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Abstract 

Using fishery-dependent observer data from National Marine Fisheries (NMFS) provides 

insight into the location and intensity of bottom-trawl fishing effort, and allows those areas 

most exposed to fishing pressure to be identified. In this study, the spatial and temporal 

extent of Alaskan bottom-trawl fishing effort in the Bering Sea, Aleutian Islands and Gulf of 

Alaska between 1993 and 2015 is explored within a space-time cube in ArcGIS Pro. The 

variables analysed were number of hauls per area and total catch per area. Statistical 

techniques were used to examine spatiotemporal clustering within the data. Results 

indicate that fishing was significantly clustered over space and time. A three-dimensional 

hotspot analysis shows which areas were most intensely fished and illustrates the trends 

over the relatively long study period. The data were then compared with sea ice 

concentration to determine the effect of changing climate on fishing activity. Sea ice had 

a limited effect on the spatial patterns of fishing effort, but certain areas in the Bering Sea 

exhibited increased fishing effort in years with less sea ice.  

Keywords: 
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1 Introduction  

The use of bottom-trawl fishing gear in the Bering Sea, Aleutian Islands and Gulf of Alaska 

is a sustainability concern because heavy ropes and nets impact the benthic layer directly. The 

direct environmental impact of bottom-trawling increases proportionally with increased 

fishing effort and intensity (National Research Council Staff 2002). (For the definition of 

‘effort’ as used in this article, see section 3.1 below.) In this study, the spatial analysis of 

commercial bottom-trawl fishing effort shows the locations with the most intense fishing 

pressure. This analysis also shows how the fishery has evolved over time in response to 

changes in the environment. Globally, sustainable fishing is at the forefront of providing 

food for an ever-growing population while ensuring that fish stocks are available for future 

generations. The goal is to protect not only the food resources, but also the ecosystems that 

support them (Bellido et al., 2011).  
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1.1 Related Work 

This study draws on past research to produce a successful methodology for analysing trends 

in the Alaskan bottom-trawl fishery. Many of these past studies see the spatial “footprint” of 

fishing effort as a direct indication of the location and intensity of environmental impact 

(Russo et al., 2016; Port et al., 2016; Stewart et al., 2010; Kaiser et al., 2016), describing the 

need to focus on the changes in fishing patterns in both space and time. We address this 

challenge by analysing the situation using the space-time cube in ArcGIS Pro. 

The hotspot analyses were chosen based on the work by Jalali et al. (2015), Lewison et al. 

(2009), Bjorkland et al. (2015), Stewart et al. (2010), and Maina et al. (2016). The method is 

particularly successful in identifying the areas that were most intensely used by the bottom-

trawl fishing fleet in Alaska. Past studies provide evidence that hotspots exist in fisheries 

both globally and regionally, and are important for understanding locations most impacted 

by fishing activity. 

Additional studies provide insight into the spatial history of commercial fishing, which can 

be essential in recognizing the spatiotemporal patterns of overfishing, impact, and the 

growth, expansion and evolution of fishing activity. Port et al. (2016) used historical datasets 

to identify the key economic areas used most consistently and areas where the fleet had 

expanded into newer territory. Miller et al. (2014) also discovered long-term trends of 

expansion, showing that fishing vessels travel farther, fish deeper, and fish in more inclement 

weather. Overall, catch and vessel productivity have not decreased over time. It is evident 

that obtaining fish is becoming more difficult in historically productive areas, and that new 

areas farther from shore are being used to supplement the traditional fishing grounds. 

The Bering Sea is subject to seasonal ice coverage, which normally forms in December or 

January, with the peak extent usually occurring in February or March. The presence of 

seasonal sea ice is a driving factor of the ecosystem as a whole. Climate change models 

predict that the temperature in the Bering Sea region will increase by 1 or 2 degrees Celsius 

by 2040. In this same time period, the amount of sea ice is expected to remain highly 

variable, but the probability of warm years with less sea ice occurring increases over time 

(Hermann et al., 2015). 

Decreasing sea ice cover in the Bering Sea could have a major impact on the commercial 

fishing fleet. The effect of varying sea ice conditions in 1999–2009 in the Eastern Bering Sea 

region on Catch Per Unit Effort (CPUE) values was assessed by Pfeiffer and Haynie (2012). 

Sea ice concentration data was used to characterize the availability of fishing grounds during 

the winter season. The study indicated some reorganization of fishing effort from warm 

years to cold years, but overall they found that for all years most fishing effort did not occur 

in ice-affected areas.  

The work by Pfeiffer and Haynie (2012) inspired much of the methodology used here to 

describe ice cover for the bottom-trawling fishery in the Bering Sea. A historical view of 

variable ice effects on the spatial distribution of bottom-trawl fishing effort shows how the 
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fleet may react to increased availability of fishing grounds during the winter season. With sea 

ice extent and duration expected to decline due to global climate change, significant shifts in 

fishing intensity and location may result. The bottom-trawl fishing fleet’s response to past 

sea ice anomalies may help in predicting the future impact of climate change in the Bering 

Sea.  

2 Objectives 

Three main research questions were explored using a space-time cube: 

1.  Does Alaskan bottom-trawl fishing effort occur in non-random clusters? 

2.  Has the intensity or spatial extent of Alaskan bottom-trawl fishing effort expanded 

from 1993 to 2015? 

3.  How did seasonal sea ice affect the spatial pattern of Alaskan bottom-trawl fishing 

effort between 1993 and 2015? 

Clustering is examined using Moran’s I to measure spatial autocorrelation. The intensity and 

spatial extent of fishing activity are shown in a space-time cube with two-dimensional and 

three-dimensional hotspots. These results are compared with sea ice data to visualize the 

effect of reduced sea ice. 

3 Data Description 

3.1 Fishing Effort 

Effort is represented in this study by two metrics: (1) total catch per area represents the 

magnitude of the removal of resources; (2) number of hauls per area by fishing vessels. Both 

metrics are representative of fishing intensity and are used to describe how this fishery has 

changed throughout the study period. 

The data used in the spatial analysis was collected by at-sea NMFS observers. The observers 

collected haul-level catch and effort information, including exact spatial locations, duration 

and independent estimates of catch. The observer data collection covers a large range of 

vessels and target fisheries, providing an in-depth look at fishing activity in Alaska. Only 

those vessels carrying observers are included. This fishery-dependent dataset should not be 

considered a representation of exact totals, but it does give a general description, acceptable 

for the purposes of this study, of when and where bottom-trawl fishing occurred (AFSC 

2016). The limitations of the available fishery-dependent dataset reduced spatial resolution 

and leaves the possibility of missing or omitted data points. Despite these shortfalls, it is the 

best publicly available dataset to represent fishing activity in this area. 
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3.2  Sea Ice 

Sea ice concentration data is available through the National Snow and Ice Data Center 

(NSIDC) and is collected via the Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive 

Microwave satellite instruments (Cavalieri et al., 1996). Images have a 25-km resolution and 

depict daily sea ice concentration, based on brightness and temperature, for the entire polar 

region. This study required daily files for the full extent of the study site from 1993 to 2015, 

which were then processed into a total annual sea ice effect index. The index represents the 

number of days per year of sea ice coverage. Sea ice effect was limited to 20% ice 

concentration or greater. The presence of ice is not representative of a no-entry line for 

fishing vessels; it should be considered simply as a guideline that shows areas which vessels 

are less likely to enter. 

4 Methodology and Results 

4.1  Spatial Autocorrelation 

The effort dataset was first tested for the existence of non-random clustering of effort levels. 

The Global Moran’s I tool gives a measure of spatial autocorrelation, showing that the spatial 

patterns of fishing effort distribution are not created by random events but demonstrate 

distinct clustering or dispersion. The results were used to find the peak level of spatial 

autocorrelation. This peak level was used as the distance band threshold for the spatial 

neighbourhood of the hotspot analysis.  

The results of the Global Moran’s I statistic indicate strong clustering, with a positive index 

result for all years, tested separately, for total annual catch and total annual number of hauls. 

Incremental spatial autocorrelation tested the Global Moran’s I statistic for distance bands 

with 5-km increments and determined the scale at which the most intense spatial clustering is 

found. The increment values with the peak z-score for each year of data are shown in 

Figures 1 and 2. Peak z-score distance bands range from 45 km to 105 km in both the total 

catch and the hauls datasets. This is the ideal range for analysing high and low clusters. 
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Figure 1: Peak Z-Score Values of Total Annual Catch and Corresponding Distance Band 

 

Figure 2: Peak Z-Score Values of Total Annual Number of Hauls and Corresponding Distance Band 
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The trend line (dashed) in both charts indicates that the peak z-score decreases over the 

study period. A decrease in the z-score values between 1993 and 2015 indicates that overall 

clustering is less pronounced towards the end of the study period in both number of hauls 

and total catch, although it remains high overall. 

4.2 Space-Time Cube 

Spatiotemporal patterns are difficult to portray using traditional methods, but the space-time 

cube allows time to be viewed and analysed as a third dimension, with the spatial locations 

represented by x and y, and time represented by the z-axis. Each year of fishing data effort is 

considered as one time slice of the space-time cube. The results of the space-time cube were 

then further analysed using the Space Time Pattern Mining toolbox, which includes the 

emerging hotspot analysis tool and 3D visualization tools. 

To use the space-time cube tool, all data points must be aggregated into individual space-

time bins. The bins chosen for this study are hexagonal. The hexagon creates more uniform 

distances between neighbours and is also preferred for higher-latitude study areas because it 

is less prone to visual distortion. This tool requires the use of a regular grid. The unusual 

spacing and dimensions of the original (square-celled) aggregation grid could not be used and 

made it difficult to impose the regular hexagon fishnet onto the data (see Figure 3). This lack 

of flexibility in the tool at the time of this project was a major limitation to the study results. 

The hexagon diameter of 30.39 km was chosen based on area and the results of the 

incremental spatial autocorrelation tool. Each hexagon is approximately 800 km2, double the 

area of the 400 km2 grid of the source data. Doubling the area ensured that at least one grid 

centroid fell within each hexagon. An example area of the resampling process is shown in 

Figure 3. 

 

Figure 3: Original Data Format Overlaid with the Hexagon Grid Used in the Space-Time Cube 
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The intensity of bottom-trawl effort is represented by assigning the maximum value of all 

grid centroids that fall within each hexagon bin of the space-time cube. Thus, each hexagon’s 

value is recorded as fishing intensity, but stated in the unit of 400 km2 of the original dataset. 

By using the maximum, skewing by zeros and cells with no data in edge areas is reduced, 

while observed magnitudes are retained. The resulting space-time bins contained 0–4 data 

points from the original NMFS observer data. Bins in active stacks with 0 data points were 

given an estimated value of 0. This resulted in the assignment of a 0 value to 11,184 out of a 

total of 17,595 bins – 64% of the bins in the space-time cube. Figures 4 and 5 show the two 

datasets in their three-dimensional forms. 

 

Figure 4: Space-Time Cube Results for Total Annual Catch 

 

Figure 5: Space-Time Cube Results for Total Annual Number of Hauls 
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4.3 Hotspot Analyses 

The visual identification of spatial patterns is often the first step to discovering and 

explaining the underlying processes. The space-time cube allows for many different 

visualizations that uncover different parts of the same story. Bottom-trawl fishing patterns 

are governed by many complex factors that would be difficult to model or explain with 

accuracy. Looking at the larger pattern gives insight into a highly diverse fishing fleet and the 

spatiotemporal patterns of past years. 

The emerging hotspot analysis technique improves upon traditional hotspot methods by 

including time. Rather than running the analysis for each year independently, this technique 

includes neighbours in both time and space. It was completed using the Getis Ord Gi* 

statistic, which compares data in each cell with the surrounding cells within the selected 

space and time parameters. 

This method of hotspot analysis, in two dimensions, categorizes each cell based on how 

often and when the cell has been included in a statistically significant hot- or cold spot (Esri, 

2017a). The categories are explained in Table 1. Only one category of cold spots was found 

in the data; the rest of the cold spot categories have been omitted from the table as none 

were found in these analyses. 

Table 1: Modified Emerging Hotspot Categories (from the ArcGIS Tool Reference) 

Category Definition 

New or Intensifying 

Hotspots 

Includes new, intensifying and consecutive hotspots. New hotspots 

are significant for the final timestep only. Intensifying 

hotspots are significant for 90% of the time and have increasing 

intensity in the final timesteps. Consecutive hotspots are 

significant hotspots for several consecutive timesteps, including 

the final timestep. 

Persistent Hotspots Persistent hotspots are significant hotspots for 90% of the 

timestep intervals, but have no significant trend of increasing 

or decreasing intensity. 

Sporadic Hotspots Sporadic hotspots are significant for less than 90% of the 

timestep intervals and at irregular intervals. This category also 

includes oscillating hotspots, which may have been cold spots or 

hotspots at irregular intervals and were significant for less 

than 90% of the timestep intervals. 

Diminishing or 

Historic Hotspots 

Diminishing hotspots are significant for 90% of the timestep 

intervals, but have decreasing intensity overall. Historic 

hotspots are significant for 90% of the timestep intervals, but 

not significant for the most recent time period. 

Sporadic Cold Spots Sporadic cold spots are significant for less than 90% of the 

timestep intervals and occur at irregular intervals. This 

category also includes oscillating cold spots, which may have 

been hot- or cold spots at irregular intervals and were 

significant for less than 90% of the timestep intervals. 



Steves 

95 
 

The hotspot analysis takes into account both consistency and intensity for each timestep to 

determine a classification of the hot- or cold spot. Time is a more important factor in this 

analysis than a simple cumulative z-score, because each timestep is assessed in relation to the 

others. The results are shown in Figures 6 and 7. 

 

Figure 6: Emerging Hotspot Analysis Results for Total Annual Catch 
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Figure 7: Emerging Hotspot Analysis Results for Total Annual Number of Hauls 

Within this region, a clear “core” area is identified as the area most utilized over the study 

time period. Within this area, there have been sporadic lower values; only a small portion of 

the core has been persistently used over the 23-year period. The area around Dutch Harbor 

is classified as a historic or diminishing hotspot. Although this area is consistently identified 

as a hotspot, its intensity has diminished over time. Areas closest to Dutch Harbor are easier 

to access for all types of vessel activity and are therefore more prone to be over-utilized. 

Diminishing catch and fishing effort may signal a depletion of resources.  

Both total catch and total number of hauls show that several areas have seen increased usage 

in the most recent timestep. Many hexagons on the outer edges of the identified hotspot 

region, particularly the southeastern and northern edges, are classified as new or intensifying. 

This may indicate expansion into new areas or a shift in resource availability. 

Three-dimensional visualizations are particularly useful for displaying the hotspot results. 

While the hotspot categories identified the areas of interest, a data stack is a more complete 

visualization of the spatial location’s history. The Space Time Cube Explorer add-in for 

ArcGIS Pro was used to create more detailed views of selected areas and allows the cube to 

be examined from a variety of viewpoints. Rows can be removed to allow further 

exploration “inside” the cube, or slices can be removed one by one to dig in from the top 

down. 
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Using this method, areas that were marked new and intensifying in the hotspot analysis can 

be examined through the entire period. Figures 8 and 9 show an enlarged view of the 

northern-most area of the identified hotspot region. Most locations became hotspots within 

the last three timesteps and were only rarely hotspots in the earlier timesteps. This provided 

evidence that the change in fishing effort has intensified only in the most recent timesteps of 

the study period. 

 

Figure 8: Three-Dimensional Hotspot Analysis Results for Total Annual Catch 
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Figure 9: Three-Dimensional Hotspot Analysis Results for Total Annual Number of Hauls 

4.4 Sea Ice Concentration Results 

The Sea Ice Concentration dataset was divided into ‘effect areas’ (areas affected by the sea 

ice concentration) according to the number of days per year that they had a 20% or greater 

sea ice concentration level. The space-time hexagons were used to match the fishery data for 

comparison. The average values for the number of days affected by ice for each hexagon is 

shown in Figure 10. Five levels of ice effect are identified, from No Effect (an average of less 

than one day per year), to Maximum Effect (150 days per year or more of sea ice). Sea ice 

affects only the Bering Sea fishing area, with the Aleutian Islands and Gulf of Alaska 

showing no days affected by sea ice. 
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Figure 10: Average Number of Ice Days per Year for each location bin in the space-time cube 

To show changes in bottom-trawl activity, fishing effort data were summarized for low ice-

effect years and high ice-effect years. The median value of the dataset is 23.14 days per year. 

The years designated as below-average ice-effect years were 1993, 1996, 2001–2005, and 

2014–2015. Average ice-effect years were 1997–1998, 2000, 2006–2007, and 2011. The years 

designated as above-average ice-effect years were 1994–1995, 1999, 2008–2010, and 2012–

2013. The zones of sea ice effect are shown by the average-effect hexagons in Figure 10. The 

average catches for each hexagon for the eight years designated as high ice-effect years and 

for the nine years designated as low ice-effect years are shown in Figure 11. The average 

annual number of hauls for high ice-effect and low ice-effect years yielded similar results and 

are not included. 
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Figure 11: Average Total Annual Catch for High Ice-Effect Years and Low Ice-Effect Years 

The presence of sea ice has a noticeable effect on the spatial distribution of fishing effort in 

all areas of the Bering Sea. Low Ice-Effect years show higher activity in areas designated as 

mid-effect and high-effect zones of sea ice concentration. This is shown in both datasets, 

particularly in the areas just outside Kuskokwim Bay and north of the Pribilof Islands. These 

areas will probably see increased usage as the number of low ice-effect years increases due to 

global warming. In addition, for both datasets, areas with no sea ice days have decreased 

average activity during low ice-effect years.  

5 Discussion 

5.1 Non-Random Clusters 

Fishing effort occurs in non-random clusters and is not homogeneous over space and time. 

The underlying causes of this clustering are a complex interaction of many factors including, 

but not limited to, the underlying bathymetry, clustering and schooling behaviour of target 

species, the fleet’s prior knowledge and sharing of information, regulatory parameters, 

weather conditions and fuel costs. 
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Aggregation of the original dataset could reduce the efficacy of this tool if there was 

increased spatial autocorrelation at a scale smaller than the 400 km2 grid. Despite this 

limitation, a range of peak spatial autocorrelations was found between 45 km and 105 km, 

after which increased distances reduced spatial autocorrelation. This indicates the need for 

localized studies of fishing effort rather than summarizing by broader reporting areas. The 

spatial autocorrelation test also revealed an overall trend of decreasing z-score values in the 

datasets for both the total annual catch and the number of hauls.  

5.2 Expansion of Fishing Areas 

The hotspot analyses identified a common “core” area that encompasses the most utilized 

area for the bottom-trawl fishing fleet in the Bering Sea. Patterns in the hotspot analyses 

show that both total annual catch and total number of hauls are increasing in intensity in 

marginal areas surrounding the core nucleus of fishing activity. This indicates possible 

expansion into previously less-utilized regions, but not outside the total spatial extent of 

typical fishing activity. The Gulf of Alaska and the Aleutian Islands did not show a clear 

nucleus of fishing effort and only sporadic hotspot areas were identified. The expansion of 

the bottom-trawl fishery in those areas cannot be concluded from this study. 

Moving into marginal areas is an environmental concern for several reasons. The move could 

indicate that resources are no longer as abundantly available in the core area, particularly the 

area nearest Dutch Harbor, which is more likely to be over-utilized due to its proximity and 

easy access for all types of fishing vessel (Stewart et al. 2010). Understanding the motivation 

and underlying causes of fishing effort expansion would greatly improve the resiliency of this 

fishery. 

5.3 Effect of Seasonal Sea Ice Concentration 

Distinct differences were observed in the spatial distribution of the average number of hauls 

and catch for high and low ice-effect years. Low ice-effect years show increased annual catch 

and number of hauls in the area just outside Kuskokwim Bay and the area north of the 

Pribilof Islands. These areas average 100–150 days of sea ice effect and are likely to see 

increased usage as the number of low ice-effect years increases due to climate change. The 

extent to which activity would increase is not apparent from our results.  

The study completed by Pfeiffer and Haynie (2012) on the Bering Sea Pollock fishery found 

changes in effort from warm to cold years, but the overall effect is small, and the fleet is 

driven more by other factors. Very few hotspots appear in areas that average more than 100 

days of sea ice concentration until the final three timesteps, 2013, 2014 and 2015. Both 2014 

and 2015 were low ice-effect years, but the pattern does not appear in any other portion of 

the dataset. This seems to confirm the assertion of Pfeiffer and Haynie (2012) that sea ice 

concentration has little effect on the spatial distribution of fishing effort. If some vessels 

moved into new areas, the effort was not sufficient to create a significant hotspot. 
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6 Conclusions 

The aims of this study were to better understand the spatial extent of the bottom-trawl 

fishery in Alaska and how the extent and intensity of fishing effort have changed over time. 

Fishing effort is not homogeneous but varies both spatially and temporally due to many 

underlying factors. Each vessel weighs the various costs and benefits of fishing locations 

differently, but certain areas are more preferred than others. This leads to increased fishing 

intensity in predictable spatial locations. The underlying habitat and fish populations in these 

areas are more exposed to the degradation and loss of diversity caused by repeated fishing 

pressure (Parnell et al., 2010).  

Climate change and its effects can be broad and complex, including changes in water 

temperature, water currents and species composition. Winter 2015–2016 was the warmest 

winter for the Arctic in satellite records, and sea ice extent has declined an average of 13.4% 

each decade in the Arctic region, which includes the Eastern Bering Sea, since satellite 

observations began in 1979 (Cullather et al. 2016). This would cause low ice-effect years to 

increase in frequency and intensity. In general, in areas that are normally affected by ice, the 

total annual catch and total number of hauls increased during lower ice-effect years.  

Organization of the data into the space-time cube was integral to the completion of this 

project. The cube has proven through this analysis of the bottom-trawl fleet to be a valuable 

structural format for spatiotemporal trend analysis. Looking at neighbours in both space and 

time improves the assessment of clusters in the dataset. Each time slice is considered not by 

itself but as part of the larger time period. Traditionally, this tool has been used for crime 

statistics, but it could have much wider applications in very different fields. Future research 

using space-time cube results could be beneficial to many aspects of fishery trends and 

retrospective spatial analyses. Pairing the results with benthic habitat information would give 

a more in-depth understanding of the species and habitat types being affected by bottom-

trawling. Space-time cube analyses have the potential to better represent fleet behaviour in 

prediction models, cost/benefit analyses, socio-economic impact analyses, and many other 

topics of interest for fisheries sciences. Fisheries science would benefit from a much stronger 

spatiotemporal element in future research. 
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