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Abstract 

The Urban Heat Island (UHI) effect describes the difference in temperature between cities 

and their surrounding areas. However, temperature differences within city limits, so-called 

Intra-Urban Heat Islands (IUHI), affect human health as well as the energy demands in local 

areas. In order to anticipate and mitigate the resulting impacts of heat through urban 

planning, a method to reliably detect these local areas is needed. Existing methods from 

the geo-statistical field can identify these areas. But these statistics, depending on their 

parametrization, can be unstable in their detection of hotspots, in particular temperature 

hotspots. In this paper, we propose a modification of the well-known Getis-Ord (G∗) statistic, 

called the Focal G∗ statistic. This modification replaces the computation of the global 

mean and standard deviation with their focal counterparts. We define the stability of our 

approach by introducing a stability metric called Stability of Hotspot (SoH), which requires 

that hotspots have to be in similar areas regardless of the chosen weight matrix. The results 

are evaluated on real-world temperature data for the city of Karlsruhe. 
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1 Introduction 

For urban city planners, the detection of Intra-Urban Heat Islands (IUHI) is of great interest 
as high temperatures impact energy consumption (Hassid et al., 2000) as well as human 
health (Ye et al., 2012). The effect that the temperatures between an urban area and its 
surroundings differ, called the Urban Heat Island effect (Oke, 1982), has long been the 
subject of research. Historically, however, most studies had to rely on a few, fixed weather 
stations, low spatio-temporal resolution of satellite imagery, or small-scale mobile 
measurements by car, preventing the modelling of finer-grained temperature differences 
within an urban area itself. With the advent of, among other technological advances, 
inexpensive mobile sensors, higher spatio-temporal resolution of satellite imagery, and 
volunteered geographic information, it is now feasible to focus on the temperature 
differences in a city as the subject of interest. 



Bruns & Simko 

 

80 
 

Hotspot analysis is a tool which is suited for the detection of such areas. In the context of 
IUHI, we can detect those precise areas where the temperature is significantly different from 
the mean temperature of the study area as a whole. This enables us to identify points of 
interest without the need to pre-process the data. 

Although existing methods are independent of concrete values, their results are highly 
dependent on the size of the study area and on their parametrization, such as the weight 
matrix in the case of the Getis-Ord statistic. This dependency can lead to unstable hotspots, 
where the hotspots identified appear only in one specific combination of parameters. The 
generalization of insights gained from unstable hotspots is suboptimal. A city planner who 
has to rely on those insights will most likely prioritize the wrong area to invest limited city 
resources. Given the increasing importance of detecting extreme local temperatures in cities 
(see e.g. Hansen et al., 2010; Chase et al., 2006; United Nations, 2014), means are needed to 
reliably detect and mitigate the effects of temperature extremes in a proactive fashion. 

To solve this problem, we first propose a metric, which we call Stability of Hotspot (SoH), to 
measure the stability of a hotspot analysis by considering the parametrization of the weight 
matrix. This metric measures whether a hotspot found for a given weight matrix is carried 
over to the found hotspots with different weight matrices. This enables us to quantify the 
stability of any hotspot analysis. Based on our understanding of the instability of existing 

hotspot analyses, we propose a modification of the well-known Getis-Ord statistic (G∗): the 

Focal Getis-Ord statistic (Focal G∗). Instead of the global mean and variance used by G∗, 

Focal G∗ uses only the mean and variance of a predefined region around each point. This 
region is a subset of the whole study area. By doing this, the instability is contained within a 
smaller region and is thereby independent of the parametrization of the weight matrix. We 
test our stability metric as well as this modified approach on data given by two temperature 
snapshots of the city of Karlsruhe taken in 2008. 

2 Related work 

Urban Heat Island 

Scientific interest in the phenomenon of UHI is well established. One of the earliest known 
overviews of the scientific literature on city climates is given by Albert Kratzer (1937). At 
that time, relations between temperature, humidity, human heat fluxes and air pollution were 
already being investigated. 

A more recent overview comes from Arnfied (2003). The focus here lies on developments in 
the field of climatology between 1980 and 2003. In particular, the rise of simulations and 
modelling is lauded, but, to quote Arnfield, ‘simple methods are still needed to estimate UHI 
intensity within urban areas’ (p. 18). 

Schwarz, Lautenbach and Seppelt (2011) compare 11 different Surface Urban Heat Island 
(SUHI) indicators, on a dataset of 263 European cities. They show that the selection of 
indicators is important for the detection of UHI due to possible instabilities of each 
indicator. 
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A more recent development is the focus on IUHI, the definition of which comes from 
Martin, Baudouin and Gachon (2015). By defining temperature thresholds with respect to 
spatial reference, the thresholds enable the detection of hotspots in a city, which Martin et al. 
call surface intra-UHI. Their method comes down to five basic steps, and is essentially a 
comparison of absolute deviation from the mean temperature of the survey area. The results 
can then be used to detect areas of interest in a city and potentially trigger alerts for a much 
finer spatial granularity. 

While the proposition to examine urban micro-climates can be traced back as far as 
1937 (Kratzer, 1937), we have found few studies in this field. Schwarz et al. (2012) state that 
the reduction of a UHI to a single value for a whole city is questionable where its explanatory 
power is concerned. But they also state that there is currently no other way to quantify the 
differences amongst different cities. 

The difficulties presented by comparing the UHI values for different cities are addressed by 
Stewart and Oke (2012). They propose the use of local climate zones (LCZ) to standardize 
the methodology and terminology. 

Subsurface temperatures are another feature of urban areas that affect temperature 
distribution. Menberg et al. (2013) look into the distribution of the temperatures below the 
surface – the subsurface temperatures – and find local hotspots, related to local heat sources, 
with deviations of up to +20° Kelvin. 

Hotspot Analysis 

The goal of an analysis of temperatures in a city is to find the most interesting, significant 
areas, i.e. hotspots (Martin, Baudouin and Gachon, 2015). This goal is similar to hotspot 
analysis in the field of geo-statistics. One of the most fundamental approaches is Moran’s 
I (Moran, 1950), which tests whether or not a spatial dependency exists and gives the 
information on global dependencies in a data set. Several geo-statistical tests are based on 
this hypothesis test. The best known are the Getis-Ord statistic (Ord and Getis, 1995) and 
LISA (Anselin, 1995). In both cases, the general, global statistic of Moran’s I is applied in a 
local context. The goal is to detect not only global values, but also to focus on local hotspots 
and to measure the significance of these local areas. 

The local Getis-Ord statistic (Ord and Getis 1995) is defined as follows: 

Definition 1 (Getis-Ord 𝐆∗statistic). Assuming a study area with n measurements, let 

X = [x1, … , xn] be all values measured in this area. Let wi,j be a spatial weight between two 

points i and j for all i, j ∈ {1, … , n}. The Getis-Ord Gi
∗ statistic is given as: 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 𝑥𝑗 − 𝑋 ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√
𝑛 ∑ 𝑤𝑖,𝑗

2𝑛
𝑗=1 − (∑ 𝑤𝑖,𝑗

𝑛
𝑗=1 )2

𝑛 − 1
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where: 

• X is the mean of all measurements 

• S is the standard deviation of all measurements. 

This statistic creates a z-score, which denotes the significance of an area in relation to its 
surrounding areas. 

LISA is quite similar, as it is the local statistic for Moran’s I (Anselin, 1995), but the z-score 

has a different meaning. In contrast to Gi
∗, LISA does not distinguish between cold spots and 

hotspots, as it assigns high z-scores to most similar areas. 

Two other well-known methods are the kernel density estimation (Pulugurtha, Krishnakumar 
and Nambisan, 2007) and kriging (Oliver and Webster, 1990). These do not provide 
significance levels. Instead, they estimate the values for each location based on the rest of the 
study area and a threshold value (Thakali, Kwon and Fu, 2015). Therefore, results for 
different areas are not comparable, especially in the case of differing temperature 
distributions. Kriging was developed for the estimation of ore deposits (Krige, 1951), but 
applications for geo-temporal forecasts with this approach can now be found, e.g. for the 
city of Zurich.1 

All of the aforementioned methods use weights between pairs of points, usually based on 
their geographical distance. However, in real applications, the points are aggregated into 
rasters and the weights are represented as a weight matrix. This allows the algorithms to be 
expressed in terms of map algebra operations, a term first coined by Dana Tomlin (1990), 
and to be computed in a distributed fashion (e.g. using the Geotrellis framework running on 
Apache Spark (Eclipse Foundation, Azavea, and contributors, 2016)). 

In the present study, we focus on the Getis-Ord statistic applied to raster representations of 

land surface temperature. This enables us to transform the formula for the 𝐺∗ statistic into a 

computationally more efficient form. We then propose a modification of the standard 𝐺∗ 
statistic, to increase the stability of the hotspots found. 

3 Stability of Hotspot Analysis 

Existing methods to determine hotspots are dependent on the parametrization of the weight 
matrix as well as on the size of the study area. 

Consider the real-world example depicted in Figure 1. The temperature map of a morning 

thermal flight dataset (Figure 1a) has been processed using G∗ with an increasing size of 
weight matrix (Figures 1b, 1c and 1d). 

                                                           
1 https://r-video-tutorial.blogspot.de/2015/08/spatio-temporal-kriging-in-r.html 
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Figure 1: Karlsruhe city center. Selected area of 2.4 x 1.4 km. Pxel size 5x5 m 

As we can see, hotspots often disappear, or appear to be unrelated to previously found 
hotspots. While these computations indeed show hotspots and the results are correct, they 
lack stability. 

For a data analyst exploring the data interactively by choosing different filter sizes (in the 
form of matrices), it is important that the hotspot’s position and size should change in a 
predictable manner. This intuition is the basis for our stability metric. 

We define a hotspot that is found in comparably coarser resolutions as a parent (larger 
weight matrix), and in finer resolutions as a child (smaller weight matrix). To be stable, one 
assumes that every parent has at least one child and that each child has one parent. For a 
perfectly stable interaction, it can easily be seen that the connection between parent and child 
is an injective function, and between child and parent a surjective function. To measure the 
closeness of connection, we propose a metric called the Stability of Hotspot (SoH). It 
measures the deviation from a perfectly stable transformation of resolutions. 

In its downward property (from parent to child; injective) it is defined as: 

Equation 1: SoH↓ =
ParentsWithChildNodes

Parents
=

|Parents ∩ Children|

|Parents|
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and for its upward property (from child to parent; surjective): 

Equation 2: SoH↑ =
ChildrenWithParent

Children
= 1 −

|Children − Parents|

|Children|
 

where ParentsWithChildNodes is the number of parents that have at least one child, 

Parents is the total number of parents, ChildrenWithParent is the number of children, and 

Children is the total number of children. The SoH is defined for a range between 0 and 1, 
where 1 represents a perfectly stable transformation while 0 would be a transformation with 
no stability at all. 

4 Focal Getis-Ord 

Dataset 

The two datasets (morning and evening flights) depicted in Figures 4 and 5 were obtained 
from thermal flights over the city of Karlsruhe on 26.09.2008 at 6:30–7:45 and 20:00–21:30. 
The flights were executed by the Nachbarschaftsverband Karlsruhe2. A single pixel in the 

raster represents an area of approximately 5 × 5m. The whole dataset of size 35 × 25 km 

was cropped into the inner-city area of 2.4 × 1.4km. The temperatures in our dataset range 
from -1.7°C to +18.3°C. Missing values in the dataset were interpolated using a focal median 
function with a square matrix of 11x11 pixels, mainly for speeding up further computations 
and to avoid the special handling of NA values. 

Method 

In what follows, we use the notation R ∘
𝚘𝚙

M to denote a focal operation op applied on a 

raster R with a focal window determined by a matrix M. This is roughly equivalent to a 

command focal(x=R, w=M, fun=op) from the raster package in the R programming 

language (Hijmans 2016). 

Definition 2 (𝐆∗function on rasters). The function G∗ can be expressed as a raster 
operation: 

𝐺∗(𝑅, 𝑊, 𝑠𝑡) =
𝑅 ∘

𝚜𝚞𝚖
𝐹 − M ∑ 𝑤𝑤∈𝑊

𝑆√𝑛 ∑ 𝑤2
𝑤∈𝑊 − (∑ 𝑤𝑤∈𝑊 )2

𝑁

 

 

                                                           
2 http://www.nachbarschaftsverband-karlsruhe.de/ 
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where: 

• R is the input raster 

• W is a weight matrix of values between 0 and 1 

• st = (N, M, S) is a parametrization specific to a particular version of the G∗ function 
(Definitions 3 and 4). 

Definition 3 (Standard 𝐆∗parametrization). G∗parametrization computes the 

parametrization st as global statistics for all pixels in the raster R: 

• N represents the number of all pixels in R 

• M represents the global mean of R 

• S represents the global standard deviation of all pixels in R. 

Definition 4 (Focal 𝐆∗parametrization). Let F be a boolean matrix such that: 

all(dim(F) ≥ dim(W)). This version uses focal operations to compute per-pixel statistics 

given by the focal neighbourhood F as follows: 

• N is a raster computed as a focal operation R ∘
𝚜𝚞𝚖

F. Each pixel represents the number 

of pixels from R convoluted with the matrix F. 

• M is a raster computed as a focal mean R ∘
𝚖𝚎𝚊𝚗

F. Thus each pixel represents the mean 

value of its F-neighbourhood. 

• S is a raster computed as a focal standard deviation R ∘
𝚜𝚍

F. Thus each pixel represents 

the standard deviation of its F-neighbourhood. 

Figures 4 and 5 show Standard and Focal G∗ computations for both morning and evening 

datasets with weight matrix W of size 3, 5, 7, 9, 15 and 31. In these Figures, when computing 

Focal G∗, the focal matrix F has a constant size of 61 × 61 cells. An example weight matrix 

W and focal matrix F are depicted in Figure 3. 

To evaluate the stability of our proposed Focal G∗, we compare it to two baselines: 

• Standard G∗, which uses the same weight matrix W as our focal version 

• Standard G∗, which uses a square weight matrix with all cells set to 1. 

• d G∗, which uses a square weight matrix with all cells set to 1. 
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Figure 2: Evaluation results – Standard vs Focal G* 

The evaluation results are plotted in Figure 2, where each point in the graph represents the 

𝑆𝑜𝐻↑ metric (Equation 2) between two 𝐺∗ generated using weight matrices of sizes 𝑖 and 

𝑖 + 2. The focal matrix F has a fixed size of 41 × 41 
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Figure 3: Example matrices W and F 

5 Results and Discussion 

The results for the hotspot analysis are found in Figures 4 and 5 for a comparison of the 

Standard G∗ and Focal G∗ statistics. It can easily be seen that both versions produce similar 
results, but the focal version produces a more differentiated picture for larger weight 
matrices. Small differences on a global scale are more pronounced on a regional scale and 
result in smaller and finer areas for hotspots. This enables the detection of additional 
hotspots and interesting areas which are most easily observable for the weight matrix of size 

7 × 7 in the evening (Figure 5). This itself enables the detection of significant deviations 

from the surrounding area. In contrast, the Standard G∗ statistic shows larger areas as 

important. Therefore, depending on the needs of a planner, the Focal G∗ statistic is more 

helpful for identifying individual areas of interest, whereas the standard G∗ statistic gives a 
broader overview. For the identification of IUHI, this is quite important. If a city planner 
wishes to detect critical areas, it is important to detect not only general hot areas, but also 
those points where the most extreme differences in a local context exist. Finding these areas 
can help to identify the underlying causes, or to plan individual solutions. 

These images also reveal that the hotspots found by the Focal G∗ statistic seem to be more 

stable. Because of limited space here, we compare their stability using only the SoH↑. A plot 

of the results can be found in Figure 2, which compares the SoH↑ between the increasing 
sizes of the weight matrix W. It is apparent that the typical implementation with a square 
weight matrix is the most unstable hotspot analysis, regardless of the time of day. This is to 
be expected as the binary weights increase the dependence on the weight matrix. The use of 
a decreasing weight matrix performs better. As the more outlying data points are given less 
weight, this reduces the dependence on the weight matrix and therefore leads to more stable 

results. Our proposed Focal G∗ statistic achieves the most stable results in almost all cases. 
Only data points in a restricted region around the area of interest may influence the 
significance level of the result. Through this restriction, high values at key points gain more 
weight regardless of the weight matrix and are therefore more independent of the weight 
matrix. This increases the stability. The decrease in stability for the largest weight matrices is 
most likely a result of the parametrization of the focal matrix. With the increasing size of the 
weight matrix in relation to the focal matrix, the value of each pixel comes closer to the 
mean of the area of the weight matrix. As can be seen easily from Definition 2, the value for 
every pixel would then be zero. 
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Figure 4: Standard and Focal G* with different weight matrices applied on morning dataset 
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Figure 5: Standard and Focal G* with different weight matrices applied on evening dataset 
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6 Conclusions and Future Work 

In this paper, we generalized the Getis-Ord statistic to deal with the problem of stability 
inherent in hotspot analysis. We identified possible underlying reasons for this instability: the 
weight matrix as well as the size of the study area. We developed a modified approach that 

deals with these two factors. The result is a modified G∗ statistic called the Focal G∗ statistic. 
It reduces the study area used for comparison into regions, and thereby achieves an increase 
in stability. To determine the effectiveness of our approach, we propose a stability metric for 
hotspots, called SoH. To our knowledge, no such metric existed before this work. The SoH 
computes the ratio of dependence of hotspots for different parametrizations of weight 
matrices. It enables the expression of the stability between each parametrization using a 
single value, between zero and one. Based on this number, one can decide which 
parametrization to use and researchers can compare the stability of their methods for 
unsupervised hotspot analyses. For temperature values in particular, one wishes to detect 
those areas which have high differences, regardless of a particular parametrization. If a 
hotspot appears for one parametrization only, the information gained for general use is quite 
small and can even lead to an inefficient allocation of resources. 

This research has several restrictions which should be taken into account. First, we only 

tested the SoH↑ metric. While we assume, based on our graphical analysis, that the SoH↓ 
stability should be similar, we have no hard results. The results themselves are tested on two 
events in time for a fixed area of the city of Karlsruhe. We have not tested our approach on 

smaller or larger study areas, but we assume that the stability of the Focal G∗ would stay the 

same, whereas the stability of the G∗ statistic would increase with a smaller study area and 
decrease with a larger study area. This follows the reasoning that the impact of a single point 
increases with a decrease of the study area. To test this dependency is an interesting task for 

future work. The last restriction is the fixed size of the focal matrix for the Focal G∗ 
approach. We only tested one size in this study, but it is highly probable that the size of the 
focal matrix has an impact on the stability, as can be seen in Figure 2. While an overall trend 
can be seen when the size of the weight matrix W and the focal matrix F are almost identical, 
the exact ratio is beyond the scope of this work. Determining the optimal ratio of weight 
matrix W to focal matrix F as well as pinpointing when the stability suffers from those 
matrices being too similar in size are interesting questions for future work. 
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