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Summary
This paper focuses on the automatic detection of hot spots on heterogenic roofscapes 
in high resolution airborne thermal imagery. Previous approaches to detect hot spots 
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required either emissivity corrected TIR-data or are only applicable to roofscapes 
with uniform roof materials. Here we present an automatic detection process using 
TIR-data without emissivity correction. To achieve this, every single roof and every 
roof material in the study area has to be acquired from remotely sensed imagery. 
This is obtained by using an object-based image classification approach based on 
orthophotos (RGB / IR) with sub-meter spatial resolution and a digital surface model. 
The hot spot detection is based on a two-step statistical criterion for every previously 
detected roof envelopes and roofing material. Firstly, the hottest spots on a roof are 
located by using a peak detection and secondly, a focal neighbourhood function is 
used to delimit thermal anomalies. The developed method was applied to TIR-data 
from the Thermal Airborne Broadband Imager (TABI-1800) with a spatial resolution 
of 0.6m x 0.6m. The results demonstrate that the developed method is applicable for 
heterogenic roofscapes, whereas the detection process highly depends on the roofs-
cape complexity.

Keywords: Airborne thermal imagery, TABI-1800, roof heat loss detection, hot spots, ob-
ject based classification

Zusammenfassung

Detektion	thermaler	Anomalien	auf	Dachflächen	–	ein	automati-
siertes,	fernerkundungsgestütztes	Verfahren	zur	Verbesserung	
der	Wärmeverlustanalyse	mittels	hochauflösender	Infrarot-
thermographie
In diesem Beitrag wird eine automatische Detektion thermaler Anomalien (Hot Spots) in 
heterogenen Dachlandschaften (vor allem Dacheindeckungen) auf Basis von hochauf-
lösenden, flugzeuggetragenen Thermal-Daten präsentiert. Bisherige Ansätze benötigen 
dafür eine vorgeschaltete Emissionsgradkorrektur der Thermaldaten bzw. können nur in 
Gebieten homogener Dacheindeckung angewandt werden. Basierend auf einer exakten 
Ableitung von Flächen gleicher Dacheindeckungsmaterialien zeigt die Methode eine 
Möglichkeit der Hot Spot Detektion ohne diese vorgeschaltete Emissionsgradkorrektur. 
Für die Abgrenzung von unterschiedlichen Dachflächen- und Dacheindeckungsmateria-
lien kam dabei ein objektbasierter Bildanalyse-Ansatz auf Basis eines hochauflösenden 
Orthophotos (RGB / IR) und Oberflächenmodells zum Einsatz. Die eigentliche Detektion 
der Hot Spots in den Thermaldaten erfolgte einerseits durch Identifizierung jener Berei-
che, deren Temperaturwerte höher sind als alle den Bereich umgebenden, und zweitens 
durch eine Nachbarschaftsanalyse, wobei die zuvor abgeleiteten Dachflächen gleichen 
Materials als Begrenzungsflächen für die Nachbarschaftsanalyse herangezogen wurden. 
Die entwickelte Methode wurde auf Thermal-Daten des Thermal Airborne Broadband 
Imager (TABI-1800) mit einer räumlichen Auflösung von 0.6m x 0.6m angewandt. Die 
Ergebnisse zeigen die Eignung der Methode auf sehr heterogenen Dachlandschaften, 
aber auch den starken Einfluss komplexer Dachlandschaftsstrukturen auf den Detek-
tionsprozess. 
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Schlagwörter:  Automatische Detektion thermaler Anomalien, flugzeuggetragene Inf-
rarotthermographie, Wärmeverlustanalyse, TABI-1800, objektbasierte 
Klassifikation

1 Introduction

Since	urban	energy	efficiency	has	become	increasingly	important	over	the	last	years,	air-
borne	 infrared	 thermal	 imagery	 of	 buildings	 and	 infrastructure	 are	 commonly	 used	 by	
public	authorities	in	Northern	America	and	Europe	to	run	energy	awareness-raising	cam-
paigns	and	to	detect	leakages	on	roofs	and	building	envelopes	(e.g.	Valente et al. 2019; 
Hemachandran	et	al.	2018;	EnergyCity	2013;	Hay et al. 2011; Savelyev and Suguma-
ran 2008; Allinson	2007).	Thereby,	false	colour	representations	of	thermal	images	are	
used	to	indicate	heat	loss	by	visual	interpretation.	These	studies	aim	to	raise	the	private	
house	owners’	awareness	to	the	energy	(heat)	dissipating	from	their	houses	into	the	atmos-
phere	and	subsequently	develop	and	implement	energy	reduction	strategies	(e.g.	improve	
the house’s roof insulation). 

Although	thermal	imagery	provides	valuable	information	about	thermal	behaviour	of	
roofs,	one	must	consider	that	a	profound	interpretation	of	thermal	images	is	a	difficult	task	
(c.f.	Vollmer and Möllmann	2011).	An	initial	part	in	this	inspection	is	the	identification	
of	potential	leakages	in	roofs,	the	so-called	hot spots.	On	thermal	infrared	images	of	roofs,	
hot	spots	generally	do	not	only	represent	leakages	but	all	high	temperature	peaks	within	
the	 image.	For	example,	 in	 residential	buildings	 they	can	correspond	 to	 roof	windows,	
roof	hatches,	chimneys	or	drain	waste	ventilation	pipes	and	in	commercial	buildings,	hot	
spots can correspond to air condition and ventilation plants. Hot spots represent all ther-
mal	diagnostic	features	on	roofs.	

This	paper	focuses	on	this	initial	part	of	the	roof	inspection	–	the	detection	of	hot	spots.	
The	most	commonly	used	method	for	the	identification	of	hot	spots	and	thermal	bridges	
is	based	only	on	the	visual	interpretation	of	false	colour	thermal	infrared	(TIR)	images,	
acquired	by	thermal	infrared	cameras	or	scanners.	This	implicates	several	uncertainties.	
The	visual	interpretation	of	TIR	images	highly	depends	on	the	colour	range	and	temper-
ature	span	that	is	used	to	display	the	data.	Small	scale	roof	structures	may	disappear	due	
to	large	temperature	spans.	In	contrast,	lower	temperature	spans	may	exaggerate	the	ap-
pearance	of	the	situation	(c.f.	Vollmer and Möllmann	2011).	The	most	serious	problem	
by	interpreting	TIR	images	arises	from	the	infrared	signal	itself.	The	signal	recorded	by	
the	sensor	does	not	only	contain	surface	temperature	information.	It	is	also	influenced	by	
the	surface	material	properties	(emissivity),	atmospheric	conditions	(e.g.	humidity),	 the	
radiation	wavelength	and	other	factors	(e.g.	surface	geometry).	

Emissivity	is	the	fraction	of	radiation	of	a	measured	object	(at	a	given	temperature)	
compared	to	the	radiation	emitted	by	a	blackbody	(with	the	same	temperature)	(Moro-
poulou	et	al.	2000).	Emissivity	values	range	from	close	to	zero	to	close	to	one.	In	con-
trast	to	qualitative	analysis,	a	quantitative	analysis	of	heat	loss	on	roofs	requires	kinetic	
temperature	values.	Hence,	the	emissivity	values	of	all	surfaces	in	the	study	area	have	to	
be	known.	Emissivity	correction	of	TIR-data	is	a	major	issue	in	the	quantitative	analysis	
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of	thermal	images	(c.f.	Pour	et	al.	2019).	In	the	case	of	roofs,	the	emissivity	correction	
must	also	consider	effects	of	weathered	materials	(c.f.	clay	brick,	see	Fig.	1b),	oxidised	
surfaces	(Holst	2000),	surface	structure	(e.g.	polished	or	roughened)	and	surface	temper-
ature.	Depending	on	these	parameters	the	emissivity	value	of	any	roof	material	may	vary	
significantly	(Coutts	et	al.	2016).	Especially	metals	are	characterised	by	high	emissivity	
fluctuations,	ranging	from	0.02	up	to	0.8	(Vollmer and Möllmann 2011). In contrast, 
non-metallic	surfaces,	such	as	concrete	or	bricks	have	emissivity	values	greater	than	0.8	
(Balaras and Argiriou	2002).	The	precise	knowledge	of	the	surface	emissivity	is	nec-
essary	to	avoid	significant	temperature	measurement	errors	(Madding 1999). In practice, 
the	conversion	from	apparent	temperatures	to	kinetic	temperature	is	based	on	emissivity	
values	reported	in	literature.	The	disadvantage	here	is,	that	literature	emissivity	values	are	
(if	for	the	respective	surface	material	and	wavelength	available	at	all)	extremely	scattered	
and	may	change	by	more	than	0.7	(Albaticia et al. 2013).

Additionally,	the	roofscapes	in	Graz	are	in	general	very	heterogeneous.	In	most	urban	
districts,	it	is	not	possible	to	determine	one	dominant	roof	cover	material.	In	many	cases	
even	on	a	single	roof,	different	roofing	materials	(metal	and	non-metal)	are	used.	Addition-
al	complexity	arises	from	small	roof	flashing	elements	composed	of	copper,	zinc	and	lead.	
These	construction	elements	are	mounted	on	dormers,	roof	valleys	and	ridges	to	protect	
the	roof	from	water	penetration.	Assuming	only	one	single	emissivity	value	for	a	roof	will	
therefore	cause	large	errors	in	calculating	kinetic	temperature.	To	obtain	accurate	emis-
sivity	values,	direct	in-situ	measurements	concurrently	to	the	data	recording	are	required.	
To	ensure	highest	possible	accuracy	this	has	to	be	done	for	every	roof	material	and	for	
different	weathering	grades	–	a	very	time-consuming	and	expensive	procedure.

To	detect	hot	spots,	additional	data	is	required	to	delineate	roofs	and	the	different	roof	
covering	types	within	the	TIR	image.	In	this	study	we	used	a	RGB	/	IR	orthophoto	with	a	
spatial	resolution	of	0.25m	x	0.25m	to	capture	different	roofing	materials.	Due	to	the	high	
complexity	of	the	roofing	material	in	the	study	area,	not	all	existing	materials	could	be	de-
tected	with	the	acquired	accuracy.	However,	even	studies	using	hyperspectral	data	with	high	
spatial	resolution	show	that	the	delineation	of	roofing	materials	with	different	weathering	
grades	is	a	difficult	task.	Uncertainties	in	urban	land	cover	classification	due	to	similar	spec-
tral	signatures	are	documented	for	slate,	asphalt,	and	other	low	reflecting	materials	(Franke 
et	al.	2009).	Therefore,	roof	material	classification	and	obtaining	accurate	emissivity	values	
are	considered	as	the	major	limiting	factors	in	calculating	kinetic	temperatures.

The	underlying	assumption	of	roof	heat	loss	detection	is,	that	differences	in	temperature	
(thermal	anomalies)	are	interpreted	as	potential	heat	flux	due	to	poor	or	missing	roof	insu-
lation.	An	initial	part	of	roof	heat	loss	detection	is	the	localisation	of	the	hottest	areas	(hot	
spots)	on	roofs.	We	present	an	automatic	GIS-based	approach	to	detect	hot	spots	on	roofs.	
The	major	advantage	of	the	presented	method	is	that	hot	spots	can	be	detected	on	hetero-
genic	roofs	without	an	upstreaming	emissivity	correction	–	an	achieving	improvement	in	the	
identification	of	possible	hot	spots	and	thermal	bridges.	The	automatic	hot	spot	detection	
uses	ArcGIS	geo-processing	tools.	To	provide	easy	handling,	the	scripts	are	compiled	to	a	
tool box. Two test sites were selected to evaluate the hot spot detection tool. Those test sites 
are	located	in	the	surrounding	area	of	the	University	of	Graz	(Austria)	and	represent	a	great	
variety	of	housing	types	and	utilisation	(residential	buildings	and	commercial	buildings).	
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2 Methods 

We	developed	a	GIS	based	automatic	detection	process	for	hot	spots	using	a	TIR	image	
captured	by	the	Canadian	built	TABI-1800	(Thermal	Airborne	Broadband	Imager)	sensor	
and	RGB	/	IR	orthophotos	(UltraCam)	to	derive	ancillary	data	(e.g.	roof	covering	types	
and	object	boundaries).	The	TABI-1800	data	used	in	this	study	was	collected	over	the	city	
of	Graz	(Austria)	on	December	20,	2011,	in	the	early	night	about	4	to	6	hours	after	sunset	
(08.00	pm	to	10.00	pm).	The	sensor	acquired	data	in	a	spectral	range	of	3.7	to	4.8	µm	with	
a	spatial	resolution	of	0.6m	x	0.6m	and	a	thermal	resolution	of	0.05	°C.	For	the	delineation	
of	the	roofs	and	the	classification	of	the	roofing	materials	a	combination	of	UltraCamX	
data	from	summer	2011	and	a	therefrom	derived	digital	surface	model	(DSM),	both	with	
a	spatial	resolution	of	0.25m	x	0.25m,	were	used	(Sulzer et al. 2016).

2.1 Data Preparation

The	TIR-data	not	only	contains	thermally	pure	pixels,	but	also	a	certain	degree	of	mixed	
pixels.	They	are	typically	located	at	the	edges	of	the	roofs	as	well	as	at	the	edges	of	differ-
ent	roofing	materials.	

Figure	1a	demonstrates	the	complex	mixing	situation,	a	thermal	image	with	0.6m	x	
0.6m	spatial	resolution	among	the	edges	of	a	roof	and	its	possible	origin.	In	the	first	case,	
the	pixel	value	represents	the	average	radiant	temperature	emitted	by	the	roof	surface	and	
the	heat	flux	ventilating	 through	 the	eave	 (Fig.	1a,	position	1).	 In	 the	 second	case,	 the	
pixel	value	represents	the	average	radiant	temperature	emitted	by	the	roof	surface	and	the	
neighbouring	(ground-)	surface	(Fig.	1a,	position	2).	Thus,	all	pixels	at	the	edge	of	the	roof	
contain	mixed	temperature	value	and	therefore	mixed	information	of	at	least	two	surface	
materials	(in	this	case	brick	and	tarmac)	with	different	emissivity	values.	Hence,	the	tem-
perature of this pixel is not representative for one of the two surfaces. 

Differences	in	temperature,	boosted	by	emissivity	effects,	are	clearly	recognisable	in	
Fig.	 1b/c.	The	 temperature	 difference	 between	 roofs	 and	 streets,	 and	 consequently	 the	
mixed	pixel	problem,	will	arise	even	after	a	precise	emissivity	correction	(converting	ap-
parent	temperature	to	kinetic	temperature	by	integrating	material	abilities	to	emit	thermal	
radiation.	 In	 addition,	 sensor	 based	 effects,	 like	 FOV	 (field	 of	 view)	 and	 line	 of	 sight	
geometry	effects	as	well	as	target	based	effects	due	to	3-D	surface	structure	(e.g.	inclined	
roof	 surface,	flat	 ground)	 causing	 temperature	fluctuations	may	occur	 (Christen et al. 
2012).	The	occurrence	of	such	effects	always	has	to	be	kept	in	mind,	but	is	out	of	the	scope	
of	this	paper.	These	types	of	errors	along	the	roof	edges	can	be	considered	as	systematic	
errors. 

Figure	1b/c	demonstrates	the	mixed	pixel	problem	(boundary	between	tarmac	and	roof	
covering)	surrounding	the	roof.	It	is	shown	that	in	this	case	the	warmer	apparent	radiant	
temperature	of	the	surrounding	(mixed	pixel)	would	be	detected	as	hot	spots	when	a	reg-
ular	automatic	hot	spot	detection	approach	is	used.	Therefore,	to	avoid	errors	related	to	
mixed	pixels	at	the	edge	of	features,	a	negative	buffer	(set	to	minus	1m)	was	applied	to	the	
vector	layer	of	the	building	outlines	(Fig.	1b/c).
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Source:	 Own	calculation	and	design	by	the	authors	

Fig.	1a:		 Mixed	pixel	problem	illustrated	in	the	TIR	image	of	Graz	(TABI	1800,	spatial	
resolution:	0.6m	x	0.6m;	no	emissivity	correction).	

Fig.	1b/c:		Automatic	building	envelope	extraction	(purple	line)	and	negative	buffer	(black	
line). 

Fig.	1b:		 Orthophotograph,	UltraCam,	spatial	resolution:	0.25m	x	0.25m.	The	purple	line	
demonstrates	 a	 strong	 visual	 fit	 of	 the	 automated	 building	 envelope	 extract-
ing	process	with	the	RGB	image.	Visible	differences	between	weathered	clay	
bricks	and	new	roofed	clay	bricks	can	be	determined.	

Fig.	1c:		 TIR	Image	(TABI-1800,	spatial	resolution:	0.6m	x	0.6m;	no	emissivity	correc-
tion).	The	buffer	distance	of	minus	1m	(black	line)	proved	to	be	adequate	to	
exclude	mixed	pixels	in	the	hot	spot	detection	process.
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2.2 Extraction of building envelopes and classification of the roofing materials

In	addition	to	the	roof	surface	temperature	information	from	the	TABI-1800	data,	infor-
mation	about	all	the	different	roofing	materials	of	each	building	is	needed	to	perform	the	
hot	spot	analysis	(section	2.3).	To	extract	building	envelopes	as	well	as	roof	covering	ma-
terials,	an	object-based	image	analysis	approach	(Blaschke et al. 2014; Poznanska et al. 
2013; Taubenböck	et	al.	2013),	based	on	true	colour	orthophotographs	(UltraCam)	with	
sub-meter	spatial	resolution	(0.25m	x	0.25m)	and	a	DSM	(0.25m	x	0.25m)	derived	from	
the	UltraCam-data,	was	used	(Kern	2015).	The	latter	serves	as	the	primary	basis	for	the	
delineation of the building outlines. 

In	 the	 first	 step,	 buildings	 and	 other	 elevated	 objects	were	 derived	 from	 the	DSM	
based	on	height	difference	information	and	slope.	First	results	were	enhanced	by	including	
additional	spectral	surface	information	from	the	orthophotographs	into	the	classification	
process.	Vegetation	covered,	elevated	objects	like	trees	and	high	bushes	could	thereby	be	
excluded	and	the	edges	of	the	buildings	refined.	On	the	basis	of	the	results	from	the	build-
ing	delineation	all	surfaces	but	roofs	could	be	excluded	for	the	subsequent	classification	
of	 the	 roof	 covering	materials	beforehand.	To	classify	 the	different	 roofing	materials	 a	
multiresolution	segmentation	algorithm	was	used	to	segment	the	roofs	into	objects	with	
a	minimum	mapping	unit	(MMU)	of	9	m2	and	a	minimum	width	of	2	m.	The	definition	
of	the	MMU	and	the	minimum	width	was	necessary	due	to	the	spatial	resolution	of	0.6	m	
of	the	TIR	data.	Hence,	sheet	metal	installations	and	other	small	roof	objects	like	small	
windows	could	not	be	captured	as	individual	roof	objects	in	this	study.	

In	the	next	step,	the	roof	segments	were	classified	into	eight	roof	material	classes	(clay	
tile,	fiber	cement	/	slate,	metal,	cement,	gravel	/	glass	and	other)	on	the	basis	of	spectral	
information	of	the	RGB	/	IR	orthophotographs	and	surface	information	from	the	DSM.	
Buildings	that	were	part	of	a	block	development	and	covered	with	the	same	roofing	mate-
rial	could	not	be	automatically	detected	as	individual	buildings	and	needed	to	be	separated	
manually.	The	accuracy	of	the	roof	material	classification	differed	substantially	depending	
on	the	type	of	material.	For	example,	clay	tile	(with	the	exception	of	red	painted	metal	
roofs)	achieved	high	classification	accuracy.	In	contrast,	fiber	cement	and	slate	covered	
roofs	could	not	be	classified	in	separate	classes	due	to	their	spectral	similarities.	In	some	
cases,	 it	was	also	not	possible	 to	separate	cement	 from	gravel.	Classification	problems	
arose	from	metal	roofs	or	roof	parts,	especially	red	painted	metal	roofs.	This	is	a	particular	
area	of	concern,	because	metals	have	substantially	lower	emissivity	values	than	clay	tiles.	
But	the	use	of	hyperspectral	data	for	the	classification	of	the	roofing	material	here	provides	
potential	for	future	applications	(Franke et al. 2009; Heiden et al. 2012).

2.3 Hot Spot Detection Algorithm

We	use	a	 two-step	approach,	combining	a	peak	detection	which	 is	based	on	hydrological	
modelling,	and	a	statistical	neighbourhood	analysis.	Two	criteria	must	be	met	by	the	cell	to	
be	selected	as	a	potential	hot	spot:	(a)	a	positive	identification	as	a	temperature	peak	and	(b)	
exceeding	a	certain	operating	temperature	range.	Inverse	to	the	common	used	eight	direction	
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flow	model	 in	 hydrologic	modeling	 (Jenson and Domingue 1988), each cell is coded in 
temperature	difference	to	indicate	the	number	of	adjacent	cells	with	lower	temperatures.	In	
the	case	when	all	eight	neighbouring	cells	show	lower	temperature	values	than	the	processing	
cell,	the	processing	cell	is	assigned	as	a	potential	hot	spot	(Fig.	2a).	The	algorithm	neither	
depends	on	the	magnitude	of	peak	temperature	nor	on	the	temperature	difference	between	
peak	and	surrounding	cells.	Therefore,	depending	on	the	complexity	of	the	roof	objects	(e.g.	
number	of	windows,	vents	or	chimneys),	the	output	of	this	first	step	contains	a	large	number	
of	extracted	features	–	even	though	the	detected	potential	hot	spots	within	a	distance	of	minus	
1m	to	the	building	envelope	caused	by	mixed	pixel	effects	have	already	been	excluded.	

To	enhance	interpretation	of	these	potential	hot	spots,	a	moving	window	overlapping	
neighbourhood	 focal	 function	was	 used	 in	 the	 next	 step.	These	 algorithms	 are	 usually	
used	in	geomorphologic	modelling,	like	computing	terrain	characteristics	or	calculating	
topographic	position	indexes	(Moore	et	al.	1991),	but	became	more	popular	in	other	GIS	
analyses	(e.g.	Vienneau	et	al.	2009)	over	the	last	years.	The	algorithm	assigns	by	cell	by	
cell basis a new value for each processing cell as a function of the associated neighbouring 
cells.	The	information	about	the	associated	neighbouring	cells	 is	obtained	by	the	shape	
and	size	of	a	moving	window	covering	 the	processing	cell	and	 the	neighbouring	cells.	
Since	neighbourhood	identification	is	overlapping,	cells	can	be	assigned	multiple	times	
as	neighbouring	cells.	In	our	case,	the	moving	window	has	been	specified	as	a	circle	(Fig.	
2b).	The	larger	the	moving	window	is	set,	the	more	frequently	the	neighbourhood	statistic	
criterion	is	achieved	and	thus	more	potential	hot	spots	are	assigned	as	detected	hot	spots.

In	general,	hot	spots	on	homogenous	material	(c.f.	roofing	cover)	contrast	with	the	sur-
rounding	 cells	 by	 a	 higher	 digital	 number	 (either	 apparent	 or	 kinetic	 temperature).	Thus,	
hot	spots	depend	on	temperature	differences	with	the	neighbourhood	cells.	Problems	arise	
by	setting	a	statistical	criterion	without	operating	with	true	kinetic	temperatures	to	assign	a	
target	cell	as	a	hot	spot.	We	calculate	the	neighbourhood	statistic	by	setting	the	operator	to	
range	(calculation	of	maximum	cell	value	minus	minimum	cell	value	in	the	predefined	neigh-
bourhood).	Finally,	a	 threshold	value	(depending	on	the	radiometric	resolution	of	 the	TIR	
data)	defines	whether	a	potential	hot	spot	is	attributed	as	detected	hot	spot	or	not	(Fig.	2c).	
Therefore,	a	model	calibration	(see	below)	must	be	carried	out	for	every	new	TIR	dataset.	To	
avoid	emissivity	problems,	we	used	the	ancillary	information	of	the	automatically	classified	
building	envelopes,	subdivided	 into	 the	dominant	 roofing	materials	 from	the	object-based	
image	classification	as	zonal	geometry	for	the	algorithm.	Thus,	the	neighbourhood	statistic	is	
calculated	for	every	individual	detected	roofing	material	per	building	envelope.	

The	greatest	advantage	of	the	method	mentioned	above	is	its	applicability	on	apparent	
temperature	TIR	images.	For	example:	Two	roofs	with	the	same	kinetic	temperature,	one	
covered	with	roofing	tiles,	one	with	a	metal	roof	coverage,	do	not	have	the	same	apparent	
temperature	in	the	thermal	infrared	image.	Due	to	the	very	low	emissivity	of	metal,	metal	
roof	coverage	appears	much	colder	on	uncorrected	thermal	images	than	tiled	roofs.	By	
setting	an	absolute	temperature	threshold	value	as	criterion	for	the	hot	spot	analysis	with-
out	a	preceding	emissivity	correction,	miscalculations	of	hot	spots	on	coverage	with	low	
emissivity	(e.g.	metal)	are	unavoidable	(c.f.	Hemachandran	2013).	The	main	steps	of	the	
algorithm	are	illustrated	in	Figure	2d.	All	calculations	and	algorithms	are	compiled	in	an	
ESRI	ArcGIS	Toolbox	giving	great	flexibility	for	the	application.	
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Source:	 Own	design	by	the	authors

Figure	2:		 Illustration	of	the	hot	spot	detection	procedure	
Fig	2a:	 Temperature	peak	detection.	A	cell	 is	 assigned	as	potential	hot	 spot	when	 the	digital	

numbers	(apparent	temperature)	of	all	eight	neighbouring	cells	show	lower	values	than	
the processing cell. 

Fig	2b:	 Range	detection	–	neighbourhood	processing.	The	used	focal	statistic	is	overlapping.	
Fig	2c:	 Range	definition	and	hot	spot	selection.	Light	blue	indicates	that	the	digital	number	of	

the	cell	 is	beneath	the	defined	threshold	value.	Dark	blue	indicates	 that	a	cell	fits	 the	
statistical	criterion.	If	both	criteria	(peak	detection	and	range	threshold	value)	are	met,	a	
cell is assigned as a hot spot. 

Fig	2d:	 Flow	Diagram	of	the	hot	spot	detection	algorithm.	
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2.4 Model Calibration

The	hot	spot	detection	was	calibrated	by	adjusting	the	parameters	and	comparing	mod-
elled	hot	spots	with	observed	data.	For	this	purpose,	heat	loss	areas	from	remote	sensing	
data	were	manually	detected	and	mapped.	In	addition,	an	in-situ	inspection	of	the	roof	attic	
and	measurement	of	thermal	anomalies	were	carried	out	for	selective	buildings	(Fig.	3).	In	

Source:	 Photos	taken	by	the	authors

Figure	3:	 Model	set-up
Fig.	3a:	 Examples	of	mapped	reference	thermal	anomalies	(position	1).	The	algorithm	was	ad-

justed	iterative	until	almost	all	reference	hot	spots	were	detected.	The	metal	roof	instal-
lations	and	small	roof	flashing	elements	demonstrating	the	complexity	of	heterogenic	
roof	coverings	in	the	study	area	(positions	2	and	3).	

Fig.	3b:	 In-situ	investigation	in	an	insulated	roof	(position	5).	The	ventilation	pipe	is	considered	
as	potential	thermal	anomaly	(position	4).
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an	iterative	procedure,	the	model	parameters	(neighbourhood	of	movable	window	diameter	
and	range	threshold,	buffer	of	the	selection)	were	then	adjusted,	whereby	the	observed	data	
served	as	validation	of	the	modelled	hot	spots.	This	calibration	process	was	repeated	until	
the	model	results	matched	the	reference	(observed)	data	as	accurately	as	possible.

Due	 to	 the	 heterogeneous	 building	 structure	 in	 the	 study	 area,	 two	different	model	
settings	have	been	applied	to	one	single	TIR	image	(one	for	residential	buildings	and	one	
for	large	public	or	commercial	buildings	with	a	high	number	of	ventilation	plants).	Due	to	
the	higher	number	of	potential	hot	spots	on	complex	roofscapes,	the	moving	search	radius	
must	be	enlarged	on	this	type	of	building	structures.	In	comparison,	the	search	radius	of	
the	moving	window	on	less	complex	roof	constructions	with	a	small	count	of	hot	spots	
that	is	typically	found	on	single	family	detached	houses	is	rather	small.	The	finally	used	
values	are	shown	in	Table	1.	Depending	on	the	spatial	as	well	as	the	radiometric	resolution	
of	the	TIR	image,	the	model	parameters	have	to	be	adjusted	once	again.

3 Results

A	comparison	of	the	cadastral	polygons	with	the	results	of	the	object-based	image	clas-
sification	 illustrates	 that	 the	 spatial	 accuracy	has	been	 improved.	For	 example,	 crowns	
of	(high)	trees	covering	building	envelopes	could	be	excluded	for	the	hot	spot	analysis.	
Furthermore,	 the	 required	 information	on	 roofing	 cover	material	 can	be	obtained	 (Fig.	
4a/b).	This	is	of	crucial	importance	as	accurate	delineated	areas	of	homogeneous	roofing	
materials	as	zonal	geometry	is	mandatory	for	the	hot	spot	detection	algorithm.	The	buffer	
distance	of	minus	1m	turned	out	to	be	suitable	to	reduce	the	mixed	pixel	problem	(Fig.	1c).	

The	accuracy	of	the	object-based	image	classification	was	analysed	by	using	a	con-
fusion	matrix	with	500	automatically	generated	 reference	points.	The	 results	 showed	a	
very	good	overall	classification	accuracy	of	91.4	percent	and	a	kappa	coefficient	of	0.88.	
The	weakest	classification	results	are	found	in	metal	roofs.	This	is	mainly	due	to	the	fact	
that	metal	 roofs	have	very	different	spectral	characteristics,	depending	on	 the	material,	
lacquering	and	weathering.	The	problem	was	most	obvious	with	red	painted	metal	roofs	
that	were	misclassified	as	clay	tiles.	But	also	gravel	and	concrete	roofs	are	often	difficult	
to	differentiate	due	to	the	spectral	similarity	of	the	materials.

Two test sites were selected to evaluate the hot spot detection tool. Those test sites are 
located	in	the	surrounding	area	of	the	University	of	Graz	(Fig.	4c,	position	2	and	3)	and	

Building 
structure TIR-Data Building 

envelope

Roof covering 
materials 
(classes)

Neighbour-
hood settings

Temperature
threshold 

value

Residential  
building TABI-1800 Object	based	 

classification 8 Circle; 2 cell 
units > 1.5 K

Commercial	
building TABI-1800 Object	based	

classification 8 Circle; 3 cell 
units > 2.0 K

Table	1:		 Model	parameters
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represent	a	great	variety	of	house	types	and	utilisation	(residential	buildings	and	commer-
cial buildings). 

The	type	“residential	building”	is	exemplified	on	a	perimeter	block	development	(Fig.	
5)	from	the	period	of	historicism	(1840–1900).	This	type	of	architecture	is	typical	for	the	
district	“Geidorf”	in	the	City	of	Graz.	The	floor	plan	of	this	type	of	buildings	typically	
consists	of	office	spaces	in	the	first	two	floors	and	residential	space	in	the	upper	floors.	

Source:	 Own	calculation	and	design	by	the	authors

Figure	4:		Result	of	the	object-based	image	classification
Fig.	4a/b:	 Comparison	of	cadastral	polygons	and	automatic	delineated	building	envelopes.	
Fig.	4c/d:	 Classification	of	roof	covering	materials.	Position	2	(commercial	buildings)	and	Posi-

tion	3	(residential	buildings)	indicate	the	selected	study	sites.
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In	contrast	to	the	orthophotographs,	the	effects	of	emissivity	on	apparent	temperature	
are	clearly	visible	in	the	TIR	image	(Fig.	5a/b,	position	6	and	7).	Due	to	their	very	low	
emissivity,	 the	minimum	 temperatures	 on	 the	 roofs	 are	 associated	with	metal	 surfaces	
(Fig.	5a/b,	position	7).	Like	the	neighbouring	roofs,	the	material	of	position	6	(Fig.	5a/b)	
consists	of	clay	brick.	The	sharp	delineation	on	the	TIR	image	(Fig.	5a)	indicates	rather	
specific	emissivity	properties	of	the	roof	material	than	an	increased	heat	transfer.	In	fact,	
the	interpretation	of	the	thermal	behaviour	of	this	roof	excluding	effects	of	emissivity	is	
impossible.	

The	TIR-data	of	the	entire	roof	in	the	west	appears	rather	homogeneous.	In	general,	
very	homogeneous	temperature	patterns	on	TIR-data	are	interpreted	as	an	indication	of	
well	insulated	roofs	(c.f.	Gulbe	et	al.	2017).	The	result	of	the	detection	process	demon-
strates	a	strong	correlation	between	the	expected	(e.g.	roof	windows,	chimneys)	hot	spot	
and	the	modelled	hot	spots	(e.g.	Fig.	5a–d,	position	1	and	2).	

The	algorithm	depicts	every	roof	window	as	single	hot	spot.	In	spite	of	double	and	
triple	pane	windows,	roof	windows	usually	indicate	critical	surfaces	for	energy	loss.	Due	
to	neighbouring	shadow	effects	and	night	sky	radiant	cooling	(Vollmer and Möllmann 
2011),	windows	are	“problematic	 features”	on	TIR	 images.	 In	 the	case	of	 the	 test	 site,	
building	heights	of	the	surrounding	perimeter	blocks	are	equal	and	therefore,	neighbour-
ing	shadow	effects	can	be	excluded.	The	maximum	temperatures	within	the	windows	are	
located	at	the	top	edge	of	each	roof	window	(Fig.	5c/d,	position	2).	One	may	conclude	that	
these	roof	windows	are	displaying	rather	heat	transfer	than	external	influences.	

Like	the	windows,	the	detection	process	of	hot	spots	related	to	chimneys	shows	a	good	
fitting	between	the	modelled	hot	spots	and	TIR-data/orthophotograph	(e.g.	Fig.	5a–d,	posi-
tion	1	and	2).	Due	to	the	large	difference	in	temperature	between	heated	chimneys	(c.f.	TIR	
flight	mission	was	taken	out	in	December)	and	surrounding	roofs,	chimneys	correspond	to	
the	hottest	features	on	the	roofs.	The	chimney	at	position	3	(Fig.	5a–c)	demonstrates	an	er-
ror	in	the	peak	detection	process.	The	TIR-data	indicates	a	significantly	higher	temperature	
in	the	chimney	area	compared	to	the	surrounding	roof	area.	But	the	value	of	at	least	one	of	
the	eight	surrounding	cells	is	equal	to	the	processing	cell.	Therefore,	the	algorithm	does	not	
exceed	the	required	criteria.	Position	4	(Fig.	5a–c)	indicates	that	the	chimney	was	not	in	
service	at	the	time	of	the	thermal	survey	or	it	is	even	abandoned.	The	latter	is	not	unusual	
for	this	type	of	building	structure,	since	changes	from	local	heating	to	central	heating	sys-
tems	were	typically	conducted	without	removing	the	no	longer	used	chimneys.	An	accurate	
delineation	of	those	features	(heated	chimneys	as	well	as	roof	windows)	provides	valuable	
additional	information	for	inspection	and	diagnostics	of	buildings.

Lastly,	position	5	(white	dots	in	Fig.	5a/b)	indicates	hot	spot	delineation	due	to	mixed	
pixel	problems.	As	mentioned	above	these	hot	spots	are	finally	eliminated	by	the	minus	
1m	building	envelope	buffer	distance.	

The	second	test	site	is	located	on	the	campus	of	the	University	of	Graz.	The	complex	
contains	the	main	building	of	the	University	of	Graz	and	the	Graz	University	Library	(Fig.	
6a-c).	The	main	building	was	designed	in	the	style	of	historicism	and	houses	the	auditori-
um	for	representational	purposes	(600	guests)	as	well	as	several	institutes.	The	university	
library	is	attached	to	the	main	building.	In	1970	the	original	library	building	was	enlarged.	
Nowadays	the	structure	houses	a	special	media	department	for	audio	and	video	materials	
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and	a	catalogue	room	for	online	searches.	Due	to	its	size	and	use,	the	building	is	also	rep-
resentative	for	a	commercial	building.	

Position	1	and	2	indicate	a	precise	relationship	between	expected	and	detected	hot	spots	(chimneys	
and	roof	windows).	Position	3	and	4:	Chimney	which	does	not	achieve	the	required	algorithm	crite-
ria.	Position	5:	Example	of	an	excluded	hot	spot	within	the	minus	1m	buffer	distance	of	the	building	
envelope. 
Figure	5:		Hot	Spot	detection	within	a	perimeter	block	development	
Fig.	5a:		 TIR	image	(TABI	1800,	spatial	resolution:	0.6m	x	0.6m;	no	emissivity	correction)
Fig.	5b:		 Orthophotograph
Fig.	5c:		 Oblique	image,	viewing	direction	W
Fig.	5d:	 Detail.	Black	dots	indicate	detected	hot	spots.	White	dots	indicate	excluded	hot	spots	

within	the	minus	1m	buffer
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In	contrast	to	the	residential	building	mentioned	above,	the	TIR	image	of	this	complex	
appears	heterogeneous	and	reveals	remarkable	hot	areas.	Expected	thermal	bridges	on	the	
university	library	can	be	found	within	the	glass	roof	of	the	main	reading	room	(Fig.	6a/b,	
position	1).	The	single	pane	windows	display	poorly	insulated	areas	and	heat	loss	on	the	
image.	At	least	one	hot	spot	on	each	glass	construction	is	detected.	

The	top	floor	of	the	open-access	collections	of	the	library	contains	many	roof	windows	
(Fig.	6a/b,	position	2).	In	this	wing,	the	peak	detection	delineates	a	large	number	of	poten-

Figure	6:	 Hot	spot	detection	at	the	main	building	of	the	University	of	Graz
Fig.	6a:		 TIR	image	(TABI	1800,	spatial	resolution:	0.6m	x	0.6m;	no	emissivity	correction).	The	

black	dashed	 line	marks	 the	 structural	 separation	of	 the	main	building	 from	 the	uni-
versity	library.	The	black	arrow	indicates	the	viewing	direction	of	the	oblique	picture	
(Fig.	6c).	Black	dots	indicate	detected	hot	spots.	White	dots	indicate	excluded	hot	spots	
within	the	minus	1m	buffer.	

Fig.	6b:		 Orthophotograph,	viewing	direction	NW	
Fig.	6c:		 Oblique	picture
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tial	hot	spots.	The	extensive	heat	emission	of	the	numerous	small	roof	windows	associated	
with	the	spatial	resolution	of	0.6m	x	0.6m	cause	a	smoothing	effect	on	the	TIR	image.	
Thus,	the	assigned	threshold	value	is	not	exceeded	here.	This	makes	it	rather	difficult	to	as-
sign	single	hot	spots	on	roofs	within	complex	infrastructure.	For	that	reason,	the	algorithm	
has	to	be	modified	to	get	detailed	information	about	potential	hot	spots	of	such	complex	
roofs.	This	can	be	done	by	enlarging	the	radius	of	the	moving	search	window.	However,	in	
this	particular	case,	the	geometric	resolution	of	the	TIR	image	was	too	coarse	to	delineate	
every	single	(small)	roof	window	as	single	hot	spot.	An	accurate	detection	of	hot	spots	on	
such	complex	roofscapes	(e.g.	numerous	windows)	requires	very	high	resolution	TIR-data	
(<	0.5m	x	<0.5m).	

Position	3	(Fig.	6a/b)	indicates	the	hot	spot	detection	on	an	array	of	roof	ventilation	
plants.	These	roof	installations	represent	clearly	definable	features	that	can	be	found	on	
many	commercial	buildings.	In	the	present	example,	the	spatial	distance	between	ventila-
tors	is	large	enough	to	delineate	single	ventilators	as	hot	spots	at	a	scale	of	0.6m	x	0.6m	
with	high	accuracy.	

The	roofscape	of	the	main	building	of	the	University	of	Graz	(opened	1895)	differs	
from	the	complex	of	the	university	library.	Instead	of	complex	modern	roof	installations,	a	
large	number	of	chimneys	exists	on	this	building.	The	roof	hatches	waste	ventilation	pipes	
and	chimneys	(Fig.	6a/b/c,	position	6)	are	correctly	detected	by	the	algorithm.	Based	on	
apparent	 temperatures,	 the	hottest	position	of	 the	main	building	 is	 situated	at	unroofed	
light	 shafts	 (Fig.	6a/b,	position	7),	 indicating	air	movement	 (heat	 transfer)	 through	 the	
shaft.	The	dominant	roof	materials	of	the	main	building	are	slate	tiles	(Fig.	6a/b/c,	position	
4)	and,	in	lesser	extent,	metal	(Fig.	6a/b/c,	position	5).	

The	effects	of	different	emissivity	are	clearly	visible	on	the	thermal	image.	One	may	
expect	linear	structures	on	thermal	image	due	to	sheet	metal	installations	in	contrast	to	the	
surrounding	roof	coverage	(Fig.	6a/b/c,	position	8).	Without	emissivity	correction,	metal	
surfaces	appear	cooler	due	to	their	material	properties	(c.f.	Fig.	6a/b/c,	position	4	and	5).	
Interestingly,	even	on	apparent	temperature	the	metal	surface	at	position	8	is	displayed	as	
warm.	

The	algorithm	assigns	hot	spots	on	each	sheet	metal	installation.	Without	in-situ	in-
vestigation,	 these	 structures	are	difficult	 to	 interpret.	 It	may	be	assumed	 that	 the	metal	
installation	is	tracing	thermal	bridge	above	the	underlying	staircase.	Such	hot	spots	are	
considered as point of interests for further investigations regarding waste heat loss.

4 Discussion

The	presented	method	to	automatically	detect	hot	spots	on	roofs	in	TIR	(thermal	infrared)	
images	uses	apparent	temperatures	only.	To	assign	a	cell	as	a	potential	hot	spot,	two	crite-
ria	must	be	fulfilled:	positive	peak	detection	and	achieving	the	predefined	range	of	temper-
ature	within	a	specified	neighbourhood.	The	settings	of	the	algorithm	have	to	be	calibrated	
to	different	TIR	data	and	building	structures.	The	perimeter	of	the	moving	window	and	the	
range	threshold	value	of	the	neighbourhood	analysis	strongly	depends	on	the	spatial	and	
radiometric	resolution	of	the	TIR	data	as	well	as	on	the	building	structure.	The	required	
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information	on	building	envelopes	and	especially	on	roofing	cover	materials	are	obtained	
by	applying	an	image	based	object	classification	approach.	

We	propose	two	different	model	settings:	one	for	residential	buildings	with	less	com-
plex	roof	installations,	and	one	for	commercial	buildings	with	complex	roof	installations	
(c.f.	Fig	6.	a/b,	position	2).	The	latter	is	designed	to	detect	more	hot	spots	with	high	density	
(e.g.	ventilation	plants).	To	avoid	errors	related	to	mixed	pixels	at	the	edge	of	the	building	
envelopes,	it	is	suggested	to	use	a	negative	buffer	distance	around	the	features.	The	dis-
tance	depends	on	the	spatial	resolution	of	the	TIR	data	and	the	ancillary	building	envelope	
data.	In	this	study	a	distance	of	minus	1m	has	been	proved	to	be	sufficient	to	exclude	all	
mixed	pixels	along	the	edges.	The	result	of	 the	hot	spot	detection	serves	as	a	basis	for	
subsequent detailed in-situ roof inspections. 

The	method	is	applicable	to	complex	building	structures	with	heterogeneous	roof	cov-
erings	that	can	be	found	in	most	European	cities	–	a	great	advantage	of	the	method.	Exist-
ing	studies	and	methods	were	developed	in	comparatively	young	cities	and	buildings	with	
homogenous	roof	materials.	The	study	of	Hay	et	al.	(2011)	consists	of	detached	single-unit	
houses	with	uniform	roof	materials	(e.g.	asphalt	shingles).	Due	to	the	spatial	resolution	of	
the	utilised	TIR	image	(1m	x	1m),	Hay	et	al.	(2011)	assume	no	impact	of	different	surface	
emissivity	(different	roofing	materials)	of	objects	smaller	than	1m	on	the	hot	spot	detec-
tion.	Therefore	without	emissivity	correction,	differences	in	temperature	are	interpreted	as	
heat	flux.	In	their	approach	the	hot	spot	detection	is	based	on	the	following	criteria:	The	six	
hottest	positions	on	the	roof	with	a	minimum	distance	of	2–4	pixel	(1m	x	1m	resolution)	
each	and	the	six	hottest	locations	along	the	building	envelope	with	1	pixel	perimeter.	

In	contrast	to	many	Northern	American	cities,	the	historical	development	of	European	
cities	led	to	complex	building	structures	and	to	heterogeneous	roofscapes	with	a	great	di-
versity	of	roof	materials.	Therefore,	some	assumptions	of	the	elaborated	method	from	the	
study	of	Hay	et	al.	(2011)	are	not	applicable	to	European	cities.	In	this	study	a	TIR	image	
with	0.6m	x	0.6m	spatial	resolution	is	used.	We	point	out	that	emissivity	of	sheet	metal	
installations	has	a	significant	impact	on	the	TIR	image.	This	effect	is	clearly	recognisable	
on	Fig	6a/b	(position	9).	The	v-shaped	linear	structure,	displaying	cool	temperatures,	cor-
responds	to	the	sheet	metal	installations	on	the	roof.	Considering	low	emissivity	values	of	
metal,	this	effect	is	so	far	not	surprising,	but	it	demonstrates	the	problems	in	interpreting	
TIR	images	of	complex	roofscapes.	Firstly,	the	spatial	resolution	of	0.6m	x	0.6m	is	high	
enough	that	different	emissivity	of	small	scale	features	on	the	roof	can	have	an	influence	
on	the	pixel	values	of	the	TIR	image.	Secondly,	the	assumption	that	every	temperature	
change	without	emissivity	correction	can	be	interpreted	as	heat	flux	will	lead	to	misinter-
pretation	of	the	thermal	situation	of	the	building.	Thirdly,	emissivity	correction	of	such	
small	 scaled	 features	will	prove	 to	be	a	difficult	 task.	As	mentioned	above,	even	with	
hyperspectral	data	with	high	resolution	the	delineation	of	these	small	structures	may	be	
impossible.	Coming	back	to	Fig	6a/b	(position	9):	there	is	no	evidence	for	increased	heat	
flux	of	the	slate	roof	compared	to	the	metal	roof.	

Due	to	the	construction	and	the	utilisation	of	the	buildings,	the	roofscape	of	the	city	of	
Graz	can	be	categorised	as	thermally	complex.	For	example,	a	high	number	of	chimneys	
due	to	local	heating,	large	window	panes,	numerous	roof	windows	and	ventilation	plants	
on	commercial	buildings	result	in	a	high	number	of	hot	spots.	Thus,	a	limitation	of	the	
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maximum	number	of	hot	spots	(as	purposed	in	the	study	of	Hay et al. 2011)) is not appli-
cable	for	complex	building	structures	(c.f.	Fig.	6a–d).	

Heat	loss	detection	based	on	airborne	thermal	imagery	is	still	subject	to	uncertainties.	
The	method	presented	in	this	paper	is	suitable	for	the	initial	assessment	of	TIR	images	of	
roofs	–	the	detection	of	potential	hot	spots	on	roofs.	Nevertheless,	there	is	a	host	of	limit-
ing	factors	and	errors	affecting	the	analysis:	
(a)	Although	the	algorithm	is	not	depending	on	emissivity	corrected	data	–	ancillary	in-

formation	to	delineate	the	different	roofing	cover	materials	is	necessary.	Hot	spots	at	
the	boundaries	of	different	roofing	cover	materials	cannot	be	detected	precisely	due	to	
the	mixed	pixel	effects.	The	extent	of	the	boundary	depends	on	the	spatial	resolution	
of	the	TIR	data;	for	the	TIR-data	used	in	this	study	(0.6x0.6m),	a	buffer	of	1m	proved	
to	be	sufficient.	As	a	consequence,	for	roofs	with	a	variety	of	roofing	cover	materials,	
large	scale	areas	are	excluded	from	the	analysis;

(b)	If	the	roofing	cover	materials	cannot	be	delineated	precisely	(e.g.	areas	<	MMU),	er-
rors	may	also	occur	at	their	boundaries:	large	temperature	differences	due	to	emissivity	
properties	(e.g.	metal	and	clay	bricks)	may	increase	the	number	of	detected	hot	spots	
because	the	defined	static	criterion	of	the	neighbourhood	operation	(range)	is	frequent-
ly	complied.	The	radiometric	resolution	of	the	UltraCam	data	used	in	this	study	also	
limits	a	more	distinct	differentiation	of	the	roofing	materials	(e.g.	different	weathering	
conditions	of	clay	tiles).	This	could	be	improved	by	using	hyperspectral	data	(which	is	
not	available	for	the	city	of	Graz);

(c)	Potential	errors	also	arise	from	the	combination	of	data	sets	recorded	at	different	times.	
For	example,	the	UltraCam	data	was	recorded	in	July	2011,	but	the	TIR	data	was	re-
corded	in	December	2011.	A	period	of	six	months	in	dynamically	developing	cities	can	
already	effect	major	changes	(e.g.	new	constructions,	modifications	of	existing	build-
ing	fabric).	This	could	be	improved	by	recording	both	thermal	and	optical	data	as	close	
to	each	other	(due	to	the	required	night	flight	for	TIR-data	surveys	it	is	not	possible	to	
record	them	simultaneously);

(d)	A	challenge	of	the	presented	method	is	the	required	calibration	process.	In	addition	to	a	
manual	mapping	of	hot	spots	on	the	TIR	data,	valid	model	results	also	require	a	set	of	
in-situ	inspections	of	the	top	attic	rooms.	In	contrast	to	public	buildings,	getting	access	
to	private	buildings	is	more	difficult; 

(e)	Limiting	factors	 in	TIR-data	acquisition:	 (i)	High-resolution	airborne	 thermography	
surveys	of	entire	urban	areas	require	a	high	number	of	(overlapping)	flight-lines.	The	
data	acquisition	with	the	TABI-1800	sensor	for	the	city	of	Graz	(approximately	125	
km2)	 has	 required	 20	 flight-lines.	Radiometric	 variations	 between	 flight-lines	 often	
cause	errors	in	the	mosaic	data-set	(this	is	also	valid	for	the	data	used	in	this	study).	
Recently,	Rahman	et	 al.	 (2015)	demonstrate	 that	 these	effects	can	be	 reduced	by	a	
using	of	relative	radiometric	normalisation	techniques.	(ii)	Due	to	Lambert-behaviour	
of	emitting	surfaces,	radiation	measured	at	the	sensor	strongly	depends	on	the	view-
ing	angle.	Maximum	radiation	 is	observed	from	normal	direction,	oblique	direction	
>40-45°	leads	to	declining	radiation.	The	magnitude	of	this	effect	is	also	a	function	
of	material	(Vollmer and Möllmann	2011).	Thus,	the	impact	on	remote	sensed	TIR	
images	depends	on	(1)	viewing	geometry,	(2)	field	of	view,	(3)	roof	material,	(4)	roof	
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slope,	(5)	roof	exposition,	(6)	sensor	wavelength,	(7)	temperature	(air,	surface,	sky),	
(8)	atmospheric	effects,	and	(9)	sensor	calibration.
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