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Abstract

A mathematical model concerning magnetic field perturbations is elaborated. It
is based on the numerical solution of a 3–D problem of steady state magnetostatics
inside an arbitrary domain. The normal component of the magnetic field at the
magnetopause and on the Earth’s surface and the space distribution of the electric
current density ought to be given. Both, scalar and vector potentials, are used to
prove the variational principle and to create a finite element method. A multigrid
method is used for obtaining the effective solution of the system of linear algebraic
equations for the grid values of the potentials.

The designed model is applied to calculate magnetic field perturbations due to
current systems in the Earth’s magnetosphere. It is shown that the magnetopause
shifts closer to the Earth as a result of field–aligned currents in the auroral zone and
this distance is estimated. The model is also used to trace magnetic field lines, which
is necessary for mapping of the magnetospheric regions of electric field generation
onto the ionosphere where the electric energy is dissipated.

Thus, the presented model contributes essentially to the understanding of the
chain of magnetic field variations in the solar wind, perturbation of the magneto-
spheric field and current systems, and thus, the influence on the magnetospheric
radio emission process.

1 Introduction

One of the main properties of the near space is the magnetic field distribution. Any
physical model of electric field generation, plasma motion and waves propagation and
generation needs space distribution of the magnetic field. A steady–state magnetic field
may be calculated if the space distribution of electric currents and boundaries are known.
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The purpose of the paper is to present the designed mathematical model and to demon-
strate how it works in the analysis of magnetic field perturbations, which are produced by
the main field-aligned current systems [Iijima and Potemra, 1978]. The main electric nets
in the Earth’s magneto-sphere includes generators inside the magnetosphere and electric
energy dissipation in the ionosphere [Kamide and Matsushita, 1979]. These domains are
connected by field-aligned currents. Since these currents are rather week, the undisturbed
model of the magnetospheric magnetic field lines can be used. Then, the magnetic field
perturbation due to field-aligned currents can be calculated. Some iterations may be done
for precision.

2 Magnetic field calculation

A steady state magnetic field B satisfies the equations of magneto-statics,

curl B = µ0j

div B = 0 (1)

with a given electric current density j inside the magnetosphere.

If there is no magnetic reconnection, then the magnetopause M is considered as tangential
discontinuity, hence, the normal component of the field is equal to zero. The magnetic
field may have a nonzero component, B0

n, that is the result of a model of reconnection,

Bn|M = B0
n, (2)

where index n marks the normal component of the vector. The radial component of the
field is equal to the undisturbed value at the Earth’s surface,

Br|r=1 = B0
r . (3)

If we take into account only the geomagnetic dipole and if it is parallel to the z−axis,
then B0

r (θ, ϕ) = B0 cos(θ), where B0 = 0.6 gauss. We use the GSM coordinates x, y, z
with the Earth’s radius RE as the length unit and corresponding spherical coordinates
r, θ, ϕ.

There also must be put some condition in the far tail. If we are interested in the head
part of the magnetosphere, this is not so important, because its influence decreases with
the scale of about the diameter of the tail. We suppose, that the magnetic field becomes
parallel to the x−axis,

By,z|x=−x∞ = 0. (4)

For this purpose we must preliminary assume that the right-hand side function B0
n in (2)

becomes zero at that distance as well as the current density jx in (1).

If we need a model with a geomagnetic dipole inside an empty magnetosphere, a magnetic
potential F may be introduced, so that

B = −gradF. (5)
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Then the problem (1-4) may be reduced to the following problem for the Poisson equation,
since −div gradF = −∆F

−∆F = 0, −∂F
∂n

∣

∣

∣

∣

M

= B0
n, −∂F

∂r

∣

∣

∣

∣

r=1

= B0
r , F |x=−x∞ = 0. (6)

It is usual to reduce the boundary value problem (1-4) to the problem for a vector potential
A, but we use a pair of potentials, a scalar F and a vector A simultaneously,

B = −grad F + curl A, (7)

with the following conditions for A,

div A = 0, Aτ |M = 0, Aθ,ϕ|r=1 = 0, Ax|x=−x∞ = 0, (8)

where τ marks tangential components of a vector. Then the problems for F and A are
separated. The same problem given by (6) for F and three Poisson equations for Cartesian
components of A are

−∆Ax = µ0jx, −∆Ay = µ0jy, −∆Az = µ0jz (9)

with the conditions (8) which involve all components of A.

If we use only a vector potential, its tangential components can not be zero, because their
curl equals to the given normal component of the magnetic field, in contrast with the
second condition (8). It permits us to use a minimization of the energy functional as a
way to solve the problem.

In accordance to the Dirichlet principle for the Poisson equation, one can obtain the
solution F for the problem (6) when one reaches minimum of the energy functional,

w(F ) =
1

2

∫

(gradF )2 dxdydz +

∫

M

FB0
n dM +

∫

r=1

FB0
r sin(θ) dθdϕ (10)

at the set of functions which satisfy only the last condition of (6). We can get a solution
A for the problem (9, 8), when we reach the minimum of the energy functional,

W (A) = −
∫

((curl A)2 + (div A)2 − 2µ0Aj) dxdydz (11)

at a set of functions which satisfy only the last three conditions from (8). This principle
is proved in [Denisenko V.V., 1997] when the tangential components are equal to zero at
the whole boundary. The problem (9, 8) becomes one of this sort if we add a symmetrical
domain besides of the plane x = −x∞ and exclude this part of the boundary. The solution
in that doubled domain satisfies the last condition (8) because of symmetry.

Potential presentation of the magnetic field can be also used if currents are given at some
surface inside the domain. The potential F has a jump at such a surface:

F (x, y,+0) − F (x, y,−0) = 2F 0(x, y), (12)
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where 2F 0(x, y)/µ0 is the current function of the currents in the neutral layer. We use
the model by Kitaev [1996] of these currents. The condition (12) must be added to the
conditions (6) as well as to the conditions for the energy functional (10) minimization. For
the consistency of the condition (12) with the last condition (6), currents in the far tail
must have y− direction that is already supposed above. Then, we can put F 0(−x∞, y) = 0.

To obtain numerical solutions for the problems (6) or (9, 8) we use a version of the finite
element method. It is based on the minimization of the energy functional (10) or (11)
at piece-wise linear functions. We divide the domain of interest into a few subdomains
each of which is similar to a curvilinear parallelepiped and design a regular nonuniform
grid in each of them. Every grid cell is divided into tetrahedra to construct piece-wise
linear functions. The multigrid method by Fedorenko is used to solve our systems of
linear algebraic equations which arrive for the nodal values of approximating functions.
The details of our finite element method are presented in [Denisenko, 2004]. The first
results of the model application for the calculation of the magnetospheric magnetic field
perturbation caused by cusp currents are presented in [Denisenko, et al., 2004].

3 Field-aligned currents in the auroral zone

The described mathematical model is used here to analyze typical magnetic field pertur-
bation due to field-aligned currents in the auroral zone. The most of them are the currents
in zones 1 and 2 [Iijima and Potemra, 1978], [Kamide and Matsushita, 1979].

We define a typical distribution of field-aligned currents in zone 1 [Iijima and Potemra,
1978] as they are presented by the bold lines in Figure 1. Nonzero currents are in a strip
that is between θ = 12o and θ = 16o at midday and between θ = 20o and θ = 24o at
midnight. The total current equals to ±1 MA. Nonzero currents of zone 2 are in a strip
that is between θ = 17o and θ = 20o at midday and between θ = 25o and θ = 28o at
midnight. The total current equals to ±0.5 MA.

Figure 1 also presents field aligned currents after their mapping to the equatorial plane.
These currents are closed through the plane z = 0. Currents of the zone 1 are continued to
the nearest point at the magnetopause along arcs with the center at x = 10.4, y = z = 0.
Then they are automatically closed along magnetopause because of the first condition (6).
Currents of the zone 2 are closed to each other along arcs with the center at x = y = z = 0.

Since jr = 0 in the main part of the domain, it’s impossible to plot the line jr = 0. So
we start with two lines corresponding to |jr| equal to a half of the contour interval and
plot the remaining lines with given contour intervals. The same manner is used for jz
presentation in Figure 1.

The solution for the problem (9, 8) gives our model of magnetic field perturbations. We
do this separately for the currents of the zone 1 and zone 2. The results are presented
in Figures 2,3. The distributions of Bz perturbation are shown. Other components are
equal to zero at this plane because of the symmetry.

Figures 2,3 demonstrate that the main perturbations are concentrated near the currents
in the z = 0 plane, which close the field-aligned current system.
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Figure 1: Distributions of jr in the ionosphere (left panel), and jz at the plane z = 0 (right
panel), for zone 1 and 2 field-aligned currents. Bold lines present zone 1 currents. Fine lines
present zone 2 currents. Negative values are presented as dashed lines. The head part of the
magnetopause and the Earth’s surface are plotted at the right panel to show the domain.

The currents of zone 1 have more influence on the magnetic field near the magnetopause
because their closing currents are there, and the currents of zone 2 produce much lager
perturbation in the night sector because they have some loop around this area.

The magnetic field at the subsolar point must satisfy the condition of pressure balance.
Therefore it is known for given parameters of the solar wind. This means that the mag-
netopause must be shifted closer to the Earth as a result of the negative Bz perturbation.
Such a shift, is referred as the erosion of the magnetopause.

If we suppose geometric similarity, the erosion may be estimated to be 1000 km for Bz

perturbation of about -3 nT, so that the currents of zone 1 form, as it is seen in Figure 2.
Magnetic field perturbations are maximal at the flanks of the magnetopause, δBz varies
between -5 nT and +10 nT. These perturbations vary the shape of the magnetopause.
The magnetopause shifts closer to Earth in front of the point x = 2 and further from the
Earth behind this point. Figure 3 shows that the currents of zone 2 are not effective as
far as erosion of the magnetopause is concerned.
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Figure 2: Distributions of δBz at the plane z = 0 (top panel) and along the x axis (bottom
panel) for the zone 1 currents. The head part of the magnetopause and the Earth’s surface are
plotted to show the domain. Negative values are presented with dashed lines.

4 Conclusions

The presented mathematical model of magnetic field perturbations is used to estimate
magnetic field perturbations which are produced by the main field-aligned current systems.
It is shown that this currents with their closure can produce perturbations up to 40 nT
in the equatorial plane.

Only the currents of zone 1 perturb the magnetic field near the magnetopause. Mainly
due to their closing currents which in this respect are similar to other currents across the
magnetospheric tail. They define erosion of the magnetopause at the subsolar point of
about 1000 km and a few times larger erosion at the flanks.
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Figure 3: Distributions of δBz at the plane z = 0 (top panel) and along the x axis (bottom
panel) for the zone 2 currents.

Another point of view appears if we take into account that zone 1 field-aligned currents
appear as the result of the brake of the currents in the neutral layer. Then we are to
regard as the perturbation the difference between this current system and currents which
existed before this break. Such a system is similar to the system of zone 2 currents and
so it perturbs magnetic field in some part of the magnetosphere in the night sector only.

The erosion at the subsolar point due to the currents of zone 1 is twice more than one
due to typical cusp currents, as it was estimated in [Denisenko, et al., 2004]. These
estimations show that real erosion of the magnetopause ought be explained mainly by
other current systems. Currents across the magnetospheric tail in the neutral layer seem
to be dominant.

The presented mathematical model of magnetic field perturbations can be used for such
a research as described. It as well permits to include any current system to the model of
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the magnetic field for magnetospheres of Earth and other planets.
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