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Abstract

We present the results of light curve fits to two DBV white dwarfs, PG 1351+489
and GD 358. For both fits, we include recent improvements in calculations re-
lating the bolometric and observed flux variations. We provide a preliminary
map of convection across the DB instability strip, and we show how this allows
us to choose between two possible spectroscopic fits to PG 1351+489.

Astrophysical Context

White dwarf stars come in two basic varieties: those with nearly pure helium
surface layers (DBs) and those with nearly pure hydrogen surface layers (DAs).
Each of these types contains a subtype of pulsators, denoted by DBV and
DAV, respectively. In fact, the DBV GD 358 is the original member of the
class of DBVs: it was discovered and predicted to pulsate by Winget (Winget
1982; Winget et al. 1982) and, as such, it is probably the most extensively
studied DBV.

Since ∼ 98% of all stars become white dwarfs, white dwarfs hold the key
to understanding late stages of stellar evolution. In particular, the pulsators,
through their observed oscillation frequencies, provide us with detailed infor-
mation about their internal structure. In this regard, GD 358 is again one of
the most successful examples. Asteroseismological fits to its frequencies have
yielded constraints on not just is mass, Teff , and rotation rate, but also its
internal composition and chemical profiles (Metcalfe, Nather, & Winget 2000;
Bradley & Winget 1994; Winget et al. 1994).
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In addition to the main pulsation frequencies, these pulsators contain in-
formation which has not been traditionally exploited: the non-linearities in the
light curves of medium and large amplitude pulsators. Some work has been
done in this area. It was Brickhill (1992) who originally showed the convection
zone should produce the strongest nonlinearities in the light curves, and this
was revisited by Wu (2001), who gave an analytical basis to this approach.
Further, Yeates et al. (2005) applied Wu’s approach to the problem of mode
identification in DAV stars. Finally, we have recently developed a technique for
directly modelling these light curves which makes full use of the nonlinearities
present in the pulsations (Montgomery 2005, 2007a,b). This approach removes
some of the parameter degeneracies of the second-order analytical expansion of
Wu, and has so far led to mode identifications in two stars: the DAV G 29-38
and the DBV PG 1351+489.

The Light Curve Model

We make the same set of physical assumptions as given in section 2.1 of Mont-
gomery (2005), i.e.,

1. The flux perturbations beneath the convection zone are sinusoidal in time
and have the angular dependence of a spherical harmonic.

2. The convection zone is so thin that we may locally ignore the angular
variation of the nonradial pulsations, i.e., we treat the pulsations locally
as if they were radial.

3. The convective turnover timescale is so short compared to the pulsation
periods that the convection zone can be taken to respond “instanta-
neously”.

4. Only flux and temperature variations are considered, i.e., the large-scale
fluid motions associated with the pulsations are ignored.

Simple mixing length theories of convection predict that the thermal response
timescale of the convection zone, τC , should be

τC ≈ τ0

(
Teff

T0

)−N

, (1)

where Teff is the instantaneous effective temperature, T0 is its time average,
and τ0 is the average value of τC . The exponent N has a value of ∼ 90 for
the DAVs and ∼ 25 for the DBVs. This high power of Teff means that other
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nonlinear processes may well be negligible in comparison. These assumptions
lead to the following equation relating the fluxes:

Fph = Fbase + τC

dFph

dt
, (2)

where Fbase is the flux incident at the base of the convection zone, Fph is the
flux which emerges from the top of the convection zone in the photosphere,
and τC is the instantaneous thermal response timescale, which is a function of
Teff and therefore Fph.

We have also made some important technical improvements to the light
curve fitting code. First, we have extended it to the case where many modes
having different � and m values are simultaneously present, i.e., the flux at the
base of the convection zone is now given by a sum over the number of modes:

δFbase

Fbase

= Re




M∑
j=1

Aje
iωjt+φj Y�jmj

(θ, φ)


 . (3)

In this formula, Aj , ωj , φj , �j , and mj are the amplitude, angular frequency,
phase, �, and m values of the j-th mode, and the total number of modes is M .

Second, we have adapted the code to simultaneously fit an arbitrary num-
ber of observations (“runs”). This was a necessary step for applying it to the
multiple runs obtained during an observing campaign. Since memory is allo-
cated and deallocated as needed, the code typically uses only 8 MB of RAM,
independent of the number of runs being fit.

Finally, we have improved the way in which we calculate the “flux correction”
which is needed to convert bolometric flux variations into the variations obtained
in the observed passband. Specifically, if we denote by FX the flux in the
passband X, we need an estimate of the quantity αX defined by

δFX

FX

= αX

δFbol

Fbol

, (4)

where Fbol is the bolometric flux, and δF is the variation in the flux due to
the pulsations. Clearly, this factor depends on the wavelength coverage of the
passband. Assuming an average wavelength response of ∼ 5000 Å, in previous
analyses I estimated that α ∼ 0.42 for DBVs and α ∼ 0.66 for DAVs. These
values are not that different from what one obtains by assuming a blackbody law
at temperatures appropriate for these objects. For the DBVs, however, these
values are significantly different from what one expects from detailed model
atmospheres.

In order to better calculate αX , I employ grids of photometric indices tab-
ulated by P. Bergeron1 (for a detailed description see Bergeron, Wesemael, &

1http://www.astro.umontreal.ca/∼bergeron/CoolingModels/
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Figure 1: The flux factor αg′ as a function of Teff . The legend shows which values of
log g correspond to the different curves.

Beauchamp 1995; Holberg & Bergeron 2006). These tables provide absolute
fluxes in different passbands (e.g., Johnson U, B, and V) as a function of Teff

and log g. Since flux changes are due almost entirely to temperature variations,
we can rewrite equation 4 as

αX =
d ln FX

d ln Fbol

=
1

4

d ln FX

d ln Teff

= −
ln 10

10

dMX

d ln Teff

≈ −0.230
dMX

d ln Teff

, (5)

where MX is the absolute magnitude in the passband X. Our recent CCD
observations have been made using a BG40 filter having an average wavelength
response just below 5000 Å, which makes it a good match for the SDSS g′

filter. Thus, we take X to be g′ for the CCD data. Phototubes are more blue
sensitive, with an average response of ∼ 4200 Å, which is roughly equivalent
to the Johnson B filter. Thus, for data taken with phototubes we use X = B.

In Figure 1 we show αg′ as a function of Teff , for several different values
of log g. For log g = 8.0 we clearly see that αg′ is typically less than the value
of 0.42 assumed in our previous analyses, and can be up to twice as small
depending on the temperature range. This figure also makes clear that taking
αg′ to be a constant is not necessarily adequate for temperature excursions
of several thousand degrees. Nevertheless, we defer an examination of this
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response just below 5000 Å, which makes it a good match for the SDSS g′

filter. Thus, we take X to be g′ for the CCD data. Phototubes are more blue
sensitive, with an average response of ∼ 4200 Å, which is roughly equivalent
to the Johnson B filter. Thus, for data taken with phototubes we use X = B.

In Figure 1 we show αg′ as a function of Teff , for several different values
of log g. For log g = 8.0 we clearly see that αg′ is typically less than the value
of 0.42 assumed in our previous analyses, and can be up to twice as small
depending on the temperature range. This figure also makes clear that taking
αg′ to be a constant is not necessarily adequate for temperature excursions
of several thousand degrees. Nevertheless, we defer an examination of this
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effect to a future publication and we simply assume that αg′ is constant during
the pulsations.

The Fits

Previous to the 2006 WET run on GD 358, nonlinear light curve fits had
only been made for mono-periodic pulsators (the DAV G 29-38 and the DBV
PG 1351+489). This was because 1) the data can be folded at the period of
the dominant mode, producing a high S/N “light curve”, and 2) the number
of possible mode identifications (� and m values) for a single mode is small
enough that all possibilities can be directly explored.

GD 358

The first multi-periodic pulsator to be explored, GD 358, violates both of the
these conditions. First, due to its large number of large amplitude modes, the
pulse shape obtained by folding its light curve at a mode period will not be the
same as the pulse shape which would be obtained in the absence of other modes
(Montgomery, 2007b). Second, due to the large number of excited modes it
is not possible to search for all possible � and m values for each mode. For
instance, if we take it to have of order ∼ 10 modes observed, all of which have
� = 1, that yields a total number of cases of (2�+1)10 ∼ 60000 ! Since each fit
takes of order an hour, this is completely impractical using a standard desktop
computing approach. However, T. Metcalfe (personal communication) points
out that this problem could run in a few hours on a computer cluster having of
order one thousand nodes.

Fortunately, GD 358 has been well studied, so we believe we have a good idea
what the � and m values for the main pulsation modes are (Metcalfe, Nather,
& Winget 2000; Winget et al. 1994). Furthermore, from the 2006 WET run
we obtained very good frequencies for these modes. Thus, since we can assume
the frequencies and mode identifications to be known, we can make nonlinear
light curve fits to individual observing runs within the WET campaign which
have high S/N. High S/N data is necessary since we are mainly interested in
the nonlinear part of the light curve, which itself is smaller than the linear part.

The highest S/N data taken during the campaign were obtained with the
2.7m Nordic Telescope (NOT) in La Palma. In Figure 2 we show the last night
of this data together with the fit (this was a simultaneous fit of the last four
night’s of data taken by the NOT, of which we are showing only the last night).
While not perfect, the fit clearly does a good job of reproducing most of the
features in the light curve.
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Figure 2: A light curve fit to data taken on GD 358 in the May/June 2006 WET
campaign with the NOT 2.7m telescope. The data points are shown as crosses and
the fit is the solid curve.

Table 1: Results of 12-mode Fit for GD 358.

Fit parameters: τ0 = 308 s, N = 22.2, θi = 46.6◦

Period (s) � m Amplitude

422.561 1 1 0.17162

423.898 1 -1 0.13232
463.376 1 1 0.23350
464.209 1 0 0.10113
465.034 1 -1 0.10057
571.735 1 1 0.25407
574.162 1 0 0.17763
575.933 1 -1 0.32532
699.681 1 0 0.07525
810.291 1 0 0.35596
852.502 1 0 0.13170
962.385 1 0 0.12794
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Figure 3: A light curve fit to data taken on PG 1351+489 in May 2004 with the
McDonald 2.1m telescope. The data points are shown as crosses and the fit is the
solid curve.

Table 2: Results of 1-mode Fit for PG 1351+489.

Epoch Period (s) � m Amplitude τ0 (s) N θi

2004 489.34 1 0 0.30989 89.2 16.0 58.0◦

1995 489.34 1 0 0.36529 86.0 20.5 56.7◦

The mode periods and identifications which we assumed are given in Table 1,
together with the amplitudes derived from the fit. In addition, this fit assumes
the observations were made using the SDSS g′ filter, and that Teff = 24900 K
and log g = 7.91 for GD 358, which are the best fit zero hydrogen values of
Beauchamp et al. (1999). From the calculations in the previous section, this
leads us to assume a value of αg′ = 0.259.

PG 1351+489

Using the updated version of our code, we re-analyzed data taken on the nearly
mono-periodic DBV PG 1351+489. The results obtained are very similar to
those found earlier (Montgomery, 2005). In Figure 3 we present the fit to the
folded pulse shape of the May 2004 data of the dominant 489.34 s peak. In
Table 2 we give the values of the fit parameters using this data set and the data
set obtained with the WET in 1995. With the exception of the amplitude, we
find virtually the same values for the other parameters.

44 What We Can Learn from the Light Curves of GD 358 and PG 1351+489

Figure 3: A light curve fit to data taken on PG 1351+489 in May 2004 with the
McDonald 2.1m telescope. The data points are shown as crosses and the fit is the
solid curve.

Table 2: Results of 1-mode Fit for PG 1351+489.

Epoch Period (s) � m Amplitude τ0 (s) N θi

2004 489.34 1 0 0.30989 89.2 16.0 58.0◦

1995 489.34 1 0 0.36529 86.0 20.5 56.7◦

The mode periods and identifications which we assumed are given in Table 1,
together with the amplitudes derived from the fit. In addition, this fit assumes
the observations were made using the SDSS g′ filter, and that Teff = 24900 K
and log g = 7.91 for GD 358, which are the best fit zero hydrogen values of
Beauchamp et al. (1999). From the calculations in the previous section, this
leads us to assume a value of αg′ = 0.259.

PG 1351+489

Using the updated version of our code, we re-analyzed data taken on the nearly
mono-periodic DBV PG 1351+489. The results obtained are very similar to
those found earlier (Montgomery, 2005). In Figure 3 we present the fit to the
folded pulse shape of the May 2004 data of the dominant 489.34 s peak. In
Table 2 we give the values of the fit parameters using this data set and the data
set obtained with the WET in 1995. With the exception of the amplitude, we
find virtually the same values for the other parameters.

44 What We Can Learn from the Light Curves of GD 358 and PG 1351+489

Figure 3: A light curve fit to data taken on PG 1351+489 in May 2004 with the
McDonald 2.1m telescope. The data points are shown as crosses and the fit is the
solid curve.

Table 2: Results of 1-mode Fit for PG 1351+489.

Epoch Period (s) � m Amplitude τ0 (s) N θi

2004 489.34 1 0 0.30989 89.2 16.0 58.0◦

1995 489.34 1 0 0.36529 86.0 20.5 56.7◦

The mode periods and identifications which we assumed are given in Table 1,
together with the amplitudes derived from the fit. In addition, this fit assumes
the observations were made using the SDSS g′ filter, and that Teff = 24900 K
and log g = 7.91 for GD 358, which are the best fit zero hydrogen values of
Beauchamp et al. (1999). From the calculations in the previous section, this
leads us to assume a value of αg′ = 0.259.

PG 1351+489

Using the updated version of our code, we re-analyzed data taken on the nearly
mono-periodic DBV PG 1351+489. The results obtained are very similar to
those found earlier (Montgomery, 2005). In Figure 3 we present the fit to the
folded pulse shape of the May 2004 data of the dominant 489.34 s peak. In
Table 2 we give the values of the fit parameters using this data set and the data
set obtained with the WET in 1995. With the exception of the amplitude, we
find virtually the same values for the other parameters.

44 What We Can Learn from the Light Curves of GD 358 and PG 1351+489

Figure 3: A light curve fit to data taken on PG 1351+489 in May 2004 with the
McDonald 2.1m telescope. The data points are shown as crosses and the fit is the
solid curve.

Table 2: Results of 1-mode Fit for PG 1351+489.

Epoch Period (s) � m Amplitude τ0 (s) N θi

2004 489.34 1 0 0.30989 89.2 16.0 58.0◦

1995 489.34 1 0 0.36529 86.0 20.5 56.7◦

The mode periods and identifications which we assumed are given in Table 1,
together with the amplitudes derived from the fit. In addition, this fit assumes
the observations were made using the SDSS g′ filter, and that Teff = 24900 K
and log g = 7.91 for GD 358, which are the best fit zero hydrogen values of
Beauchamp et al. (1999). From the calculations in the previous section, this
leads us to assume a value of αg′ = 0.259.

PG 1351+489

Using the updated version of our code, we re-analyzed data taken on the nearly
mono-periodic DBV PG 1351+489. The results obtained are very similar to
those found earlier (Montgomery, 2005). In Figure 3 we present the fit to the
folded pulse shape of the May 2004 data of the dominant 489.34 s peak. In
Table 2 we give the values of the fit parameters using this data set and the data
set obtained with the WET in 1995. With the exception of the amplitude, we
find virtually the same values for the other parameters.



M. H. Montgomery 45

Goodness of Fit and Errors

The fits shown in Figures 2 and 3 “look good”, although this is a completely sub-
jective, non-quantitative statement. We would obviously like to know whether
these fits really have something to do with the star, and, if they do, what the
uncertainties on the measured quantities τ0, N , and θi are, for example.

For this purpose, it is tempting to apply a reduced-χ2 test to these data.
For the NOT data on GD 358, we estimate a point-to-point scatter of about 5
mma, which leads to a reduced χ2 ∼ 10 for the light curve fit. For the folded
light curve of the McDonald 2.1m data on PG 1351+489, we estimate a scatter
of 1.5 mma, which leads to a reduced χ2 ∼ 0.9. This confirms our feeling that
the PG 1351+489 fit is indeed much better than that to GD 358. In fact,
the formal probability of a reduced χ2 ∼ 10 is vanishingly small. Should we
therefore conclude that our fit is so poor that we do not learn anything about
the star, or should we take it to mean that there are simply additional effects
going on which we have not yet taken into account?

We proceed, naturally, by assuming that our fits are telling us something
about the star. In an attempt to justify this belief we examine a different
diagnostic: we plot how the average squared residuals decrease as fit parameters
are added. First we add parameters corresponding to (linear) sinusoidal terms.
Each sinusoid has an amplitude, frequency, and phase, so each adds 3 additional
parameters. This is shown in Figure 4, in which the decrease in residuals out
to 36 parameters is due to the addition of 12 sinusoids to the light curve fits.
The right-most point in this plot corresponds to the addition of the (nonlinear)
convective fit, which uses the 3 parameters τ0, N , and θi. We see that it
decreases the residuals by a much larger amount than the previous terms do, so
in some sense it encapsulates “more physics”. This helps make the case that
our fits really do capture some of the essential behavior of the star.

Error estimates are trickier, since they usually involve the assumption that
the difference between the data and the fit is due to random, statistical fluc-
tuations in the data. A glance at Figure 2 shows otherwise, however, since
excursions above and below the fit tend to contain many consecutive points,
not simply one or two as would be expected if the excursions were uncorrelated.
This could be due to many things. First, we know that GD 358 contains other,
smaller amplitude modes which we have not modelled, and these will cause
smooth, coherent departures from the fit. Also, the flux correction factor, αg′

(shown in Figure 1), is not a constant as we have assumed, and this will also
cause such coherent departures. Finally, there are all the other things which
the star is doing which we do not yet know about, and these are undoubtedly
also having an effect.
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smooth, coherent departures from the fit. Also, the flux correction factor, αg′

(shown in Figure 1), is not a constant as we have assumed, and this will also
cause such coherent departures. Finally, there are all the other things which
the star is doing which we do not yet know about, and these are undoubtedly
also having an effect.
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Convective Parameters

Sinusoidal Parameters

Figure 4: The squared residuals of fits to the light curve of GD 358 as a function
of the number of fitted parameters. Each point corresponds to 3 parameters, and
the first 12 points are the 36 parameters for the fits of 12 linear sinusoids. The last
point shows the squared residuals when the convective effects are added, using the
additional parameters τ0, N , and θi. The sharp downturn implies that the light curve
fits do recover a significant amount of the physics in these objects, more than is
obtained from the continuing addition of new frequencies to the fits.

Our current plan is to include the additional effects which we know about,
i.e., the variable flux correction and the most important of the lower amplitude
modes, and calculate the residuals of the fit. We will then generate synthetic,
best-fit light curves to which we have added uncorrelated, Gaussian-distributed
noise having the same mean value as the residuals. We will then fit this light
curve and derive the convective parameters. Finally, we will repeat this process
many times to derive error estimates on all quantities; this is the same proce-
dure Montgomery (2005) used to estimate errors for the fits to G 29-38 and
PG 1351+489. This work is currently in progress, so we defer the presentation
of these results to an upcoming publication.
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Figure 5: The convective timescale τ0 as a function of Teff across the DBV instability
strip. The labelled points are from the preceding convective fits and the dashed
curves are the predictions of standard ML2 convection (Böhm & Cassinelli 1971) and
are labelled by the assumed values of the mixing length ratio, α.

Discussion

Now that we have analyzed two DBVs having different values of Teff we can
start to see how the convective response timescale changes across the instability
strip. The very large caveat here is that in order to do this we need to use
published values of Teff and, to a lesser extent, log g for these stars. Even so,
we can make progress.

First, we note that GD 358 has a larger value of τ0 than PG 1351+489,
so it must have a thicker convection zone and therefore be cooler. Due to the
possible presence of unseen hydrogen, the spectroscopic Teff determination for
PG 1351+489 can be anywhere from 22600 K (with hydrogen) to 26100 K
(without hydrogen; Beauchamp 1999). We indicate the position of the cooler
solution with the open circle in Figure 5. Clearly, only the hotter solution for
this star makes sense. Furthermore, given the slopes (values of N) determined
for these stars, we see that the hottest possible solution for PG 1351+489 is
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preferred, i.e., that with no hydrogen. This demonstrates the power of this
analysis in terms of constraining Teff .

Second, we see that the locations of these stars are broadly consistent, i.e.,
we can nearly draw a line connecting the two points having the appropriate
slopes. Finally, we can compare these locations with the predictions of simple
mixing length theory. As shown in Figure 5, we find ML2/α = 1.1 (Böhm &
Cassinelli 1971) to be in reasonable agreement with these results.
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