General East-Celtic Topics
Along the “Bastarnian” Route? An Imitation Tetradrachm of Philip II from Eastern Poland

Piotr Łuczkiewicz

Abstract: A silver coin was discovered in Hrebenne, Poland (on the Ukrainian border). The size and weight, and especially the legend point to a Geto-Dacian imitation of a stater of Philip II of Macedon (359–336 BC) of the Huși-Vovriși type. Such coins only occasionally appear north of the Carpathians. They were minted from the end of the 3rd to the middle of the 2nd century BC. The pottery from the pits of the archaeological site of Hrebenne suggests that it was occupied from the transition of LT C1/C2 to LT D1.

Keywords: Poland, Bastarnae, coins, transregional relationships.

Schlüsselwörter: Polen, Bastarnen, Münzen, überregionale Beziehungen.

Large-scale excavations were undertaken in spring 2005 in advance of development of the Polish-Ukrainian border crossing at Hrebenne in the district of Tomaszów Lubelski. Site 18, a multiperiod settlement with occupation ranging from the Neolithic to the Migration period, included evidence of a large settlement of the earlier pre-Roman Iron Age.1 We shall leave aside whether the assemblages found there should be attributed to the so-called “Czerniczyn group” or whether they should be ascribed to the Jastorf culture2 and concentrate instead on the interesting find of a silver coin. Contradictions in the sparse excavation records make it impossible to identify exactly which feature the coin came from, but a thorough analysis of the numerous excavation plans allows us to narrow its provenance down to one of six pits (features 443, 602, 605, 680, 685 or 1258, all pits with occupation material). The pottery found in these pits belongs to the transition from the earlier to the later pre-Roman Iron Age on stylistic grounds, while a few sherds of the early Przeworsk culture belong to the transition La Tène C1/C2 to the beginning of La Tène D1.

The silver coin3 (Fig. 1), which is 24 mm in diameter, 2 mm thick and weighs 13.59 g, is poorly preserved (especially on the reverse) and much worn. Its obverse features the head of a man looking right, while the reverse shows a – somewhat unclear – horse, also facing right. The poor state of preservation of the coin does not permit us to identify whether this was originally a representation of a horse and rider. Both sides of the coin have deep grooves, most probably cuts made when testing the coins.

The dimensions and the weight, but especially the legend, indicate conclusively that this coin is a stater of Philip II of Macedon (359–336 BC). The head on the obverse is a representation of Zeus, executed with some artistic skill. It shows a man in the prime of life, with medium long, lightly curled hair wearing a stylised laurel wreath. His beard and crescent-shaped ear are also

3. Interim publication by Kokowski 2006b. – Brief mention in Florkiewicz 2009, 106–107, 113.
stylised. By contrast, the eye and pupil, the nose and the lips are represented in detail. Nevertheless it is obvious that the coin departs from the original in its wilder design and the fact that the legend is incomplete.

The wild interpretation of the design is even clearer on the reverse. The mandatory accessory marks are missing entirely. The horse is represented extremely schematically and is very clearly different from the artistic execution of the Macedonian prototypes. The unclear die makes it difficult to establish whether the intention was to depict just a horse, or a “victorious rider” (i.e. a rider holding a palm branch), or a “royal rider” (i.e. a rider with raised hand).4

Tetradrachms of Philip II of Macedon continued to be issued long after the king’s death in 336 BC; posthumous issues are known up to 315 BC and even as late as 295/294 BC;5 after 314 BC Amphipolis started minting coins. Imitations of tetradrachms came into circulation almost at the same time as the official issues,6 as impressively attested by two such imitations in the Rejanci hoard (Bulgaria) dated to 316/315 BC.7 The hoard of Metschika (Bulgaria), which contains early, good-quality imitations as well as original coins of Philip II and his son Alexander the Great, belongs to this early horizon. The Scârjoa hoard (Romania), dated by a drachm from Histria, should be mentioned in this context.8 Imitations have been found in the hoard of Chișinu-Cris (Romania), which also contained issues of Alexander the Great (336–323 BC), Lysimachos (323/305–281 BC) and Seleukos I (312–281 BC).9 Last but not least, a die used for early imitations has been found in northern Bulgaria, in a context dated to the beginning of the 3rd century BC.10

It is assumed that it is the return of Celtic and Dacian mercenaries, employed in the Mediterranean zone and paid in Macedonian gold staters, that provided the stimulus for producing local issues.11

The earliest imitations can hardly be distinguished from their prototypes.12 The legend and the ancillary markings were nearly perfectly reproduced. The diameter of 24–25 mm and the more or less standard weight of 12–14 g13 correspond to that of the original. One might almost advance that original Greek (Macedonian) dies were used to make the imitations. Slightly later imitations are characterised by a somewhat broader laurel wreath and a stylised representation of the head. The nose is often reduced to two points. But it is mainly the arrangement of the letters of the legend that shows clear differences; sometimes some letters are missing altogether. Such coins often bear marks of having been tested for their composition. Whether this constitutes evidence for an early date – and hence points to an early date for our Polish find – remains debatable.

The main zone of circulation or distribution of early imitations has largely been considered to be the Lower Danube area: the coins are mainly found in Dacia, Wallachia, the Banat and Moldavia, and much more rarely south of the Danube, in Illyria and Pannonia.14 This distribution implies that Dacian tribes were particularly influential in the propagation of this coinage, although after the arrival of the Celts the latter also took an active part in the minting of coins.

The stylistic attributes of the Hrebenne coin suggest (despite its worn state) that it most probably belongs to the morphologically heterogeneous Huși-Vovriști type.15 The dies for these coins, which belong to the second minting phase (i.e. the first independent Geto-Dacian issues) and which are dated from the end of the 3rd century BC to the middle of the 2nd century BC, are reminiscent of the original. But the die is already well worn, resulting in a loss of detail in the design. The weight of 13.59 g, within the usual range 13–14 g, is also in agreement with such an identification; only a quarter of
coins of this type was somewhat lighter, at 11–12 g.16 The type is distributed in the eastern Carpathians (northern and eastern Dacia) and corresponds approximately to the area occupied by the Bastarnian Poienesti-Lukaševka culture in Moldavia.17 It is however impossible to state unequivocally whether such an ethno-cultural attribution corresponds to the reality.

The few imitation Macedonian coins found in Poland are concentrated in the southeast (Fig. 2). But the most recent distribution map and catalogue need to be treated with caution because the “southern Poland” provenance given for a number of coins is questionable. Many coins are old purchases, originally bought in good faith. The actual location of the finds was however in quite different provinces of the former

17 Preda 1973, 111–131, 444–445. – Demb\k{e}ski 1998, 41. – Pârpa\u{u}t\u{a} 2006, 72–77. – Florkiewicz 2009, 105–107. – For the Poienesti-Lukaševka culture, see Babeş 1993.
Austro-Hungarian monarchy. Out of the 27 known coins, less than half (eleven coins maximum) have a secure provenance. All bar two of the securely provenanced coins belong to the Huşi-Vovrâşti type. There is a wider range of other Geto-Dacian types among the items of dubious provenance (from Crişeni-Berchie, Sighet, Larissa, Ocniţa-Cârbcene, Adincata-Manastirea, Virțeiu-Bucureşti, Anionoasa-Dobreşti, Râduleştii-Hunedoara and Toc-Chereluţ). Moreover, most pieces are single finds.

It appears therefore that the influx of Macedonian imitations consists mostly of coins of the Huşi-Vovrâşti type and that it is largely confined to southern Poland. At least three finds of coins from Volynia and neighbouring western Ukraine support this interpretation.

What are the underlying causes of the spread of imitation staters of Philip II towards the north? The view that the initial impulse for the distribution of Greek and Macedonian influence in central European Barbaricum is due to the Celts has been put forward on a number of occasions. Yet an unequivocal “ethno-cultural attribution” of the La Tène material found over the Balkans is hardly, or only very rarely, possible. The decisive role played by the Celts is thus not a tenable thesis, and other ethno-cultural groups may have acted as intermediaries. The coin assemblages recovered in Hungary, Slovakia, Bohemia and Poland are good grounds for interpreting them as powerful evidence for contacts between the Geto-Dacian zone and central European regions. This also applies to the imitations staters of Philip II (over 100) recovered in the fortified settlement of Galis Loväcka in transcarpathian Ukraine, a site sometimes described as an oppidum. The presence of other Greek coins in the north is also taken to be a convincing argument for contacts with the Geto-Dacian zone. Moreover, the fact that Geto-Dacian elements keep recurring in local assemblages north of the Carpathians is not to be overlooked. These consist mainly of finds of pottery and its imitations, as well as jewellery. Some weapons in the north of Barbaricum, though not themselves Dacian, may conceivably have been of Dacian inspiration.

The distribution of Huşi-Vovrâşti type coins is however sufficiently significant to consider an alternative mechanism for its spread. The finds are closely linked to the courses of the rivers Pruth and Seret and thus a relationship with the Poieneşti-Lukaşevka culture and the so-called Bastarnian Route may enter into the equation.

The “Bastarnian Route” is defined as a communication route that linked the western Baltic regions to the northern Black Sea areas along the rivers Pruth and Seret (i.e. the zone occupied by the Poieneşti-Lukaşevka culture) in the pre-Roman Iron Age. Incidentally this axis continued to exist without interruption in the Roman imperial period, although in a different cultural guise. In the pre-Roman Iron Age the route is reflected in the distribution of several groups of finds; they have been comprehensively discussed on dozens of occasions, on the basis of the distribution of the so-called “crown torcs” (Kronenhalsringe), fire-dogs and certain types of Jastorf fibulae. In all these cases the Przeworsk culture appears to fulfill the role of intermediary. The spread of the so-called bowls with “hanging perforated lugs” is linked to this. These vessels originally belong to the material vocabulary of the Jastorf cultural sphere but were quickly adopted in the regions located between the Oder and the Bug. Such finds occur in assemblages of the Przeworsk culture but are also associated with Jastorf-influenced material. The distribution of clay spoons, which encompasses the regions occupied by the Jastorf, Przeworsk and Poieneşti-Lukaşevka cultures, is a good fit for this configuration.

18. A comprehensive overview can be found in Florkiewicz 2009, 102–104, 106, Fig. 2.
19. See Florkiewicz 2009, 114–117: Cat. nos. 3 (Krzywólka), 7 (Hrebenne), 8 (Kruhel Mały), 9–10 (Medyka), 11–15 (Pełczyska), 18 (Dzialożynia), 21 (Przemysł–Zasanie).
20. See distribution maps in Mikolajczyk 1982, 12–16, Fig. 1. – Mikolajczyk 1984, S. 54, Fig. 1. – Rudnicki 2003, 19, Fig. 10.
22. See Łuczkiewicz, Schöpfelder 2010, 200, based on the example of the Padea-Panagjurski Kolonii group.
24. J. Kobal, pers. comm. 22.03.2012 on the occasion of an invited lecture at the University of Rzeszów.
The Hrebenne find is particularly important in this context. First, it is directly located on the putative communication route. Second, it lies within a culture group (Fig. 3) whose pottery shows clear links with both the Jastorf cultural sphere and the Poieniști-Lukașevka culture in the southeast. It remains open to question whether our find is associated with a largely local group, the so-called Czerniczyn group with Jastorf-influenced pottery, or whether it should be considered a small component of a much larger context which saw a shift of the Jastorf culture south eastwards. The presence of Huși-Vovriestî type coins in neighbouring Volhynia is an aspect not to be neglected in this discussion.

The context of our coin provides some dating evidence, since the pits in which it was found contained pottery ranging from LT C1/C2 to LT D1. It is tempting to associate the presence of the Hrebenne coin with Bastarnian mobility, assuming that it is possible to connect the archaeologically documented drift of Jastorf material towards the southeast with the historically documented move of the Bastarnians.

34. See footnote 2.
By way of qualification, let us note that the Bastarnians cannot be considered to be the people issuing the coins, and this despite the eloquent distribution of the Huși-Vovrăști type. The circulation of these coins, especially in the regions east of the Carpathians, should not be attributed to the Bastarnians but rather to the Geto-Dacians. The Geto-Dacians already had multiple geo-political and trading contacts in this area, well before the arrival of the Bastarnians. The arrival of a new ethno-political power must have severely disrupted the political and social stability of the Carpathian zone and it had an impact on neighbouring regions. The coinage discussed nevertheless suggests that relations continued to be directed towards the outside world.

Such a scenario may also be applicable to the north and may explain the presence of five Huși-Vovrăști type coins on the settlement of Pęczyska. Assuming that the concentrations of finds in the Poieniștă-Lukașevka culture represents strong cultural and trading contacts with the Geto-Dacian world, then the Bastarnians cannot be considered to have been the intermediaries, and this on geographical grounds too. Rather, it may reflect approaches from the south and contacts with the Dacians, and perhaps also relations with the Púchov culture, at least in southern Poland.

References

Babes 1993

Babes, Coman 2005

M. Babes, R. Coman, O nouă „fibulă pomeraniană” in România, Arheologia Moldovei XXVIII, 2005, 139–148.

Banari 2003

Bockiö, Łuczkiwicz 2004

Czopek 1999

Dąbrowska 1988

Dąbrowska 1994

Dembski 1998

Dimitrov 2005

Florkiewicz 2009

Florkiewicz, Bochnak 2006

Grygiel 2004

Khapunov, Stylegar 2011

Kokowski 2006a

Along the “Bastarnian” Route? An Imitation Tetradrachm of Philip II from Eastern Poland

Kokowski 2006b

Kokowski 2009

Kolníkova 1997

Le Rider 1977

Łuczkiewicz 1998

Łuczkiewicz 2014

Łuczkiewicz, Schönfelder 2010

Machalowski 2004

Mielczarek 2003

Mikołajczyk 1982

Mikołajczyk 1984

Nick 2006

Nowakowska, Maciałowicz 2006

Pârpullă 2006

Preda 1970

Preda 1973

Preda 1980
RUDNICKI 2003

RUDNICKI, MIŁEK 2011
M. Rudnicki, S. Miłek, New evidence on contacts between Pre-Roman Dacia and territory of Central Poland, Acta Archaeologica Carpathica XLVI, 2011, 117–143.

SUCIU 2005

WOŹNIAK, POLESKA 1999

ZIEGAUS 1994
The Celtic Treasure of Óhuta
(County of Borsod-Abaúj-Zemplén, Hungary)

Péter Prohászka

Abstract: The treasure of Óhuta (now Miskolc Bükkzentlászló, Hungary), which was discovered in 1846, contained at least three different types of coins and two gold artefacts: tetradrachms with boss obverse (Buckelavers); a celtic Audoleon type tetradrachm; a drachm with the head of Pallas Athene; a spiral gold ring and a chain, all dating to the 1st century BC.

Keywords: Hungary, La Tène culture, treasure, coins.

Introduction
Since its discovery in 1846 the Celtic treasure of Óhuta (Fig. 1) – now Miskolc Bükkzentlászló, County of Borsod-Abaúj-Zemplén – has been split into several collections for bureaucratic reasons. Although the coins have been mentioned or published in many studies and essays, there has so far not been a critical study and analysis of the whole assemblage, despite it being the largest find in the county of Borsod-Abaúj-Zemplén and even though its coins and gold artefacts are of great importance to Late La Tène research in the Carpathian Basin.

The published literature contains contradictory statements and errors concerning the circumstances of discovery, although Gabriel Seidl, keeper of the Royal and Imperial Cabinet of Coins and Antiquities in Vienna (Wiener k. k. Münz- und Antikencabinet) immediately published a short report in the monarchy’s chronicle of discoveries. It runs as follows: “O Hutta (Borsod County), 1846. – In April 1846 a treasure consisting of a gold finger ring weighing 4 ducats, a gold chain weighing 7/8 ducat and 35 barbarian silver coins, of a total value of 49 fl. 43 fr. C. M was found.” Unfortunately later researchers have overlooked these few lines and this has resulted in contradictory indications concerning the date of the discovery and its contents. First, the discovery was erroneously dated to 1849, but this was corrected by Karl Pink. Only the coins were mentioned, and 376 coins were supposed to have been found. This figure comes from the catalogue of the Windisch-Grätz collection published in 1900. Two tetradrachms are mentioned there; they were probably bought at auction for the collection. A photograph also appears in the catalogue alongside the detailed descriptions. A footnote contains the following observation: “found in the 1840s, consisted of 376 items.” Unfortunately the series of errors about the composition of the find was compounded by Pink, even though he published the first photographs of the coins held in the Vienna Coin Cabinet. He attributed to the treasure such coins as a tetradrachm of Serbian “rider with helmet

strap” (*Helmschleifreiter*) type, two coins presented by Dessewffy, and a coin published by Leszih, which clearly do not belong to the Őhuta assemblage. The errors made by Karl Pink were accepted uncritically, although Günther Dembski had published the items from Őhuta in his catalogue of the Celtic coins held in the Kunsthistorisches Museum (Art History Museum) in Vienna. The two gold artefacts found with the coins ended up, according to G. Seidl, in the Royal and Imperial Cabinet of Coins and Antiquities in Vienna; they were described by Joseph Arneth among the precious items kept in the cabinet as “no. 281: ring made of three loops and small chain made of four links, 4 14/16 ducats in gold. Found in Hungary in Borsod County at O-Hutta. 1846.” Today they are no longer kept in the collections of the Kunsthistorisches Museum; because they date to the Iron Age, they were

transferred in the first half of the 20th century to the Naturhistorisches Museum (Natural History Museum).13

Sources
In addition to the indications given by G. Seidl, a few sources concerning the discovery at Óhuta, which have so far not been consulted, are available. We have official documents to thank for it. Most records, notices and reports of treasure found in Hungary are kept in the archives of the Hungarian National Archive in in part discarded in the 19th century. Unfortunately, some documents kept in the Hungarian National Archive were not inventoried. Unfortunately there are no indications about the items bought by the University of Pest.

The rest of the finds were auctioned off by the Hofkammer and that is how the two tetradrachms could have ended up in the Windisch-Grätz collection.21 In his book on the Celtic coins of the Kunsthistorisches Museum Günther Dembski published only six coins with Óhuta given as the provenance.22 This might have been a consequence of the inventory of the Coin Cabinet carried out in the 1870s, when possibly only the labels in the coin boxes were catalogued. Fortunately there is a further important source of information about the Celtic coins in the Kunsthistorisches Museum that had so far not been consulted. The coins were examined in 1873 by Joseph Hampel, keeper at the Hungarian National Museum. He described and drew most pieces in his notebook, where he noted the old accession numbers (Fig. 2).23 For the Óhuta finds only the drachm with Pallas Athene was drawn, the other were just briefly noted. Hampel’s list refers to a tetradrachm, an imitation of a tetradrachm of Philip II, the other coins being of Buckelavers type (Hampel also illustrated the dots above the horse). The records and the notes made by Hampel allow us to count the tetradrachm of “rider with helmet strap” (Helmschleifreiter) type published by Pink among the Óhuta finds.24

13. Inv. nos. 80998 and 80999.
21. FIALA 1900, 205 and Pl. III/2282.
24. PINK 1939, 62, 142.
Catalogue

I have followed the indications provided by Dembski while compiling this catalogue. Although he only published six coins from Óhuta, a further coin – the tetradrachm No. 3 – may belong to Óhuta, on the basis of its identity. A coin of Buckelavers type, among finds that come from sites of unknown provenance, could also have belonged to the assemblage. The items that ended up in the Windisch-Grätz collection are described according to the indications given by Eduard Fiala.

1. Obverse: with boss (Buckelavers), boss has flat edges.

Reverse: stylised horse with legs ending in isosceles triangles. The rider is represented by five dots. The coin is struck very lightly.
Weight: 11.73 g. Inv. no.: Vienna Kunsthistorisches Museum (hereafter KHM) Coin Cabinet 27.068 (Fig. 3/1).

2. As No. 1.
Weight: 11.52 g. Inv. no.: KHM Coin Cabinet 27.071 (Fig. 3/2).

3. Obverse: as No. 1.
Reverse: stylised horse with legs ending in isosceles triangles. The coin is struck very lightly.

26. Fiala 1900, 205 and Pl. III/2282.
Weight: 11.15 g. Inv. no.: KHM Coin Cabinet 26.87929 (Fig. 3/3).

4. Obverse: as No. 3.
Reverse: stylised horse with legs ending in isosceles triangles. The rider is much stylised. The coin is struck very lightly.
Weight: 11.31 g. Inv. no.: KHM Coin Cabinet 27.07070 (Fig. 3/4).

5. As No. 1, but the rider is represented by four dots.
Weight: 11.04 g. Inv. no.: KHM Coin Cabinet 27.06731 (Fig. 3/5).

6. Obverse: bearded head of Zeus looking right with turban-like laurel wreath, long locks at the nape of the neck, pelleted edge. Ear in the shape of a paragraph symbol and lips represented by dots.
Reverse: rider, looking right, represented by two dots; no legend.
Weight: 11.52 g. Inv. no.: KHM Coin Cabinet 27.06632 (Fig. 3/6).

Reverse: Pallas Athene sitting, left, legend partly surviving.
Weight: 4.27 g. Inv. no.: KHM Coin Cabinet 27.06933 (Fig. 3/7).

8. As No. 5.
Weight: 10.3 g (Fig. 3/8).

Reverse: illegible.
Weight: 11 g

10. Gold spiral ring made of gold wire with pointed ends.
Weight: 14 g. Former Inv. no.: KHM VII B 205; current Inv. no.: Vienna Naturhistorisches Museum (NHM) 80898 (Fig. 3/9, 10).

11. Gold chain consisting of four links. Three are made of wire circular in section, whose ends are cut. The fourth link is longer and made of a wire hammered flat whose ends end in a point and are bent back.
It is highly likely that the links did not belong to a longer chain but were joined together at a later stage.
Weight: 3 g. Former Inv. no.: KHM VII B 205, current Inv. no.: NHM 80899 (Fig. 3/11).

Analysis
The Óhuta treasure is unique among the Celtic assemblages from Hungary in terms of its composition: it contains at least three different types of coins as well as gold objects. The majority of the coins that have survived or have been described belong to a type with boss obverse (Buckelavers). This type is characterised by a smooth concave (bossed) obverse and a reverse featuring a stylised rider. It was Ödön Gohl who first studied this type of coin in the context of Hoard I at Vel’ký Bysterec which he examined in 1879. Different types were present in that hoard, including shell-shaped staters and a small silver coin which ended up in the collection assembled by Miklós Kubinyi. In addition to eleven gold and sixteen silver coins, there was also gold jewellery. The boss-shaped obverse of this type of coin has several parallels in Celtic coinage; in addition to Gaulish issues the boss-like shape of the obverse is also characteristic of Boian gold coinage. Éva Kolníková was the first to propose a typological classification of these coins by size, weight and imagery. Coins with a weight of 12–10 g and sharp contours on the reverse belong to the earliest types. The quality of the representations and the weight deteriorated during the 1st century BC. The Óhuta find plays an important part in understanding the distribution of the type. Indeed it was proposed in the first half of the 20th century to situate the mint and spread of this coinage in northern Hungary (in the counties of Nógrád and Borsod-Abauj-Zemplén). Taking the current distribution into consideration, the main concentration of this coinage is located in the northwestern and northern areas of Slovakia, especially in the valleys of the rivers Waag and Hernád and in the central area of the Púchov culture (Fig. 4).

As Gohl has noted, the coins under consideration are also found in the west, in Bohemia, for example at Jevičko and Stradonice. In the east they are distributed in the western Ukrainian part of the Carpathian Basin and the central part of Borsod County. Their presence in these regions should be seen as representing trade and economic links rather than ethnic connections. The number of boss obverse (Buckelavers) coins found in hoards rarely exceeds 100 pieces, and they are associated with other types as well.

34. Fiala 1900, 205 and Pl. III/2882.
35. Fiala 1900, 205.
36. Gohl 1900.
40. Gohl 1904a, 5. – Pink 1939, 86, 131.
42. Gohl 1904a, 5.
The Celtic Treasure of Óhuta (County of Borsod-Abaúj-Zemplén, Hungary)

as other items, such as jewellery. At Folkušová 74 out of the 77 tetradrachms were of Buckelavers type, while at Vel’ký Bysterec I the assemblage contained, in addition to the boss obverse coins, shell-shaped staters, a small drachm of the Zemplin type, and gold jewellery. The second hoard discovered at Vel’ký Bysterec in 1985 was also mixed. In addition to 7 tetradrachms of Buckelavers type, 21 silver coins of the Spiš type, a coin of the Zemplin type, and a denarius of Augustus were recovered. At Likavka the assemblage contained in a pottery vessel consisted of 11 coins of Buckelavers type and a piece of silver wire. A hoard was discovered in 1999, inserted into the Iron Age rampart of Rochovica in the vicinity of Žilina. It consisted of 60 tetradrachms of Buckelavers type and four tetradrachms of the Divinka type, found together with two bronze fibulae of the Almgren 67 type. The Rochovica find plays an important part in the dating of the type of coin under consideration. It was first dated to the end of the 2nd century BC, owing to the association of a drachm with the head of Pallas Athene with boss obverse coins at Óhuta. But the Almgren 67 fibula at Rochovica, a type of fibula current in La Tène D2 and Eggers B1a, suggests that the coinage largely belongs to the 1st century BC.

The distribution pattern led Gohl to propose that the coins could have been issued by the Cotini. There is no doubt that the majority of the coins were found in the centre of the area occupied by the Púchov culture, which has been associated with the Cotini, known to Tacitus as having emerged from Germania. A few isolated finds are also known from the County of Borsod-Abaúj-Zemplén in Hungary. Several Celtic coins were recovered from the Iron Age fortification of Nagysánc in Óhuta. Unfortunately, since we do not have any indications as to the exact location of the treasure found in 1846, it is impossible to ascertain whether it was deposited within or without the fortified site.

The published tetradrachms of Óhuta kept in the Kunsthistorisches Museum and in the Windisch-Grätz collection differ in several aspects that are significant for the dating of the coins. A photograph in the catalogue of the collection assembled by Prince Ernst zu Windisch-Grätz suggests that one of the coins was an early type, because of the sharp outlines on its reverse and its weight.

Fig. 4. Distribution of boss obverse (Buckelavers) type coins in the Carpathian Basin (after Kolníková 2004 with additions by the author). – 1. Óhuta. – 2. Vel’ký Bysterec. – 3. Folkušová. – 4. Likavka. – 5. Žilina-Rochovica.

51. Gohl 1900, 229. – Gohl 1904a, 4. – cf. Pink 1939, 86.
53. Leszíh 1904, 15.
56. Fiala 1900, 205 and Pl. III/2882.
of 10.3 g. The other coins are more worn, and many are missing the four or five dots that should appear above the back of the horse. But their weight suggests that they too belong to the early type, i.e. they were struck towards the end of the 2nd century BC and the first half of the 1st century BC.\(^{57}\)

The Óhuta assemblage in the Royal and Imperial Cabinet of Coins and Antiquities in Vienna contains a tetradrachm that is not of *Buckelavers* type; it is a tetradrachm with a bearded head of Zeus looking right, his ear in the shape of a paragraph symbol, and wearing a turban-like laurel wreath on the obverse. The reverse has a simplified representation of a rider, where the rider is represented by just two dots. This image corresponds to the later variant of the Audoleon type of coin. As for the prototype for the image on the obverse, Pink considered it to be of the Hont type.\(^{58}\) He thought that the design on the reverse could refer to the Paeonian king Audoleon, which is supported by the inscription \textit{ΑΔΩΛΕΟΝΤΟΣ} that appears on earlier issues and by the representation of the horse.\(^{59}\) The main concentration of Audoleon type coins is located in the Hungarian counties of Nógrád and Heves.\(^{60}\) The dating of the early issues is given by the vessel in which the finds from Egyházasdengeleg were contained, which suggests that Audoleon type coins were current in the middle third of the 3rd century BC.\(^{61}\) The many variants indicate that the type was minted over long periods, which is also attested by the fact that the imagery becomes increasingly illegible and the weight decreases.\(^{62}\) The inscriptions are missing from the later pieces and the representation of the head gradually deteriorates. The lines of dots and the ear in the shape of a paragraph symbol are characteristic elements of the Óhuta example, as is the image of the rider reduced to two dots.\(^{63}\) Similar coins occur as isolated finds in the areas of the County of Borsod-Abáuj-Zemplén,\(^{64}\) in Óhuta\(^{65}\) and Miskolc.\(^{66}\)

The Royal and Imperial Cabinet of Coins and Antiquities in Vienna also kept a drachm, in addition to the tetradrachms described. This drachm has a head of Pallas Athene sitting and looking left on the reverse. This coin belongs to a series of drachms characterised by mixed imagery on the obverse and reverse.\(^{67}\) Drachms and tetradrachms of Alexander the Great, Philip III, Archaiæus and imitations with indistinct or blurred representations and/or inscriptions are widely spread over southern Romania and northern Bulgaria.\(^{68}\) Examples with a reverse similar to that of Óhuta are also known with a representation of the head of Lysimachus.\(^{69}\) Pink published several such coins with a sitting Zeus on the reverse,\(^{70}\) although they were found in Pecica in Romania and in the northern Hungarian Szajkó Valley.\(^{71}\) Drachms with Pallas Athene were minted in Thracian regions located between the Danube and the Balkans from the second half or end of the 2nd century BC onwards. They must have reached Óhuta from such Thracian regions.\(^{72}\)

Two gold artefacts – a spiral ring and a piece of chain consisting of four links – belong to the Óhuta assemblage. These were overlooked by both archaeologists and numismatists. To date, it is only at Vel'ký Bysterec I that gold jewellery is otherwise known to be present in coin hoards.\(^{73}\) The gold objects are all the more remarkable that they document a Celtic “hunger for gold” which is well known from ancient written sources but rarely documented archaeologically,\(^{74}\) if we except a few richly furnished princely graves. Gold jewellery is rare even among the Eastern Celts, even though gold shell-shaped staters started being minted in the course of the 1st century BC.\(^{75}\)

Parallels for the spiral ring are known among both the Celts and the Germani. Such spiral rings are characterised by a round wire and flattened or pointed ends. Although some rings appear as early as in Eggers’ period A,\(^{76}\) the type becomes common among the Germani in the 3rd century BC. The majority of finds have been recovered in northern Europe.\(^{77}\) Spiral rings still occur in the Iron Age during La Tène C (2nd century BC). They are concentrated in Switzerland, mostly between Bern and Lake Thun;\(^{78}\) they accompany rich female burials, for example in the “Thalacker” female burial at Horgen near Zurich.\(^{79}\) A further ring is known from Manching, found

\(^{57}\) Pink 1939, 88. – Kolníková 2004.

\(^{58}\) Torbágyi 1997, 9.

\(^{59}\) Pink 1939, 93. – Torbágyi 1997, 8–9.

\(^{60}\) Pink 1939, 94. – Torbágyi 1997, 9.

\(^{63}\) Pink 1939, 94.

\(^{64}\) Torbágyi 1997, 9.

\(^{65}\) Leszih 1908, 98, Fig. 3.

\(^{66}\) Leszih 1908, 98.

\(^{67}\) Preda 1973, 325–343.

\(^{68}\) Pink 1939, 116–119. – Preda 1973, 328–332 and 448.

\(^{69}\) Pink 1939, 116–118.

\(^{71}\) Pink 1939, 119.

\(^{72}\) Preda 1973, 328 and 448. – Kolníková, Kolník 2004, 17 and 33.

\(^{73}\) Pink 1939, 119.

\(^{74}\) Preda 1973, 328 and 448. – Kolníková, Kolník 2004, 10–11.

\(^{76}\) Szabó 1999, 103–105.

\(^{77}\) Szabó 1999, 105.

\(^{78}\) Beckmann 1969, 42–43.

\(^{79}\) Beckmann 1969, 42–43.
in what may have been a mass grave. The high copper and silver content of this ring distinguishes it from other gold rings with a high gold content. So far no Iron Age spiral gold rings have been recorded in the Carpathian Basin, although spiral bronze bracelets have been found, for example in the fortification of Nagysánc in Öhuta. The gold finger ring may have been used as currency or for barter or exchange against coins. The possibility that such rings were used as ring money has been considered, but the examples examined by Beckmann are characterised by ends that have been cut off.

The four-link chain may have had a similar purpose, although there have so far been no similar finds in the Iron Age assemblages of the Carpathian Basin. It is possible that the individual links, which consist of small round or flat pieces of wire, were only linked together just before being sent to Vienna. A gold ring weighing 6.6 g found in the Gyertyán Valley some 15 km from Öhuta is similar to one of the round-wire links; Gohl assumed that it had been used as ring money.

The Öhuta treasure differs from other such finds in that it contained gold “ring money” in addition to 35 coins of various types. It most probably represents the buried possessions of a trader or craftsman. Although no records of the precise location of this treasure survive, the Iron Age fortification of Nagysánc – which, like the Slovakian fortified sites of the time, could have been a trading and production centre – provides a context for the Öhuta treasure. Excavation campaigns at Nagysánc in 1930 and 1958 uncovered the remains of a late Celtic settlement, and its assemblages included a tetradrachm of Buckelavers type.

The coin types represented at Öhuta lie outside their main zones of distribution. The drachm with the head of Pallas Athene originated in Thrace, and this suggests that its owner perhaps had contacts with the southeast. The growth of a coin-based economy in the Late Iron Age appears to have gone hand in hand with trade in raw materials. It is possible that the gold ring money was used in exchange for goods. The coin types considered here circulated in the 1st century BC, and hence the treasure must be dated to La Tène D. Whether the treasure was deposited as a consequence of Dacian incursions or the advance of people belonging to the Przeworsk culture into the northeastern Carpathian Basin cannot be answered. The analysis of the Öhuta find presented here nevertheless adds to our understanding of Late Iron Age contacts in the Carpathian Basin.

Acknowledgements
I would like to thank Dr István Fazekas (formerly Haus-, Hof- und Staatsarchiv, Vienna), Dr Melinda Torbágyi (Hungarian National Museum, Budapest), Dr Martin Schönfelder (Römisch-Germanisches Zentralmuseum, Mainz), Dr Veronika Holzer (Naturhistorisches Museum, Vienna), Karoline Zhuber-Okróg and Prof. Dr Günther Dembski (Kunsthistorisches Museum, Vienna) for their assistance. I was able to conduct investigations in the Vienna archives thanks to a grant from the Collegium Hungaricum. A SAPRO (0104/01/03) research grant of the Slovakian Academy of Sciences co-financed by the European Union enabled me to complete this task.

References
Arneth 1850

Beckmann 1969

Dembski 1998

Fiala 1900
E. Fiala, Collection Ernst Prinz zu Windisch-Grätz. Anhang zu dem Band (V) Griechen; Die Prägungen der Barbaren. Prague 1900.

Füger, Müller 1991

Gohl 1900

Gohl 1904a
Ö. Gohl, Újabb adatok a hazai kotinus és koisztóbó-
kus néptörzek pénzeiről, Numizmatikai Közlöny 3, 1904, 4–8.

Gohl 1904b
Ο. Gohl, Helyesbíttés, Numizmatikai Közlöny 3, 1904, 45.

Hellebrandt 1992

Kolniková 2003

Kolniková 2004
É. Kolniková, Severoslovenské keltské mince s hrbol’om na averze, Slovenská numizmatika 17, 2004, 11–52.

Kolniková, Kolnik 2004

Lange 1983

Leszih 1904

Leszih 1908
A. Leszih, A borsodmegeyi kelta pénzekről, Numizmatikai Közlöny 7, 1908, 97–101.

Müller 1991

Pieta 2010

Pink 1939

Preda 1973

Ringer 1996

Seidl 1847
G. Seidl, Chronik der archäologischen Funde in der österreichischen Monarchie (Fortsetzung), Oesterreichische Blätter für Literatur und Kunst, Geographie, Geschichte, Statistik und Naturkunde 4/244, 1847, 969–970.

Szabó 1983

Szabó 1999

Torbágyi 1997
The Sunken-Featured Buildings of the Middle La Tène Period: Problems and Reconstructions

Lőrinc Timár

Abstract: This contribution discusses a typical form of La Tène architecture, buildings with sunken floors (pithouses). They were spread all over the Carpathian Basin, not only in the Early Iron Age, but also in the Middle Ages and in modern times. The interpretation of their remains from the Middle La Tène period remains problematic. The function of the sunken-featured buildings and their internal organisation within the structure of the settlement are closely linked.

Keywords: La Tène period, settlements, architecture, sunken-featured buildings, Grubenhäuser.

Schlüsselwörter: Latènezeit, Siedlungen, Architektur, eingetiefte Bauten, Grubenhäuser.

Sunken-featured buildings are often encountered at Iron-Age sites, but they also appear in nearly all archaeological periods. Although they seem to have had a very simple structure, understanding their remains is far from easy. The nature of the archaeological evidence is rather unusual. Generally, none of their structural parts survive, and only negative imprints are recovered; there are only a few cases where some parts of the superstructure are preserved. Wooden and stone constructions partially survive in Slovenia,1 and a number of timber frame building members have stayed intact in the wet conditions at Liptovská Mara in northern Slovakia.2 Remains of very complex constructions came to light in Dürrnberg-Ramsausal,3 where Horizons 2b, 3a and 3b can be related to La Tène B2/C1. The most important of all surviving remains is Building 1-01 at Roseldorf, Lower Austria, where the lower part of a wooden plank wall was preserved in situ.4

The study of this building type (often referred to as pithouse or Grubenhaus) can only lead to meaningful results, if its context is considered in a broader perspective and comparative data from other historic periods and regions are used. The present paper deals with general problems concerning Middle La Tène architecture (3rd – 2nd centuries BC) and regional differences in settlement structures.5

The first category of problems relates to the settlement structure. There are relatively few publications showing plans of entire settlements. Due to the lack of funds, older research projects provided little opportunity to excavate large surface areas. In recent years, however, rescue excavations for motorway constructions have revealed huge sites in Hungary. Unfortunately, only a very small part of them has been published so far, and most of what is known about them is limited to excavation reports.6

According to previous interpretations, the sunken-featured buildings were simple huts with roofs resting on the ground (Fig. 1). If we accept this view, we must suppose that these buildings were used for storage and some special activities only, and that the population which used them was living in other types of houses. However, it is evident that settlement patterns in Hungary differ

2. Pieta 2008, 91, Fig. 39.
4. Holzer 2009, 18, Fig. A-11–A-14.
5. This paper is presented here with the help of the OTKA Hungarian Research Fund.
from other regions and that only a few traces of surface buildings exist. If we assume that the sunken-featured buildings were destined to fulfil subordinate functions only, we cannot imagine what kind of structure these settlements had. Therefore, the understanding of the remains is very important.

If one compares the site plans from Slovakia, Austria and Hungary, the differences become apparent. The organisation of settlements, the disposition of the buildings, is not the same. The most obvious difference is in the proportion of postholes, which indicate surface buildings (timber-framed), and large pits indicating sunken-featured buildings. Figure 2 shows three settlements of the same size: Michelndorf in Austria, Nitra in Slovakia, and Sajópetri in northeastern Hungary. On the plan of Michelndorf there are many postholes. It seems very likely that there was a kind of orthogonal order in settlement structure, as suggested for some settlements, notably Göttlesbrunn. This cannot be said for the La Tène settlements in Hungary.

Nitra and Sajópetri obviously lack surface buildings. In eastern Austria, the numerous postholes in the settlement plans are easily attributed to wooden-framed houses. In Hungary, the lack of surface buildings and the dominance of pithouses appear to be a special feature of the Carpathian Basin (although there are few complete settlement plans published).

Figure 3 shows the details of the central zones of Prellenkirchen in Austria and Sajópetri, Hungary. At the latter site, there were only a couple of postholes which could be associated with a surface building (Feature no. 98.17), so the rest of the pits belonged either to sunken-featured houses or simple storage pits. We also have to note that there is no trace of an orthogonal system in Sajópetri; the buildings were apparently arranged in loose groups, similar to Nitra, Ordacsehi (Fig. 4) or Polgár. On the contrary, in Prellenkirchen there are many postholes which could have belonged to surface buildings.

7. Karl 1996, 99, Fig. 45.
8. E.g. Karl 1996, 95. – Ramsl 1998, 15, Figs. 5, 6 and 7. – Kalser 2008, 33, Fig. 41.
9. Szabó et al. 2008, 185, Fig. 2.
It would be too simple an explanation to assume that surface buildings – even though there is no trace of them – existed along with pithouses. If we suppose that one settlement unit of a couple of buildings housed an extended family (which can be derived from the fact that the settlements have only a few groups of buildings), there should have been a rather large surface building. From the vernacular architecture of modern times we know of some building types which have no foundation except large flat stones, but those buildings do not seem widespread; and compared to the simpler sunken-featured buildings their structure is very complex. In Sajópetri, only building 98.14 was a surface building out of a total of 41 buildings. We do not know how many buildings were in use at the same time nor do we have data on the demography of the settlement. We know, however, that about 90 graves were found in the cemetery (Sajópetri – Homoki Szőlőskertek) that belonged to the settlement. It seems to be certain that there were no surface buildings that could house 20–30 people, but the pithouses could have easily accommodated such a number of inhabitants.

11. Timár et al. 2007, 86.
Fig. 3. The central zones of Prellenkirchen (after Karwowski 2010,) and Sajópetri (after Szabó 2007).

Fig. 4. Ordacsehi at Lake Balaton, building groups (after Gallina, Molnár, Somogyi 2007).
It seems to be right to assume that the groups of buildings formed a functional unit (*Siedlungseinheit*),

although we do not know how many of them belonged to a household because we do not know the function(s) of the buildings. Obviously the buildings had different functions to some extent,

which should be reflected in the layout of their floor plans and in their structural details.

The pits of the sunken-featured houses were studied in the past,

but the suggested categories were based on very obscure criteria. Apparently, the system established by Jiří Meduna groups the archaeological phenomena only, and these groups do not refer to the supposed structure of the houses. It is also problematic that the details of the pithouses do not always survive, and therefore the existence or non-existence of a corner posthole does not seem to be a decisive factor. Jiří Waldhauser’s proposed functional classification is too rigid and does not accept working in the living quarters, which is still a common behaviour in preindustrial societies.

A far more reliable method is to analyse the pits and their patterns and draw lessons from the results. All that is needed is a larger number of site plans and archaeological data, processed to the same standards, in order to allow comparison. Hopefully, the number of full site publications will increase in the near future.

The logical consequence of the previous paragraph is that we must try to identify functions and building types, as well as find a link between them. At this point we come to the problem of understanding the remains. In the older literature, as shown in Figure 1, sunken-featured buildings are reconstructed as a very simple gable roof placed over the hollow in the ground, with the roof members resting on the ground.

This building type seems to be a reflection of the so-called shepherd’s hut in the vernacular architecture. After some consideration it should become clear that this extremely simple building-type does not seem to be a permanent dwelling, for many reasons. There are structural, geometrical and ergonomic problems.

13. For further details and suggestions, see Karl 1996, 95–97.
14. Some activities, such as living and storage or working, could have been done in the same building, as Iron Age houses seem not to be dedicated to one function only (Timár 2009).
16. Waldhauser 1993, 257. – We have to note that the Celts were probably not too aware of separating working areas from living areas, see also Karl 1996, 68–69.
18. For more information on this problem, see Timár 2009. – Timár 2011.
20. E.g. Karl 1996, 70, Fig. 14. – Tánkó 2004, 106, Fig. 2/4.
Antique Sources and Archaeological Parallels

When we try to find a new way for the understanding of the remains, first of all we have to examine written sources from Antiquity. Unfortunately, only a few of them refer to Celtic buildings: we have Caesar’s descriptions of the Celtic settlement types and the house urns of the Latobicus tribe. The house urns represent a number of building models within a span of many centuries, and many of them are well detailed. With proper precautions, we can use them as a structural reference.

There are, however, many other depictions and texts which provide us with more information on such small-scale houses. The observations of Strabo, Tacitus and Vitruvius give us some details about buildings similar to the sunken-featured houses of the La Tène period, and the depictions – mainly from the Roman Age – show interesting structures. Among the many examples, we have to mention the column of Trajan and the mosaic of the domus Laberii. The latter example shows the African landscape of its time, with a shepherd’s hut in the foreground. It should be quite clear to the trained eye that this building is a shelter only, built by the shepherds who had to stay in the fields. It has no gable walls and seems to be a temporary construction.

The pithouses and simple dwellings in the vernacular architecture of the 19th century are significantly different and there is the same problem with using them; they are only structural parallels, and cannot provide a direct reference.

The Analysis of the Archaeological Evidence

What is the best way, then, to understand the remains? As was mentioned beforehand, the sunken-featured buildings are negative archaeological structures only; they are nothing but the imprints of their superstructure. It seems to be a common problem that they are hard to find in humus layers, especially on rescue excavations, during which the surface is scraped and the humus removed, and the traces of the buildings appear as dark stains on the surface. In the case of Ráckeresztúr in Fejér County, Hungary, a new method was introduced. The position of the buildings could be seen on the aerial photos, which made it possible to start the excavation from the surface at the exact position over the remains. If one had started with surface scraping, there would have been no chance to record the longitudinal bank on the southern side of the pit. Usually there is no possibility to record the sections of such archaeological structures, but in this case, the section wall had a considerable height and showed many interesting details. In the middle of the backfill, there was a thin yellow layer visible, dividing the contents of the pit into an upper and lower group of layers. Fortunately, there are some parallels showing the same phenomenon (Fig. 6).

We believe that this thin yellow layer results from the degradation of the pit’s sides, and that the layers under this are the remains of the structural parts of the house, whilst the layers above it are likely sediments from outside.

22. See Behn 1924. – Sabatini 2007.
24. Vitruvius II, 1. – Strabo IV, 4, 3. – Tacitus, Germania XVI.
25. Bes Abed 2006, 98, Fig. 5/10.
27. An excavation of Zoltán Czajlik, see Timár 2010.
The Sunken-Featured Buildings of the Middle La Tène Period

197

the pit. Figure 7 shows the process of degradation. After the collapse of such a building, the roof members do not remain in an oblique position. Their disarray resembles a pile of Mikado pick-up sticks, which makes recording impossible as their material is mainly decomposed.28

Structural Types

In order to reconstruct the superstructure, an attempt has to be made to understand the load-bearing structure of the buildings. According to Olivier Buchenschutz, the art of the house urns clearly reflects three principal structural systems. As the sunken-featured buildings of La Tène B/C show no grid of postholes, it is very likely that they belonged to Buchenschutz’s third type,29 in which the roof is supported by the surrounding wall. As mentioned above, there is strong archaeological evidence for this structure, thus we have to accept it. In this building type there is no standardised location for the entrance, which could explain why the entrance is found in the corner of some sunken-featured buildings in those few instances where traces of the wall construction are visible. In a Late Iron Age building on Budapest-Gellértgy, the holes of a wattle-and-daub wall’s vertical stakes were cut into the bedrock (Fig. 8/b), resembling the wall structure shown in Figure 9. Similar traces were observed at Balatonmagyaród, where the wattle wall was associated with a trench (Fig. 8/a). The entrance is in the corner and the corners are filleted, which means the superstructure was no log cabin with real corners.

A clean functional separation is impossible, as the buildings could have had many functions at the same time.30 Activities like making shale (sapropelite) or bone objects could have taken place in any type of building, as these do not need any special installations. It is there-

28. For more details, see Timár 2011.

29. Buchenschutz 2005, 56, Fig. 4.

30. For a very complex functional typology, see Waldhauser 1993, 257.
Fig. 9. Wall of vertical stakes under construction in Tanzania (Photo: Péter Timár).

fore no surprise that the traces of such activities may come from dwellings with no special features, rendering complex classifications useless (see above). However, other activities, such as the working of glass, ceramics or metals, require a furnace.

The Question of Residential Function
Some scientists believe that such sunken-featured houses were too small for habitation. This brings us back to the problem of function: in order to identify a dwelling, one must pay attention to the size of the building. Since all we can rely on is the floor plan, it should provide sufficient space for four members of a nuclear family. As we have enough data on the body heights of the inhabitants of Sajópetri, we can speculate how four people and a set of grave finds fit into the smallest pit contour. If the buildings had proper walls, even the smallest ones could have provided shelter for a nuclear family and its household items. Our example shown here is based on the finds of Sajópetri (Fig. 10).

The Workshop Type and its Reconstruction
As mentioned earlier, context is the key to understanding the function. A special building type was identified in Sajópetri, which showed some evidence for having functioned as a workshop. This building has many parallels in the Carpathian Basin (Fig. 11), some of which also had traces of craft activities. The most prominent feature of these structures is the longitudinal bank along their southern side. The interpretation of this bank is uncertain, but we can assume that it was a structure for sitting, and it seems very likely that it was also located close to the entrance. Although some types of craftsmanship do not require direct light (for example blacksmithing, because the glowing colours are visible in dim, low-light conditions only), we believe that the southern side of this building type was partially open.

Weights for vertical looms are known from at least two houses, one of which was excavated at Polgár (Fig. 11/2). A Hallstatt period urn from Sopron shows the use of such a vertical loom (Fig. 12), which means the ceiling height of such a house should have allowed people to stand upright inside. Therefore, the workshop type almost certainly had walls above ground level. Looms and textiles are sensitive to rain and, although we have no information on the established working practices, their use was presumably limited to particular times when no other activity could be performed.

When attempting to picture all possible roof shapes of such a building, not too many possibilities open up; and many of them are impractical. In the workshop from Sajópetri (02.A.93) there were traces of ironworking and three pottery kilns were attached to its corner. Ironworking would not be possible without being able to stand upright inside the house, which serves as another proof that those buildings had real walls. There are only six possible roof variants for such a building, and the use of computer simulations allows us to reconstruct them based on the geometry of the hollow in the ground. We find this method very practical, as there is no danger of drawing something that is not based on archaeological evidence. The only problem is whether we should reconstruct all similar buildings in the same manner.

Fortunately, there exists a way for evaluating our reconstructions. We have already mentioned the depictions from Classical Antiquity, ancient texts and the hut urns. Even if they belong in different periods or parts of Europe, we do not believe they represent something totally different from the Late Iron Age houses. With

33. Timár 2010, 271.
some caution, we can use them as structural references, as shown in the example below.

When attempting to reconstruct the building at Ráckeresztúr we set the interior height to approx. 180 cm in accordance with the depiction on the urn from Sopron. Though a gable roof would be the most likely construction, there is a problem with this interpretation: it looks structurally unsound because the ridge walls are curved (Fig. 13). The urn of Königsaue in Germany (from the 7th century BC) shows a more credible solution: a steep hipped roof with soft edges (Fig. 14). This type of roof can easily be made with thin members, its ridge supported by two posts in the axis of the building. There is no need for tie beams inside, because the thin roof members are placed densely and the forces are low and well distributed.

We believe that the structure of such a house was similar to the one shown in Figure 15.

We should now return to the problem of the settlement structure. We were able to identify a building type, but the function of the remaining structures is still obscure. As mentioned above, the settlement layout could provide the key to the understanding of the units, but this again raises other problems.

Obviously, the Celts of Liptovská Mara would have faced great difficulties had they attempted to build a lowland-type sunken-featured house; equally, there were no stones at Sajópetri for constructing a mountain-type house. Houses were built using available resources. But can we also suppose that the people who built them led the same way of life? The answer to that question is not easy.

A logical explanation would be that the Celtic tribes adapted to different environmental conditions, more or less like Native Americans, who had specific buildings adapted to their customary ways of life and climate: tipis for the inhabitants of the Plains, wigwams and longhouses for the tribes of the Eastern Woodlands and mud-brick Pueblo houses for the people of the Southwest. There is only one major problem with this idea: even if there were “lowlanders” and “highlanders” in La Tène period central Europe, this is not reflected in the finds, which are quite uniform. This problem should be further explored in the future. In the somewhat unlikely case that we will one day be able to make a distinction between the settlements of the Taurisci and those of other tribes, then we will have the opportunity to study their houses in this context. Currently, all what we can do is investigate the settlements and prepare detailed statistics of the sunken-featured buildings.

37. We have to note that Native American building constructions can also be used as parallels. They are well studied (some types of them since the 16th century) and a number of very good photographs exist. – For more details, see Nabokov, Easton 1989.
Fig. 12. Hallstatt period depiction of weaving (after Gallus 1934).

Fig. 13. Reconstruction of the house at Ráckeresztúr with gable roof (top) and hipped roof (bottom).

Fig. 14. The urn from Königsaue, Germany (after Behn 1924).

Fig. 15. Interior of an African house, Tanzania (Photo: Péter Timár).
References

Behn 1924
F. Behn, Hausurnen. Vorgeschichtliche Forschungen 1/1, Berlin, 1924.

Belényesy, Honti, Kiss 2007

Ben Abed 2006

Bónis 1969

Březinová 2002

Buchenschutz 2005

Češnar 2007

Cserhát 1934

Gállus 1934

Guillaumet 1996

Holzer 2009

Horváth 1987
L. Horváth, Késővaskori ház és településtípusok Dél-Zalában (Late Iron Age house and settlement types in southern Zala county), Zalai Múzeum 1, 59–80.

Kalser 2008

Karl 1996

Karwowski 2010

Kerman 2011

Lobisser 2005

Meduna 1980

Nabokov, Easton 1989

Patay 1959
P. Patay, Késő-vaskori ház Acsán (Late Iron Age house at Acsa), Folia Archaeologica 11, 1959, 39–45.

Petru 1971

Pieta 2008

Pusztai 1967
R. Pusztai, Késő vaskori házak Lébényben (Late Iron Age houses at Lébény), Arrabona 9, 1967, 5–11.

Ramsköld 1998
P. C. Ramsköld, Inzersdorf-Walpersdorf: Studien zur spät-hallstatt-/-latènezeitlichen Besiedlung im Traisental,