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Abstract 

Massive amounts of geospatial data require better techniques to analyse and display 

them. A common practice in applying statistical analysis and reporting units is represented 

by the regional statistical unit grids, which are used for national and European statistics and 

reporting. In line with the EU’s INSPIRE directive, Austria provides statistics constructed on 

the European Terrestrial Reference System, which uses the Lambert Azimuthal Equal Area 

projection (ETRS-LAEA) for spatial analysis and display. Although these units are fixed and 

allow comparability and replicability, there is no relation with the underlying phenomenon. 

In this study, we evaluate the suitability of SLICO superpixels to replace the artificial ETRF 

grid squares when delineating an image for further analysis and using reporting units, or for 

display purposes. In this approach, we minimize any further parametrization, which is 

introduced by many other available segmentation algorithms, and aim to replicate the 

ETRF grid by imposing a size constraint and using the square’s centres as seeds for 

superpixel generation.    
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1 Introduction 

Cell aggregation (‘resampling’) is one approach to upscale detailed geospatial information 
(Hay et al., 2001). Similar to these scaled representations, regional statistical unit grids are 
used for national and European-wide statistics and reporting, including for pan-European 
geospatial information layers – as for example those produced by the Copernicus Land 
Monitoring (CLM) service. The CLM provides high-resolution layers for various land cover 
parameters such as forest, sealing degree or grassland distribution, aggregated to 20x20m 
cells. Many geospatial datasets are available at aggregated levels based on a regular grid cell 
and, depending on the reporting units being used, may introduce a bias into the analysis since 
these are artificial delineations of geographic reality (Hagenlocher et al., 2014; Hengl, 2006). 

Suitable for grouping are those units that are reasonably small (Woodcock and Strahler, 
1987), more precisely some 3–4 times smaller than the object of interest. Since here the size 
of the target objects depends on the policy scale and the level of detail, the minimum size of 
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the grid cell needs to be estimated, but it cannot be derived deterministically. Census 
authorities in countries such as Finland, Sweden or Austria maintain socio-economic and 
other relevant data based on address location. Statistik Austria provides socio-economic 
indicators in standardized gridded data sets with a cell size in multiples of 125m, alongside 
the standard products for hierarchical administrative levels (Wonka and Strobl, 2006). Such 
data hosted and managed according to the European INSPIRE directive can neatly be 
integrated into the existing transnational terrestrial reference frames (e.g. ETRS-LAEA) 
(Annoni and Smits, 2003). Even more importantly, they allow for any (re-)aggregation and 
upscaling, independently of given administrative units. A regular grid cell has no particular 
meaning in terms of the studied phenomena on the ground, but enumeration units are rarely 
significant either (Byrne, 1998). Overall, grid cells have a neutral geometry and imply a 
predictable MAUP (Openshaw, 1984) effect. Thus, aggregating grid cells into new zones 
such as qualitatively established neighbourhoods may be preferable over aggregating 
enumeration areas. 

Using resampling techniques, any continuous grid can be transferred into another one with 
larger (or smaller) cell size. VHR imagery with 0.5m resolution can be resampled into 
10x10m cells by averaging the pixel values and assigning the resulting mean value to the 
(new) overlying cell. Categorical data can be resampled by using the majority of classes that 
occur. In terms of the studied phenomenon, the aggregation grid is deliberately ‘neutral’, e.g. 
the European transnational reference grid and national grids from it, such as the Statistik 
Austria reference grid. The adverse effect of the ecological fallacy, i.e. treating all group 
members within a zone the same way yet with arbitrary zone boundaries, is compensated for 
only by the fact that the units being used are fixed and therefore comparability is guaranteed 
in repeated studies.  

Object-based image analysis (OBIA), or more general spatial image analysis, builds on 
hierarchically structured image objects (Blaschke et al., 2014; Lang, 2008). When working 
with image objects instead of pixels, we face the problem referred to above: the reference 
grid boundaries do no usually match the object boundaries, so that image objects are 
arbitrarily cut. It would be a coincidence to reach a 1:n relation between the aggregation cell 
and the underlying image objects. Studies assessing functional land cover classes (Lang et al., 
2014) or spatial vulnerability units (Kienberger et al., 2009) used a grid resampling as an 
intermediate step in the construction of geons as units of uniform behaviour in terms of the 
underlying phenomenon (Lang et al., 2014). This step of preparing regular grid cells could be 
optimized: rather than using regular grid cells, methods of superpixel generation could be 
used to create the intermediate level, which matches more closely the actual spectral 
characteristics of the underlying image. The seed pixels for computing the superpixels would 
then match the centroids of the grid. 

In this study, we discuss a novel approach: constraining image segmentation by borrowing 
size and position parameters from the reference grid. The idea is to use the spacing of the 
ETRF reference grid (and its sub-divisions) to control both the average size and the 
centroids for superpixel segmentation. This would result in a 1:1 relation between generated 
objects (superpixels) and reference units, and a 1:n relation between objects and multiples of 
reference units. The question remains: would superpixels still represent ‘reasonable’ objects? 
The hypothesis is that in urban settings, where there is a continuous fabric of built-up 
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structures, the grid-constraint superpixels would lead to a satisfactory provision of image 
objects, which would be used as building blocks for further aggregation.  

2 Material and Methods 

Study area and datasets 

The study area is located in the southern part of the city of Salzburg, Austria. The river 
Salzach flows from south to north, and the urban area comprises mainly dense residential 
and commercial areas separated by large green spaces with economic or recreational 
functions. The very high resolution datasets were acquired at equal time intervals in 2005, 
2010 and 2015, although using different sensors (Table 1). The number of spectral bands 
varied between four (QuickBird and Pleiades) and eight (Worldview-2), and all images had 
red and near-infrared bands, which are important in differentiating the vegetation from other 
urban components. 

 

Figure 1: Location of the study area within the city of Salzburg, Austria, and the three temporal 

datasets used: 2005 (QuickBird), 2010 (WorldView-2) and 2015 (Pleiades).   
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Table 1 shows the characteristics of the VHR imagery used and the extent of the respective 
subsets (in pixels). 

Table 1: Dataset characteristics. 

Imagery 
Spatial resolution 
(m) 

Number of bands Extent (pixels) Date of acquisition 

QuickBird 0.6 4 5583×5500 June 25, 2005 

WorldView-2 0.5 8 10460×10444 Sept. 10, 2010 

Pleiades 0.5 4 9963×9941 Oct. 1, 2015 

SLIC superpixel-generation based on ETRF grid 

In line with the EU’s INSPIRE directive, Austria provides statistics constructed on a pan-
European grid based on the European Terrestrial Reference System, which uses the Lambert 
Azimuthal Equal Area projection (ETRS-LAEA) for spatial analysis and display. Using a 
regional statistical grid which covers the entire territory of a country can assure transferability 
and uniformity of statistics, but the statistics are not related to the administrative boundaries 
or to the existing discontinuities in the landscape. An alternative to these rigid grids is to 
aggregate pixels into similar-sized image objects as the initial cell size. The resultant objects, 
superpixels (Shi and Malik, 2000), would better represent the information within a satellite 
image. 

Superpixels have a number of advantages when compared to pixels or, in our case, to the 
rigid ETRF grid: they (1) are perceptually meaningful regions (Achanta et al., 2012); (2) have 
a low computational complexity (Ren and Malik, 2003); (3) preserve the structure in an image 
(Ren and Malik, 2003), and (4) have better adherence to the natural boundaries of features 
(Neubert and Protzel, 2012). Many superpixel algorithms are available in the literature 
(Neubert and Protzel, 2012), but the Simple Linear Iterative Clustering (SLIC) algorithm has 
been shown to outperform other state-of-the-art methods (Achanta et al., 2012; Csillik, 
2016). The SLIC algorithm is an adaptation of k-means clustering, starting from a regular 
grid and having the initial seeds as the centroids of the cells (Figure 2). At this stage, we have 
a representation that is similar to the official ETRF grid – a rigid structure made of equally 
distributed squares, for which we can synchronize the seeds to match the centres of the 
squares. Furthermore, each of the seeds is shifted in a 3×3 window, in order to reduce its 
susceptibility to be being placed on an outlier. An iterative procedure is performed, assigning 
each pixel to the nearest cluster centre based on a distance measure (Eq. 1). This distance 
measure combines a distance of colour proximity (Eq. 2) and a distance of spatial proximity 
(Eq. 3):  

D = √(
dc

m
)
2

+ (
ds

S
)
2

;        (1) 
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dc = √∑ (I(xi, yi, sp) − I(xj, yj, sp))
2

sp∈B ;     (2) 

ds = √(xj − xi)
2
+ (yj − yi)

2
,      (3) 

where 𝑑𝑐 and 𝑑𝑠 are the colour and spatial distances between pixels 𝐼(𝑥𝑖, 𝑦𝑖 , 𝑠𝑝) and 

𝐼(𝑥𝑗, 𝑦𝑗 , 𝑠𝑝) in the spectral band 𝑠𝑝, 𝐵 represents the number of spectral bands used, 𝑆 is the 

sampling interval of the seeds, and m dictates the compactness of the superpixels (Ortiz 
Toro et al., 2015). In order to produce regular and equal-sized SLIC superpixels, a 
compactness constraint needs to be added (optimized SLIC, known as SLICO), the resulting 
superpixels being less sensitive to the texture of the image. We used SLICO superpixels in 
order better to maintain a similarity with the ETRF grid. 

 

Figure 2: The overlap between ETRF grid and the SLICO superpixels generated. The centre of each 

ETRF grid cell can be designated as the starting seed in generating superpixels. In this way, the 

superpixels generated coincide closely with the ETRF grid, but with a better adherence to the actual 

image boundaries.   

3 Results and outlook 

The grid-constrained SLICO method produces similar-sized and similarly-positioned 
superpixels for different input sensor data (see Figure 3), despite the different sensor 
resolutions and image acquisition dates: QuickBird (0.6m, 2005), WorldView-2 (0.5m, 2010), 
and Pléiades (0.5m 2015). However, the power of the superpixels to represent reasonable 
building blocks may be limited when linear features with a width of less than double the cell 
size, such as narrow rivers or roads, need to be represented. The bottom line of Figure 3 
shows the superpixels generated with a slightly smaller (‘adaptive’) average size of 50 x 50m 
in order to better capture linear features such as bridges. 
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Figure 3: Results of the superpixel generation for the three VHR sensor types and dates.  

A qualitative assessment based on the visual comparison between the ETRF rigid grid and 
the SLICO superpixels generated shows that the latter better adhere to the image-feature 
boundaries (Figure 4). Starting from the centroids of the ETRF grid and using the same cell 
size in constructing the superpixels does not ensure that both will overlap perfectly. In the 
case of QuickBird image, we had 4,422 reference grid squares and 4,273 superpixels. This 
difference is due to the fact that the SLICO algorithm iteratively refines the boundaries of 
the superpixels until it reaches a stable delineation of the image.  
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Figure 4: A comparison between a 50m-square grid and multi-scale representations of the same 

scene (the fortress in Salzburg, surrounded by green areas) using SLICO superpixels of 50m, 25m and 

12.5m. In all four images, the grid or pixels are laid over an image produced by the QuickBird 432 

band combination. 

The standard deviation inside the ETRF grid ranges between 2.29 and 444, while for the 
SLICO superpixels it is lower, between 2.5 and 397. This is seen in Figure 5, where the 
SLICO segmentation better conserves the spatial structure within the image, while the 
artificial grid overlaps the image features randomly. 

In this study, we evaluated the suitability of SLICO superpixels to replace the artificial ETRF 
grid squares in delineating an image for further analysis based on reporting units, or for 
display. In this approach, we control parametrization, which is introduced by many other 
available segmentation algorithms, and aim to replicate the ETRF grid by using the cell 
centres as seeds for the generation of superpixels. In future studies, this approach could be 
used as a methodological contribution to monitoring studies to assess for example the status 
and dynamics of urban greenness. As a means to such ends, the generation of geons as units 
of uniform green impression could prove to be more suitable if it is based on superpixels 
rather than on grid cells. A scale-adaptive strategy for ‘over-’segmentation and for reducing 
the complexity of an image by grouping similar pixels, superpixels form the building blocks 
for further aggregation. A challenge remains with the representation of linear features that 
need to be captured by an adaptive spacing of the initial sampling grid.  
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Figure 5: Standard deviation for the ETRF grid and similar-sized generated SLICO superpixels. The circles 

indicate corresponding areas where superpixels show a more adaptive behaviour than the grid cells.  
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