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Abstract

The investigation of the cyclotron maser instability in sources of finite perpen-
dicular extension separated from the denser and cold surrounding plasma by sharp
density gradients is made within the waveguide approximation. The general disper-
sion equation of wave propagation and amplification is obtained and solved numer-
ically for different regimes. It is found that the growth rate of oblique eigenmode
increases with the increasing of the perpendicular component of the wave vector
directed along cavity boundaries. The structure of electromagnetic fields inside the
source region is studied and changes of the wave polarization are discussed.

1 Introduction

Experimental data obtained during the modern spacecraft missions strongly suggest that
Auroral Kilometric Radiation (AKR) sources have a small extension (usually not more
than one hundred km) in the direction perpendicular to the geomagnetic field. AKR
sources are observed as plasma cavities, filled by hot and tenuous plasma, and separated
from the denser and colder surrounding plasma by sharp density gradient with typical
scale length of the order or below 1 km. The electron population in these regions is
dominated by particles with low parallel velocities and the energy of the order of several
keV [Louarn and Le Quéau, 1996a]. During the last years it was established that the most
likely mechanism for the generation of AKR, as well as to its analogs at other magnetized
planets (Jupiter, Saturn and Uranus), is the electron cyclotron maser instability (CMI)
[Wu and Lee, 1979; Pritchett 1984]. Louarn and Le Quéau [1996b] were the first who
suggested a waveguide model for the AKR source, on the basis that a source boundary
thickness is less than a typical wave length, whereas a source width is far in excess. They
derived a dispersion equation for the waveguide eigenmode frequencies and solved it for
different parameter regimes. However their results are correct for waves propagating along
the magnetic field only. Since a waveguide model of the AKR source seems to us very
promising in the light of the experimental data,we have found a dispersion equation of
wave excitation and amplification in sources of finite extension in the general case.
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2 Model and basic equations

The model of the AKR source region is chosen similar to [Louarn and Le Quéau, 1996b]. It
is a slab structure limited in the x direction with width L = 2l and unlimited in the y and z
directions (z is along the background magnetic field in the opposite direction to it) (Fig.1).
The source region is separated from the denser and cold surrounding plasma by infinitely
density gradients. Inside the source the electron population consist of energetic particles
with a ring-like distribution: (f(vz, v⊥) = (2πv⊥0)

−1δ(v⊥ − v⊥0)δ(vz − v0), where v0 is
an electron velocity along the background magnetic field. Although such a distribution
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Figure 1: The model of the source region

is idealized, it takes into account relativistic effects and does not significantly modify
the results obtained with the use of more realistic distributions as shown in [Pritchett
1984]. Assuming that changes of plasma parameters have a characteristic scale larger
than a source width, the plasma inside and outside the source region may be considered
as homogeneous. Writing the Maxwell equations with a appropriate dielectric tensor
for each of the three homogeneous regions in the Fourier space, we perform a Fourier
transform in the y and z directions:

~∇× ~H = −iω
c
(ε̂ ~E), ~∇× ~E = i

ω

c
~H, (1)

where c is a speed of light, ~ε is the dielectric tensor and ~∇ = (∇x, iky, ikz). Since in the
region of the AKR generation the electron plasma frequency (ωp) is much less than the
electron gyrofrequency (ωc) and AKR wavelengths are much larger than the electron Lar-
mor radius, it can be shown that for the ring-distribution the dielectric tensor components
are the next:

εxx = εyy ≡ ε1, εzz = 1,
εxy = −εyx ≡ ε2, εxz = εyz = εzx = εzy = 0,

(2)

where ε1 = εi
1, ε2 = εi

2 for the plasma inside a source region and ε1 = ε0
1, ε2 = ε0

2 for
the outside plasma.
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+
v2
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2c2
N2
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,

F2 =
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ω + 1 − δΣ −Nzu0
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,

ε0
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2ω

(

1

ω − 1
+ 1

ω+1

)

, ε0
2 =

α0

2ω

(

1

ω − 1
+ 1

ω+1

)

,

(3)

where normalized parameters and variables are used: αi = ω2
pi/ω

2
c , α0 = ω2

p0/ω
2
c (ωpi, ωp0

are electron plasma frequencies inside and outside the source respectively), ω = ω/ωc,
Nz = kzc/ωc, u0 = v0/c, δΣ = (v2

⊥0 + v2
0)/2c

2. From equations (1), (2) all the components
of the electromagnetic field can be written as functions of the parallel electric and magnetic
field components only:

Hx =
NyEz −NzEy

ω
, Hy =

i

ω

∂Ez

∂x
+
Nz

ω
Ex, (4)
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(5)
where Ny = kyc/ωc, x = xωc/c. The parallel components of the electric and magnetic
field are related by the equations:

∂2Ez

∂x2
−
N2

y

ω2
Ez +

(

1 − N2
z

ε1ω2

)

Ez = i
Nz

ω

ε2

ε1

Hz,

∂2Hz

∂x2
−
N2

y

ω2
Hz +

(

ε2
1 − ε2

2

ε1

− N2
z

ω2

)

Hz = −iNz

ω

ε2

ε1

Ez

(6)

For the case of a perpendicular propagation (Nz = 0) the upper equation (6) describes
the ordinary (O) mode and the bottom corresponds to the extraordinary (X) mode when
N2

⊥ = (N2
x +N2

y ) < 1 (ω2/ω2
c ≈ 1).

The general solution of equations (6) inside the AKR source is a superposition of two
extraordinary and two ordinary mode waves. Thus for −L/2 ≤ x ≤ L/2

H i
z = (a1 cos(N1x)+ b1 sin(N1x)+a2 cos(N2x)+ b2 sin(N2x)) exp(i(Nyy+Nzz−ωt)) (7)

Outside the source the solution is

for x > L/2

H+
z = (A1 exp(iN3(x− L/2)) + A2 exp(iN4(x− L/2))) exp(i(Nyy +Nzz − ωt)),

for x < −L/2
H−

z = (B1 exp(−iN3(x+ L/2)) +B2 exp(−iN4(x+ L/2))) exp(i(Nyy +Nzz − ωt)).
(8)



244 T. M. Burinskaya et al.

In expressions (7,8) N1, N3 are the transverse wave numbers for the X mode and N2, N4

for the O mode. For each of the three homogeneous regions transverse wave numbers are
found from the dispersion equation with corresponding ε1 and ε2:

(

1 − N2
z

ε1ω2
− N2

⊥

ω2

)(

ε2
1 − ε2

2

ε1

− N2
z +N2

⊥

ω2

)

=
N2

z ε
2
2

ω2ε2
1

(9)

The dispersion equation for the waveguide eigenmodes is found from the continuity of Hz,
Ez, Hy and Ey.

3 Study of dispersion equation

3.1 Eigenmodes for the wave transverse propagation

First we consider the equation of wave propagation and amplification for Nz = 0. In
this case the parallel electric and magnetic fields are decoupled and the electromagnetic
field can be decomposed into waves corresponding to X (Ez = 0) or O (Hz = 0) modes.
Thus in the general solution (7,8) we take into consideration only the terms attributing
to X mode (a2 = b2 = A2 = B2 = 0). Substituting (7,8) into the expression for Ey (5)
and using the conditions of continuity: H i

z = H+
z , Ei

y = E+
y for x = L/2 and H i

z = H−
z ,

Ei
y = E−

y for x = −L/2, the system of four linear equations is obtained. The compatibility
conditions of this system gives the dispersion equation:

{

1

Di
[εi

1N1 sin(N1l) − εi
2Ny cos(N1l)] +

cos(N1l)

D0
[iN3ε

0
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2Ny]

}

×
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1
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}

= −
{

1
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[εi
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D0
[iN3ε
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}

×
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1
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(10)

Here Di and D0 are found with the use of (5) by substituting εi
1, ε

i
2 and ε0

1, ε
0
2 respectively.

Equation (10) depends on N2
y as it must be, because there is no difference for wave prop-

agation in the positive or negative y direction. Contrary to this the dispersion equation
(15) obtained in [Louarn and Le Quéau, 1996b] depends on Ny, because symmetric func-
tions were chosen as solutions and the use of them is correct only for the case Ny = 0.
The reason is that although the equation (6) for Hz may have symmetric (b1 = 0) and
antisymmetric (a1 = 0) solutions, it is impossible for any of them to satisfy the boundary
conditions for x = −L/2 and x = L/2 simultaneously, when Ny 6= 0. It follows from the
fact that expression (5) for Ey, have terms with Hz and ∂Hz/∂x simultaneously.

Solutions of the dispersion equation for Ny = 0 were studied by Louarn and Le Quéau
[1996b] in details and it was shown that each of the solutions can be labeled by an integer
n. In this paper we determine n ≈ 1 + N1 ∗ L/π (here L is a normalized width L =
ωcL/c)indicating the number of maximums of |Hz| inside the source. We have studied the
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numerical solutions of equation (10) depending on the value of Ny for different eigenmodes
denoted by n. The normalized parameters used for calculations are similar to [Louarn
and Le Quéau, 1996b]: αi = 0.002, α0 = 0.01, u0 = 0., δΣ = 0.0075, l = ωcl/c = 60. At an
altitude where fc = 200kHz the width corresponds to ≈ 30km, the internal density to
≈ 1cm−3, the external density to ≈ 5cm−3 and the electron energy ≈ 4KeV . Solutions of
(10) are plotted in Fig.2, where the normalized frequency represented by δω = (ω−ωc)/ωc

and the growth rate γ = γ/ωc are shown as a function of Ny for different n. As follows
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Figure 2: Ny - dependence of δω and γ for different eigenmodes, Nz = 0

from numerical results the greater is the eigenmode number n, the less is an interval
of Ny where the wave amplification is possible. Obviously it is a consequence of the X
mode condition N2

1 + N2
y < 1, because n ≈ 1 + N1 ∗ L/π. It worth to note that the

growth rate has the greater value for oblique eigenmodes with small number n. Taking
into account the ratio between coefficients in the solution (7), following from the system
of linear equations obtained for the derivation of dispersion equation (10),

b1
a1

=

{

1

Di
[εi

1N1 sin(N1l) − εi
2Ny cos(N1l)] +

cos(N1l)

D0
[iN3ε

0
1 + ε0

2Ny]

}

{

1

Di
[εi

1N1 cos(N1l) + εi
2Ny sin(N1l)] −

sin(N1l)

D0
[iN3ε0

1 + ε2Ny]

} , (11)

it is possible to illustrate the modification of the eigenmode in dimensionless units versus
Ny. In Fig.3 the structure of |Hz| for the eigenmode n = 12 (N1 = 0.289) is shown for
Ny = 0 (symmetric solution) and for Ny = 0.5 (asymmetric solution). The polarization
of X mode for the case Ny = 0 is |Ex|/|Ey| = ε2/ε1 < 1. Thus Ey dominates for the case
Ny = 0 and |Ex|/|Ey| is not dependent on the x coordinate inside the source. However
with a growth of Ny the polarization becomes strongly coordinate dependent and the ratio
|Ex|/|Ey| may achieve high values. The structure of the polarization drastically changes
for the case Ny 6= 0 as it is shown in Fig.4 for the eigenmode n = 12.



246 T. M. Burinskaya et al.

-150 -100 -50 0 50 100 150

0,0

0,2

0,4

0,6

0,8

1,0

1,2

N
y
=0.

n=12

IH
z
I

X

-150 -100 -50 0 50 100 150

0,0

0,2

0,4

0,6

0,8

1,0

1,2

N
y
=0.5

n=12

IH
z
I

X

Figure 3: Structure of the |Hz| for the eigenmode n = 12 for Ny = 0 and Ny = 0.5
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Figure 4: Polarization of the eigenmode n = 12 for Ny = 0 and Ny = 0.5

3.2 Eigenmodes for the wave propagation at an arbitrary angle to the mag-
netic field

In the waveguide approximation the dispersion equation for the wave propagation at an
arbitrary angle to the background magnetic field is found by a routine way with a use of a
general solution (7,8) and the continuity of Hz, Ez, Hy and Ey for x = L/2 and x = −L/2.
Since this equation has a huge size, we do not reproduce it here but present some results
obtained by numerical calculations.In [Louarn and Le Quéau, 1996b] the dependence of
the dispersion equation upon Nz was obtained for Nz ≪ N1 but in our calculations we
use the general dispersion equation for an arbitrary value of Nz without limitations.

In Fig. 5 the normalized frequency δω = (ω − ωc)/ωc and the growth rate γ = γ/ωc

are shown versus Nz for different n. A contraction of Nz range with the increasing of
the eigenmode number is clearly seen. However the larger is the eigenmode number n,
the greater is a value of the growth rate. Fig. 6 displays the Nz - dependence of the
normalized frequency and growth rate for the eigenmode n = 12 for different Ny. As
might be expected, there is a decreasing of Nz range with the increasing of Ny. Results of
our investigation, when electrons velocity u0 directed along the magnetic field inside the
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Figure 5: Nz - dependence of δω and γ for different eigenmodes, Ny = 0
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Figure 6: Nz - dependence of δω and γ for the eigenmode n = 12 for different Ny

source region is taken into consideration, are plotted in Fig. 7 for the eigenmode n = 29
and different u0 . For u0 6= 0 the Nz - dependence of the frequency is changed in such way
that in the Earth magnetic field the waves generated with Nz = 0 or even having a rather
small Nz < 0 directed from the Earth at first would propagate down to the Earth, because
their group velocity Vgr > 0. After wave passing through the reflection point (Vgr = 0),
waves propagate upward until they reach an altitude where the external X mode cut-off
becomes equal to the wave frequency. Thus, although the Nz-dependence of the growth
rate is practically the same (see Fig. 7) the wave amplification factor may increase due
to the enhancement of wave duration inside the cavity.

4 Conclusion

The results of our investigation of the development of the CMI in sources of finite per-
pendicular extension in the waveguide approximation have shown that the growth rate of
oblique eigenmode increases with the increasing of the perpendicular component of the
wave vector directed along cavity boundaries. In general a structure of electromagnetic
fields inside the source is asymmetric. Ey dominates for Ny = 0 and |Ex|/|Ey| is not
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Figure 7: Nz - dependence of δω and γ for the eigenmode n = 29 for different u0

dependent on the coordinate inside the source. However with a growth of Ny the polar-
ization becomes strongly coordinate dependent and the ratio |Ex|/|Ey| may achieve high
values in accordance with experimental observations.

Acknowledgments. This investigation was partially supported by grant of President RF
HIII - 1739.2003.2 and RFBR grant 05-02-17566.

References
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