authors’ addresses: Peter Kahlig, c/o Institute of Meteorology and Geophysics, University of Vienna, UZA2, 1090 Vienna, Austria, *E-Mail address:* Peter.Kahlig@univie.ac.at; Janusz Matkowski, Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65246 Zielona Góra, Poland, *E-Mail address:* J.Matkowski@im.uz.zgora.pl