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COMPUTATION OF THE NEAREST STRUCTURED MATRIX TRIPLET WITH
COMMON NULL SPACE∗

NICOLA GUGLIELMI† AND VOLKER MEHRMANN‡

Abstract. We study computational methods for computing the distance to singularity, the distance to the nearest
high-index problem, and the distance to instability for linear differential-algebraic systems (DAEs) with dissipative
Hamiltonian structure. While for general unstructured DAEs the characterization of these distances is very difficult
and partially open, it has been shown in [C. Mehl, V. Mehrmann, and M. Wojtylak, Distance problems for dissipative
Hamiltonian systems and related matrix polynomials, Linear Algebra Appl., 623 (2021), pp. 335–366] that for
dissipative Hamiltonian systems and related matrix pencils there exist explicit characterizations. We will use these
characterizations for the development of computational methods to approximate these distances via methods that
follow the flow of a differential equation converging to the smallest perturbation that destroys the property of regularity,
index one, or stability.
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1. Introduction. We derive computational methods for determining several distance
problems, in particular the distance to singularity, the distance to the nearest high-index
problem, and the distance to instability for linear, time-invariant differential-algebraic systems
(DAEs) with dissipative Hamiltonian (dH) structure. Such dHDAE systems have the form

(1.1) Eẋ = (J −R)x+ f,

with constant matrices E, J,R ∈ Rn×n, where J = −J>, both E = E> and R = R> are
positive semidefinite (denoted as E,R ≥ 0), a differentiable state function x : R→ Rn, and
a right-hand side f : R → Rn. Here ẋ denotes the time derivative of the function x, and
Rn×n denotes the set of real n × n matrices. The matrix E in (1.1) is associated with the
Hessian of the related Hamiltonian energy function, which in the case discussed here has the
form H(x) = 1

2x
>Ex and describes the distribution of internal energy in the system, the

dissipation matrix R is associated with the loss of energy in the system, and the structure
matrix J = −JT describes the energy flux among the energy storage elements in the system. It
is well-known [5, 29] that dHDAEs satisfy a dissipation inequalityH

(
x(t1)

)
−H

(
x(t0)

)
≤ 0

for t1 ≥ t0.

Systems as in (1.1) arise in all areas of science and engineering [4, 5, 12, 21, 29, 36] as
linearization (along stationary solutions), as space discretization, or approximation of physical
systems and also in the context of the more general port-Hamiltonian differential-algebraic
equation systems, which incorporate also inputs and outputs.
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EXAMPLE 1.1. Consider as a simple example a linear electrical circuit presented in [29].
This system can be represented as a differential-algebraic system

Lİ = −RLI + V2 − V1,

C1V̇1 = I − IG,
C2V̇2 = −I − IR,

0 = −RGIG + V1 + EG,

0 = −RRIR + V2.

(1.2)

Here RG, RL, RR > 0 represent resistances, L > 0 is an inductor, C1, C2 > 0 are capacitors,
and EG is a controlled voltage source. The system is a dHDAE of the form (1.1) with
x =

[
I, V1, V2, IG, IR

]>
, E = diag(L,C1, C2, 0, 0), R = diag(RL, 0, 0, RG, RR),

and f =
[
0, 0, 0, RG, 0

]>
, where

J =


0 −1 1 0 0
1 0 0 −1 0
−1 0 0 0 −1

0 1 0 0 0
0 0 1 0 0

 .
The energy in the system (stored in the inductor and in the two capacitors) leads to the quadratic
Hamiltonian

H(I, V1, V2) =
1

2
LI2 +

1

2
C1V

2
1 +

1

2
C2V

2
2 .

This will be an illustrative example for our methodology in Section 7.1. We will discuss the
properties of this system and similarly constructed circuit models below.

Model descriptions typically have uncertainties arising from modeling, discretization, or
measurement errors. It is therefore important to know whether the model is close (under small
perturbations) to a model where some of its nice properties do not hold any longer, and this
has been an important research topic recently; see, e.g., [1, 3, 6, 15, 16, 17, 24, 25, 27, 28, 29,
30, 33, 36, 34, 35].

The properties of the system (1.1) are obtained by investigating the spectral properties of
the corresponding dH matrix pencil

(1.3) L(λ) := λE −A := λE − (J −R).

Well-formulated dHDAE systems of the form (1.1) have many nice properties. To have unique
solvability for general right-hand sides f , the pencil L(λ) has to be regular, i.e., detL(λ) is
not identically zero. The system is stable, i.e., the finite eigenvalues of λE − A are in the
closed left-half complex plane and the eigenvalues on the imaginary axis are semisimple, or
in other words have no Jordan blocks of size larger than 1, and the infinite eigenvalues have
index at most two, i.e., Jordan blocks of size at most 2; see [27, 28]. It should, however, be
noted that from a perturbation point of view it would be much better if the system would be
asymptotically stable, i.e., all finite eigenvalues are in the open left-half complex plane and the
index would be at most one, because then these properties stay invariant under small enough
perturbations of the system matrices. It would furthermore be important to characterize how
far away (in some norm of the perturbations) the system is from a system where one of these
properties is lost.
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To answer these questions, this paper is concerned with three nearness problems for the
pencil (1.3). The first problem is the distance to the nearest singular pencil, i.e., to a pencil
λẼ − Ã with det(λẼ − Ã) identically zero, the distance to the nearest high-index pencil, i.e.,
to a pencil λẼ − Ã with Jordan blocks associated to the eigenvalue∞ of size larger than one,
and the distance to the nearest pencil with eigenvalues on the boundary of the unstable region,
i.e., to a pencil λẼ − Ã with purely imaginary eigenvalues. Computing these distances is very
difficult for general linear systems (see, for example, [7, 8, 9, 15, 16, 17, 18, 26]). However,
if one restricts the perturbations to be structured, i.e., if one considers structured distances
within the class of dH pencils, then the situation changes completely (see [15, 16, 17, 27, 28]),
and one obtains very elegant characterizations that can be used to approximate these distances
via (non-convex) optimization approaches.

In contrast to classical optimization approaches, we derive computational methods to
approximate these structured distances by following the flow of a differential equation. This
approach has been shown to be extremely effective for computing the distance to the nearest
singular pencil for general matrix pencils [18], and we will show that this holds even more
so in the structured case. The presented procedure is a two-level procedure that minimizes a
suitable functional over the set of systems having distance ε from the original system until
the functional is annihilated. The parameter distance ε is tuned in the outer iteration, while
minimization for a given ε is performed in the inner iteration.

Neither the methods based on non-convex optimization nor the methods based on follow-
ing a flow are really feasible for large-scale problems, which means problems with tens or
hundreds of thousands of unknowns.

To treat the large sparse case, they have to be combined with projections on the sparsity
structure and model reduction methods (see [2, 3]), which intertwine the optimization step
with model reduction. Here we discuss only the small-scale case, but the combination with
interpolation methods can be carried out in an analogous way as in [3].

The paper is organized as follows. In Section 2 we recall a few basic results about linear
time-invariant dHDAE systems. In Section 3 we discuss optimization methods that are based
on gradient flow computations. Since the cases of even and odd dimension are substantially
different, in Section 4 we specialize these methods for the optimization problems associated
with the three discussed distance problems for the case when the state dimension is odd, while
in Section 6 we discuss the case when the state dimension is even.

It turns out that the minimal distance perturbations are rank-two matrices, so in Section 5,
for the odd size case, we discuss the special situation where we restrict the perturbation to be
at most of rank two. In Section 7 we briefly discuss the iterative procedure for computing the
optimal ε in the upper level of the two level procedure. In all cases, we present numerical
examples.

2. Preliminaries. We use the following notation. The set of symmetric (positive semidef-
inite) matrices in Rn×n is denoted by Symn (Symn

≥0), and the skew-symmetric matrices in
Rn×n by Skewn. Analogously, we denote the symmetric part of a real matrix A by Sym(A)
and the skew-symmetric part by Skew(A). By ‖X‖F we denote the Frobenius norm of a
(possibly rectangular) matrix X; we extend this norm to matrix tuples X = (X0, . . . , Xk) via
‖X‖F = ‖[X0, . . . , Xk]‖F . For A,B ∈ Cn×n, we denote by

〈A,B〉 = tr(BHA)

the Frobenius inner product on Cn×n, where BH is the conjugate transpose of B. The
Euclidian norm in Rn is denoted by ‖ ‖. By λmin(X) we denote the smallest eigenvalue of
X ∈ Symn

≥0. The real and imaginary part of a complex matrix A ∈ Cn×n are denoted by
Re(A), Im(A), respectively.
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To characterize the properties of dHDAEs of the form (1.1), we exploit the Kronecker
canonical form of the associated matrix pencil (1.3); see [14]. If Jn(λ0) denotes the standard
upper-triangular Jordan block of size n× n associated with an eigenvalue λ0 and Ln denotes
the standard right Kronecker block of size n× (n+ 1), i.e.,

Ln = λ0

 1 0
. . . . . .

1 0

−
 0 1

. . . . . .
0 1

 ,
then, for E,A ∈ Cn×m there exist nonsingular matrices S ∈ Cn×n and T ∈ Cm×m that
transform the pencil to Kronecker canonical form,

S(λE −A)T = diag(Lι1 , . . . ,Lιp ,L>η1 , . . . ,L>ηq ,J λ1
ρ1 , . . . ,J λr

ρr ,Nσ1 , . . . ,Nσs),

where p, q, r, s, ι1, . . . , ιp, η1, . . . , ηq, ρ1, . . . , ρr, σ1, . . . , σs ∈ N ∪ {0} and λ1, . . . , λr ∈ C,
as well as J λi

ρi = Iρi − Jρi(λi), for i = 1, . . . , r, and Nσj
= Jσj

(0)− Iσj
, for j = 1, . . . , s.

For real matrices and real transformation matrices S, T , the blocks J λj
ρj with λj ∈ C \ R

are in real Jordan canonical form associated to the corresponding pair of complex conjugate
eigenvalues; the other blocks are the same. A real or complex eigenvalue is called semisimple
if the largest associated Jordan block in the complex Jordan form has size one, and the sizes ηj
and εi are called the left and right minimal indices of λE −A, respectively. A pencil λE −A,
is called regular if n = m and det(λ0E − A) 6= 0 for some λ0 ∈ C, otherwise it is called
singular; λ1, . . . , λr ∈ C are called the finite eigenvalues of λE − A, and λ0 = ∞ is an
eigenvalue of λE −A if zero is an eigenvalue of λA−E. The size of the largest blockNσj

is
called the index ν of the pencil λE −A.

The definition of stability for differential-algebraic systems varies in the literature. We call
a pencil λE −A Lyapunov stable (asymptotically stable) if it is regular, all finite eigenvalues
are in the closed (open) left-half plane, and the ones lying on the imaginary axis (including
∞) are semisimple [11]. Note that pencils with eigenvalues on the imaginary axis or at∞
are on the boundary of the set of asymptotically stable systems, and those with multiple but
semisimple, purely imaginary eigenvalues (including∞) lie on the boundary of the set of
Lyapunov stable pencils.

The following theorem summarizes some results of [27, 28] for real dH pencils; note that
some of the results also hold in the complex case.

THEOREM 2.1.
Let E,R ∈ Symn

≥0 and J ∈ Skewn.
Then, the following statements hold for the pencil L(λ) = λE − J +R.
(i) If λ0 ∈ C is an eigenvalue of L(λ) then Re(λ0) ≤ 0.

(ii) If ω ∈ R and λ0 = iω is an eigenvalue of L(λ), then λ0 is semisimple. Moreover,
if the columns of V ∈ Cm×k form a basis of a regular deflating subspace of L(λ)
associated with λ0, then RQV = 0.

(iii) The index of L(λ) is at most two.
(iv) All right and left minimal indices of L(λ) are zero (if there are any).
(v) The pencil L(λ) is singular if and only if ker J ∩ kerE ∩ kerR 6= ∅.
Based on Theorem 2.1 in [28], the following distance problems were introduced for dH

pencils.
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DEFINITION 2.2. Let L denote the class of square n × n real matrix pencils of the
form (1.3). Then

1. the structured distance to singularity is defined as

dLsing

(
L(λ)) := inf

{∥∥∆L(λ)
∥∥
F

∣∣ L(λ) + ∆L(λ) ∈ L and is singular
}

;

2. the structured distance to the nearest high-index problem is defined as

dLhi

(
L(λ)) := inf

{∥∥∆L(λ)
∥∥
F

∣∣ L(λ) + ∆L(λ) ∈ L and is of index ≥ 2
}

;

3. the structured distance to instability is defined as

dLinst

(
L(λ)

)
= 0 if L(λ) is unstable,

and otherwise by

dLinst

(
L(λ)

)
:= inf

{∥∥∆L(λ)
∥∥
F

∣∣ L(λ) + ∆L(λ) ∈ L has purely imaginary evs.
}
.

Here ∆L(λ) = λ∆E−∆J +∆R, with ∆J ∈ Skewn,n, E+∆E , R+∆R ∈ Symn
≥0,

and
∥∥[∆J ,∆R,∆E ]

∥∥
F

=
∥∥[∆L(λ)]

∥∥
F

.
It has been shown in [28] how these distances can be characterized in terms of the

following optimization problems:

dLsing
(
λE − J +R

)
= min

u∈Rn
‖u‖=1

√
2‖Ju‖2 + 2

∥∥(I − uu>)Eu∥∥2 + (u>Eu)2 + 2
∥∥(I − uu>)Ru∥∥2 + (u>Ru)2,

dLhi

(
λE − J +R

)
= dLinst

(
λE − J +R

)
= min

u∈Rn
‖u‖=1

√
2
∥∥(I − uu>)Eu

∥∥2
+ (u>Eu)2 + 2

∥∥(I − uu>)Ru
∥∥2

+ (u>Ru)2,

and the following very tight lower and upper bounds are available via the smallest eigenvalues
of −J2 +R2 + E2 and R2 + E2, respectively, i.e.,√

λmin(−J2 +R2 + E2) ≤ dLsing

(
λE − J +R

)
≤
√

2λmin(−J2 +R2 + E2),

√
λmin(E2 +R2) ≤ dLhi

(
λE − J +R

)
= dLinst

(
λE − J +R

)
≤
√

2λmin(E2 +R2).

Hence, these distances can be computed by global constrained optimization methods such
as [32].

Noting that dLsing can be computed by determining the closest structure-preserving triplet
to (E,R, J) with a common null vector and dLhi can be computed by determining the closest
symmetric pair to (E,R) with a common null vector, we proceed in a different way and
introduce gradient flow methods to compute the discussed structured distances. This is
motivated by our experience in computing the distance to instability and singularity for general
matrix pencils [13, 18], where it was shown that gradient flow methods were extremely
efficient. In the next section we introduce such gradient methods to compute the discussed
structured distances.
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3. ODE-based gradient flow approaches. We consider here the problem of comput-
ing the nearest common nullspace of a given triplet(E,R, J), that is, the computation of
dLsing

(
λE − J +R

)
.

In the previous section we have recalled the results of [28] that for dH pencils the structured
distance to singularity is characterized by the distance to the nearest common nullspace of
three structured matrices and the distance to high index and instability by the distance to the
nearest common nullspace of two symmetric positive definite matrices. This means that the
last two can be considered subcases of the problem we are addressing.

The perturbation matrices that give the structured distance to singularity can be alterna-
tively expressed by the following optimization problem:

(∆E∗,∆R∗,∆J∗) = arg min
∆E,∆R,∆J

‖(∆E,∆R,∆J)‖F

subj. to E + ∆E,R+ ∆R ∈ Symn
≥0,∆J ∈ Skewn,

and (E + ∆E)x = 0, (R+ ∆R)x = 0, (J + ∆J)x = 0

for some x ∈ Rn, x 6= 0.

(3.1)

Then dLsing

(
λE − J + R

)
= ‖(∆∗,Θ∗,Γ∗)‖, and our algorithmic approach is based on the

minimization of this functional.

3.1. A two-level minimization. To determine the minimum in (3.1) we use a two-level
minimization.

As an inner iteration, for a perturbation size ε, we write

(3.2) ∆E = ε∆, ∆R = εΘ, and ∆J = εΓ, with ‖(∆,Θ,Γ)‖F = 1,

where ∆,Θ ∈ Symn,Γ ∈ Skewn.
Let us denote
(i) by (λ, x) an eigenvalue/eigenvector pair of E + ε∆ associated with the smallest

eigenvalue and ‖x‖ = 1;
(ii) by (ν, u) an eigenvalue/eigenvector pair of R + εΘ associated with the smallest

eigenvalue and ‖u‖ = 1;
(iii-a) if n is even, by (iµ,w) an eigenvalue/eigenvector pair of J + εΓ, with µ > 0 such

that iµ is the eigenvalue with smallest positive imaginary part and ‖w‖ = 1,
(iii-b) if n is odd, by (0, w) an eigenvalue/eigenvector pair of J + εΓ (this exists for all Γ).

With this notation, a common kernel vector x of the three matrices E, J,R would have
λ = ν = µ = 0 and satisfies xTu = xTw = uTw = 1, and we use this to reformulate (3.1)
below.

In the inner iteration, for any fixed ε we compute a (local) minimizer of (3.1), which is,
however, different for even or odd n.

The case when n is odd. In this case the skew-symmetric matrix always has a zero eigen-
value (with an associated real eigenvector w) so that the only contribution to the optimization
is through the alignment of w with x and u.

Let

B1 = {(∆,Γ,Θ) : ‖ (∆,Γ,Θ) ‖F = 1}

denote the unit ball of the Frobenius norm in the (n× 3n)-dimensional space. Then, taking
into account (3.2), the solution of (3.1) can be expressed in the following equivalent form:

min{ε > 0 : f(ε) = 0}
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with

f(ε) = min
(∆,Θ,Γ)∈B1

F od
ε (∆,Θ,Γ)

F od
ε (∆,Θ,Γ) =

1

2

(
λ2 + ν2 + 1− (x>u)2 + 1− (x>w)2

)
.(3.3)

In F od
ε (∆,Θ,Γ), the terms λ2 and ν2 are the squares of the smallest eigenvalues of

E + ε∆ and R+ εΘ, which is our aim to annihilate. The other two square terms 1− (x>u)2

and 1 − (x>w)2 address the displacement from collinearity of the relevant eigenvectors of
E + ε∆, R+ εΘ, and J + εΓ that we aim also to anihilate in order to obtain a common null
vector of the perturbed triplet.

Clearly F od
ε (∆,Θ,Γ) is non-negative; moreover if (∆E,∆R,∆J) = ε (∆,Γ,Θ) is a

solution of (3.1), then the functional is annihilated. The goal thus is to find the minimal value
ε such that f(ε) = 0, which gives the solution of smallest norm and therefore provides the
searched distance.

It is possible to include a further term 1 − |u>w|2 in the functional, which does not
change the solution but may have an impact on the conditioning of the problem and hence the
numerical performance.

The case when n is even. In this case, when two eigenvalues ±iµ (µ > 0) coalesce at 0,
they form a semi-simple double eigenvalue, and the associated eigenvectors w = w1 + iw2

and w = w1 − iw2 form a two-dimensional subspace spanned by the two real vectors w1 and
w2. These can be assumed to be orthogonal to each other, i.e., w>1 w2 = 0, and have the same
norm 1/

√
2 so that still ‖w‖ = 1. Using w1, w2, we define the real orthogonal matrix

W =
√

2 [w1, w2] ,

and in order to satisfy the constraint in (3.1), we require that

Wz = x for some z ∈ R2.

This leads to the minimization of

‖Wz − x‖ for some z ∈ R2.

Since W is orthogonal, the solution is z = W>x, and the part of the functional associated
with this constraint takes the form

1− x>WW>x = 1− 2 (x>w1)2 − 2 (x>w2)2,

which is positive if x does not lie in the range of W and zero otherwise.
In summary, the functional in the even case is given by

(3.4) F ev
ε (∆,Θ,Γ) =

1

2

(
λ2 +ν2 +µ2 +1−(x>u)2 +1−2 (x>Re(w))2−2 (x>Im(w))2

)
with ‖ (∆,Γ,Θ) ‖F ≤ 1.

Using the functionals (3.3), respectively (3.4), in our approach the local minimizer of

min
(∆,Γ,Θ)∈B1

Fε(∆,Θ,Γ)

is determined as an equilibrium point of the associated gradient system. Note, however, that in
general this may not be a global minimizer.
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For the outer iteration we consider a continuous branch, as a function of ε, of the
minimizers (∆(ε),Γ(ε),Θ(ε)) and vary ε iteratively in order to find the smallest solution of
the scalar equations

f ev(ε) := F ev
ε ((∆(ε),Γ(ε),Θ(ε))) = 0

or, in the odd case,

fod(ε) := F od
ε ((∆(ε),Γ(ε),Θ(ε))) = 0,

respectively, with respect to ε.
REMARK 3.1. Note that the techniques for the distance to higher index or to a pencil with

eigenvalues on the imaginary axis follow directly by setting J = 0 and not perturbing it.

3.2. Derivatives of eigenvalues and eigenvectors. The considered minimization is an
eigenvalue optimization problem. We will solve this problem by integrating a differential
equation with trajectories that follow the gradient descent and satisfy further constraints. To
develop such a method, we first recall a classical result (see, e.g., [22]) for the derivative of a
simple eigenvalue and an associated eigenvector of a matrix C(t) with respect to variations
in a real parameter t of the entries. Here we use the notation Ċ(t) := d

dtC(t) to denote the
derivative with respect to t.

LEMMA 3.2 ([22, Section II.1.1]). Consider a continuously differentiable matrix-valued
function C(t) : R→ Rn×n, with C(t) normal (i.e., C(t)C(t)> = C(t)>C(t) for all t). Let
λ(t) be a simple eigenvalue of C(t) for all t, and let x(t) with ‖x(t)‖ = 1 be the associated
(right and left) eigenvector. Then λ(t) is differentiable with

λ̇(t) = x(t)HĊ(t)x(t) = 〈x(t)x(t)H , Ċ(t)〉,

where we recall that 〈·, ·〉 denotes the Frobenius inner product.
For A ∈ Symn consider a perturbation matrix ε∆(t) ∈ Symn that depends on a real

parameter t. By Lemma 3.2, for a simple eigenvalue λ(t) ∈ R of A+ ε∆(t) with associated
eigenvector x(t), ‖x(t)‖ = 1, we have (omitting the dependence on t)

1

2

d

dt
λ2 = ε λ x>∆̇x = ε λ 〈xx>, ∆̇〉.

Similarly, a result needed in the case when n is even, for all t, if iµ(t) ∈ iR (µ(t) ≥ 0)
is a simple eigenvalue of a matrix-valued function B + εΘ(t) ∈ Skewn,n with associated
eigenvector w(t), ‖w(t)‖ = 1, then we have

1

2

d

dt
|λ|2 =

1

2

d

dt
µ2 = Reλλ̇ = εRe

(
−iµ〈wwH , Θ̇〉

)
= εRe

(
−iµ

(
−i〈Im(wwH), Θ̇〉

))
= −ε µ 〈Im

(
wwH

)
, Θ̇〉.

To derive the gradient system associated with our optimization problem, we make use of the
following definition:

DEFINITION 3.3. Let M ∈ Cn×n be a singular matrix with a simple zero eigenvalue.
The group inverse (reduced resolvent) of M is the unique matrix G satisfying

MG = GM, GMG = G, and MGM = M.

It is well-known (see [31]) that for a singular and normal matrix M ∈ Cn×n with simple
eigenvalue zero, its group inverse G is equal to the Moore-Penrose pseudoinverse M+. We
have the following lemma:
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LEMMA 3.4. [31, Theorem 2] Consider a sufficiently often differentiable matrix function

C : R→ Cn×n.

Let λ(t) be a simple eigenvalue of C(t) for all t, and let x(t), with ‖x(t)‖ = 1, be the
associated right eigenvector function. Moreover, let M(t) = C(t)− λ(t)I , and let G(t) be
the group inverse of M(t). Then x(t) satisfies the system of differential equations

ẋ = xxHG(t)Ṁ(t)x−G(t)Ṁ(t)x.

Moreover, if C(t) is pointwise normal, then

ẋ(t) = −G(t)Ṁ(t)x(t).

After these preparations, in the following sections we determine the associated gradient
systems for the functionals (3.3), respectively (3.4).

4. Gradient flow, odd state dimension. In this section we consider the case when the
state dimension is odd, and we construct the gradient system optimization algorithm for the
functional (3.3).

4.1. Computation of the gradient. The functional F od
ε (∆,Θ,Γ) in (3.3) has several

parts. Applying Lemma 3.2 for the perturbations ε∆(t) of E and εΘ(t) of R, the computation
of the gradient of the term 1

2

(
λ2 + ν2

)
is obtained from the expressions

(4.1)
1

2

d

dt
λ2 = ε λ 〈xx>, ∆̇〉, 1

2

d

dt
ν2 = ε ν 〈uu>, Θ̇〉.

To determine the gradients of 1
2λ

2 with respect to ∆ and of 1
2ν

2 with respect to Θ (that
means, the steepest ascent directions ∆̇ and Θ̇ in (4.1)), which we denote as G1

∆ and G1
Θ,

respectively, we directly obtain (recall that ∆̇ and Θ̇ have to be symmetric)

G1
∆ ∝ λxx>, G1

Θ ∝ ν uu>,

were ∝ denotes real and positive proportionality (for uniqueness we can normalize them to
have unit norm). These represent the gradient terms.

This result is due to the fact that matrices can be considered as vectors with respect to the
Frobenius inner product, which is maximized when the two arguments are proportional (i.e.,
aligned). Note that since xx> and uu> belong to Symn, no orthogonal projection is needed
for obtaining ∆̇ and Θ̇.

With this argument in mind, in order to treat the other terms, we observe that

1

2

d

dt

(
(x>u)2

)
=

1

2

d

dt

(
x>uu>x

)
= x>uu>ẋ+ u>xx>u̇,

and thus, making use of Lemma 3.4 and recalling that x and u are real,

1

2

d

dt

(
1− (x>u)2

)
= ε

(
(x>u)u>L∆̇x+ (u>x)x>NΘ̇u

)
= εθ

(〈
L>ux>, ∆̇

〉
+
〈
N>xu>, Θ̇

〉)
,

where θ = x>u, L = (E + ε∆− λI)+, and N = (R+ εΘ− νI)+.
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Recalling that ∆̇ and Θ̇ have to be symmetric and noting that for A,B ∈ Rn,n and
A ∈ Symn, 〈A,B〉 = 〈A,Sym(B)〉, where Sym(A) denotes the symmetric part of A, the
gradients of 1

2
d
dt

(
1− (x>u)2

)
with respect to ∆, say G2

∆, and with respect to Θ, say G2
Θ, are

obtained by simply considering the symmetric part of the left terms in the scalar products:

G2
∆ ∝ θ Sym(L>ux>), G2

Θ ∝ θ Sym(N>xu>).

Finally, since n is odd, 0 is a (generically) simple eigenvalue of J + εΓ and the associated
eigenvector w can be chosen to be real. Thus, for the last term of (3.3) we have

1

2

d

dt

(
1− (x>w)2

)
= εη

(〈
L>wx>, ∆̇

〉
+
〈
P>xw>, Γ̇

〉)
,

where η = x>w and P = (J + εΓ)+.
Recalling that Γ̇ has to be skew-symmetric and noting that for A,B ∈ Rn,n and

A ∈ Skewn, 〈A,B〉 = 〈A,Skew(B)〉, where Skew(B) denotes the skew-symmetric part
of B, the gradients of 1

2
d
dt

(
1− (x>w)2

)
with respect to ∆ (denoted as G3

∆) and with respect
to Γ (denoted as G3

Γ) are given by

G3
∆ ∝ η Sym(L>wx>), G3

Γ ∝ η Skew(P>xw>).

4.2. The gradient system of ODEs for the flow in the odd case. In order to compute
the steepest descent direction, we minimize the gradient of Fε and collect the summands
involving ∆̇, Θ̇, and those involving Γ̇. Setting

p = θL>u + ηL>w,

q = θN>x,(4.2)
r = ηP>x,

and collecting the computed terms G1,2,3
∆ , G1,2

Θ , and G3
Γ, we get the so-called free gradient of

the functional,

(4.3) G =
[
Sym

(
(λx+ p) x>

)
,Sym

(
(νu+ q) u>

)
,Skew

(
r w>

)]
:= [GE ,GR,GJ ] ,

where “free” emphasizes the fact that we do not impose norm preservation of the perturbation
(∆,Θ,Γ).

However, since we want to impose a norm constraint on the perturbation (∆,Θ,Γ), we
need the following result.

LEMMA 4.1 (Direction of steepest admissible ascent). Let G = (GE ,GR,GJ) ∈ Rn,3n,
M = (∆,Θ,Γ) ∈ Rn,3n, Z ∈ Rn,3n. A solution of the optimization problem

Z? = arg min
‖Z‖F =1, 〈M,Z〉=0

〈G,Z〉

is given by

µZ? = −G + %M, % = 〈M,G〉 = (〈∆,GE〉+ 〈Θ,GR〉+ 〈Γ,GJ〉) ,(4.4)

where µ is the Frobenius norm of the matrix on the right-hand side. The solution is unique if
G is not a multiple of M.
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Proof. For real vectors m, g, z ∈ Rd, the problem

arg min
‖z‖=1, 〈m,z〉=0

〈g, z〉

is solved by choosing as z the orthogonal projection of g onto m.
The result thus follows on noting that the function to minimize is a real inner product on

Rn,3n and the real inner product with a given vector (which here is a matrix) is minimized
over a subspace by orthogonally projecting the vector onto that subspace. The expression
in (4.4) is the orthogonal projection of L to the tangent space at M of the manifold of matrices
of unit Frobenius norm.

Lemma 4.1 and formula (4.3) lead us to consider the system of differential equations for
the matrices ∆,Θ, and Γ:

∆̇ = −Sym
(
(λx+ p) x>

)
+ %∆,

Θ̇ = −Sym
(
(νu+ q) u>

)
+ %Θ,(4.5)

Γ̇ = −Skew
(
r w>

)
+ %Γ,

where, for X ∈ Rn,n, Sym(X) = X+X>

2 , Skew(X) = X−X>

2 , and

% =
(
〈∆,Sym

(
(λx+ p)x>

)
〉+ 〈Θ,Sym

(
(νu+ q)u>

)
〉+ 〈Γ,Skew

(
r w>

)
〉
)

is used to ensure the norm conservation, i.e., 〈(∆̇, Θ̇, Γ̇), (∆,Θ,Γ)〉 = 0.

REMARK 4.2. Neglecting the last differential equation in (4.5) and setting Γ ≡ 0 and
GJ = 0 allows us to treat the other distance problems mentioned in the introduction, which
involve the search of a common null space of two symmetric positive definite matrices.

The following result is a consequence of the gradient system property of the system of
ODEs (4.5).

THEOREM 4.3. Let (∆(t),Θ(t),Γ(t)) of unit Frobenius norm satisfy the differential
equation (4.5). If λ(t) is a simple eigenvalue of E + ε∆(t), then

d

dt
F od
ε (∆(t),Θ(t),Γ(t)) ≤ 0.(4.6)

Proof. The result follows directly by the fact that (4.5) is a constrained gradient system.

In this way we have preserved the symmetry of E,R and the skew-symmetry of J . It may
happen that along the solution trajectory of (4.5), due to the projection on the matrix manifolds,
the smallest eigenvalue ν of R + εΘ and/or the smallest eigenvalue λ of E + ε∆ become
negative. In this case the perturbed system is not a dissipative Hamiltonian system any longer.
This is in general not an issue for the optimization algorithm, since the dynamical gradient
system leads to eigenvalues ν, λ, with |ν| as small as possible, for a given ε, and thus drives
them to zero when ε = ε∗, so that in the limiting situation also the positive semidefiniteness
of E + ε∆ and R+ εΘ holds.

4.3. Stationary points of (4.5) and low-rank property. In this section we discuss the
existence of stationary points of the solution trajectory of (4.5).

LEMMA 4.4. Let ε be fixed, and let F od
ε (∆,Θ,Γ) > 0. Let λ be a simple eigenvalue of

E + ε∆ with associate normalized eigenvector x, let ν be a simple eigenvalue of R+ εΘ with
associate normalized eigenvector u, and let 0 be a simple eigenvalue of J + εΓ with associate
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normalized eigenvector w. Then, in the generic situation, i.e., if λ, ν 6= 0, θ = x>u 6= 0, and
η = x>w ∈ (0, 1), we have

λx+ p 6= 0, νu+ q 6= 0, and r 6= 0.

Proof. The proofs for the three cases are similar.
(i) Exploiting the property that Lx = 0 (see, e.g., [31][Section 2]), we obtain that

x>p = 0. If we had x> (λx+ p) = 0, then this would imply λx>x = 0, and thus,
since λ 6= 0, we get a contradiction since ‖x‖ = 1.

(ii) Exploiting the property Nu = 0, we obtain that u>q = 0. If we had u> (νu+ q) =
0, then we would get νu>u = 0, and again we have a contradiction.

(iii) Having assumed η = x>w 6= 1, we have that x and w are not aligned. As a
consequence ηP>x 6= 0.

Using Lemma 4.4, we have the following characterization of stationary points.
THEOREM 4.5. Let (∆(t),Θ(t),Γ(t)) of unit Frobenius norm satisfy the differential

equation (4.5). Moreover, suppose that for all t

F od
ε (∆(t),Θ(t),Γ(t)) > 0

and that 0 6= λ(t) ∈ R is a simple eigenvalue of E + ε∆(t) with normalized eigenvector x(t),
that 0 6= ν(t) ∈ R is a simple eigenvalue of R+ εΘ(t) with associated eigenvector u(t), and
that J + εΓ(t) has a null vector w(t).

Then the following are equivalent (here we omit the argument t):

(1)
d

dt
F od
ε (∆,Θ,Γ) = 0;

(2) ∆̇ = 0, Θ̇ = 0, Γ̇ = 0;

(3) ∆ is a multiple of the rank-two matrix Sym
(
(λx+ p) x>

)
; Θ is a multiple of

the rank-two matrix Sym
(
(νu+ q) u>

)
; Γ is a multiple of the rank-two matrix

Skew
(
r w>

)
with p, q, r given by (4.2).

Proof. The proof follows directly by equating to zero the right-hand side of (4.5) and by
Lemma 4.4, which prevents the matrices to be zero.

We have also the following extremality property:
THEOREM 4.6. Consider the functional (3.3), and suppose that F od

ε (∆,Θ,Γ) > 0. Let
∆∗ ∈ Symn,Θ∗ ∈ Symn, and Γ∗ ∈ Skewn, with ‖ (∆∗,Θ∗,Γ∗) ‖F = 1. Let 0 6= λ∗ ∈ R
be a simple eigenvalue of E + ε∆∗ with associated eigenvector x, let 0 6= ν∗ ∈ R be a simple
eigenvalue of R+ εΘ∗ with associated eigenvector u, and let J + εΓ∗ have a null vector w.
Then the following are equivalent:

(i) Every differentiable path (∆(t),Θ(t),Γ(t)) (for small t ≥ 0) with the properties
that ‖(∆(t),Θ(t),Γ(t))‖F ≤ 1, that both λ(t) and ν(t) are simple eigenvalues of
E + ε∆(t) and R+ εΘ(t) with associated eigenvectors x(t) and u(t), respectively,
and for which w(t) is the null vector of J + εΓ(t), so that ∆(0) = ∆∗, Θ(0) = Θ∗,
Γ(0) = Γ∗, satisfies

d

dt
F od
ε (∆(t),Θ(t),Γ(t)) ≥ 0.

(ii) The matrix ∆∗ is a multiple of the rank-two matrix Sym
(
(λx+ p) x>

)
, Θ∗ is a

multiple of the rank-two matrix Sym
(
(νu+ q) u>

)
, and Γ∗ is a multiple of the

rank-two matrix Skew
(
r w>

)
with p, q, r given by (4.2).
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Proof. Lemma 4.4 ensures that λx+ p 6= 0. Assume that (i) does not hold. Then there
exists a path (∆(t),Θ(t),Γ(t)) through (∆∗,Θ∗,Γ∗) with d

dtF
od
ε (∆(t),Θ(t),Γ(t))

∣∣
t=0

< 0.
The steepest descent gradient property shows that also the solution path of (4.5) passing
through (∆∗,Θ∗,Γ∗) is such a path. Hence (∆∗,Θ∗,Γ∗) is not a stationary point of (4.5),
and Theorem 4.5 then yields that (ii) does not hold.

Conversely, if

(∆∗,Θ∗,Γ∗) 6∝
(
Sym

(
(λx+ p) x>

)
,Sym

(
(νu+ q) u>

)
,Skew

(
r w>

))
,

then (∆∗,Θ∗,Γ∗) is not a stationary point of (4.5), and Theorems 4.5 and 4.3 yield that
d
dtF

od
ε (∆(t),Θ(t),Γ(t))

∣∣
t=0

< 0 along the solution path of (4.5).
In the next section we illustrate the properties of the optimization procedure with a

numerical example.

4.4. A numerical example. Let n = 5 and consider the randomly generated matrices

E =


0.15 0.02 −0.04 0.02 −0.04
0.02 0.22 0 −0.01 −0.03
−0.04 0 0.11 −0.07 −0.04

0.02 −0.01 −0.07 0.01 0.10
−0.04 −0.03 −0.04 0.10 0.39

 ,

R =


0.49 −0.13 0.05 −0.15 0.11
−0.13 0.23 −0.05 −0.10 −0.19

0.05 −0.05 0.48 −0.06 0.02
−0.15 −0.10 −0.06 0.55 0.16

0.11 −0.19 0.02 0.16 0.48

 ,

J =


0 −0.27 −0.03 −0.01 0.21

0.27 0 −0.15 0.03 0.11
0.03 0.15 0 0.07 −0.07
0.01 −0.03 −0.07 0 0.05
−0.21 −0.11 0.07 −0.05 0

 .

Running the two level iteration with an initial value of the functional F od
0 (·, ·, ·) = 0.9181,

we find a perturbation at a distance (rounded to four digits) ε∗ = 0.3568 with a common null
space given by the vector

c =


0.2195
−0.6664
−0.0639

0.3187
−0.6341


and the computed perturbations are given by

∆E = ε∗∆ =


−0.0385 0.0912 0.0089 0.0251 0.1408

0.0912 −0.2114 −0.0218 −0.0903 −0.3482
0.0089 −0.0218 −0.0009 0.0019 −0.0293
0.0251 −0.0903 0.0019 0.1628 −0.0123
0.1408 −0.3482 −0.0293 −0.0123 −0.4801

 ,
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∆R = ε∗Θ =


−0.0689 0.1166 0.0148 −0.1044 0.1242

0.1166 −0.1164 −0.0307 0.1766 −0.1433
0.0148 −0.0307 −0.0049 0.0208 −0.0319
−0.1044 0.1766 0.0208 −0.1592 0.1884

0.1242 −0.1433 −0.0319 0.1884 −0.1679

 ,

∆J = ε∗Γ =


0 0.0887 −0.0118 −0.0474 0.0852

−0.0887 0 0.0496 0.0003 0.0027
0.0118 −0.0496 0 0.0257 −0.0488
0.0474 −0.0003 −0.0257 0 −0.0030
−0.0852 −0.0027 0.0488 0.0030 0

 .
Considering the same problem—but with the aim of studying its distance from a highest

index problem—we set ∆J ≡ 0 and optimize with respect to ∆E and ∆R. In this way we
find ε∗ = 0.2854 with

∆E =


−0.0392 −0.0779 0.0020 −0.0156 0.0080
−0.0779 −0.1449 −0.0091 −0.0440 0.0125

0.0020 −0.0091 0.0306 0.0478 −0.0010
−0.0156 −0.0440 0.0478 0.0824 −0.0046

0.0080 0.0125 −0.0010 −0.0046 0.0015

 ,

∆R =


−0.0208 −0.0214 −0.0282 −0.0456 0.0059
−0.0214 −0.0048 −0.0389 −0.0624 0.0167
−0.0282 −0.0389 −0.0249 −0.0448 0.0051
−0.0456 −0.0624 −0.0448 −0.0777 0.0072

0.0059 0.0167 0.0051 0.0072 0.0062

 .
4.5. Sparsity preservation. If the matrices E,R, and J have a given sparsity pattern,

then we may include as a constraint that the perturbations do not alter the sparsity structure.
In terms of the Frobenius norm it is immediate to obtain the constrained gradient system.
Denoting by ΠE , ΠR, and ΠJ , respectively, projections onto the manifold of sparse matrices
with the given sparsity pattern (and symmetric/skew-symmetric structure) of E, R, and J ,
then we get

∆̇ = −ΠESym
(
(λx+ p) x>

)
+ %∆,

Θ̇ = −ΠRSym
(
(νu+ q) u>

)
+ %Θ,

Γ̇ = −ΠJSkew
(
r w>

)
+ %Γ,

where

% =
(
〈∆,ΠESym

(
(λx+ p)x>

)
〉+ 〈Θ,ΠRSym

(
(νu+ q)u>

)
〉+ 〈Γ,ΠJSkew

(
r w>

)
〉
)
.

Note that the orthogonal projections ΠE and ΠR commute with Sym, and similarly ΠJ

commutes with Skew.

5. Rank-two optimization. Theorem 4.5 motivates to search for a differential equation
on the manifold of rank-two symmetric/skew-symmetric matrices which still leads to a gradient
system for F od

ε , but in addition requires the derivatives of the matrices ∆,Θ,Γ lying in the
respective tangent spaces.

LetMn,n
2 := {X ∈ Rn×n : rank(X) = 2}. Then we restrict the perturbations to the

matrix manifolds

∆,Θ ∈MSymn

2 , Γ ∈MSkewn

2 ,
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whereMSymn

2 =Mn,n
2 ∩ Symn andMSkewn

2 =Mn,n
2 ∩ Skewn.

Following [23], every real symmetric rank-two matrix X of dimension n × n can be
written in the form

(5.1) X = USUT,

where U ∈ Rn×2 has orthonormal columns, i.e., UTU = I2 and S ∈ Sym2. Here we will not
assume that S is diagonal. Note that the representation (5.1) is not unique; indeed replacing U
by Ũ = UU1 with orthogonal U1 ∈ R2×2 and correspondingly S by S̃ = UT

1 SU1, yields the
same matrix X = USUT = Ũ S̃ŨT.

As a compensation for the non-uniqueness in the decomposition (5.1), we will use a
unique decomposition in the tangent space. Let Vn,2 denote the Stiefel manifold of real n× 2
matrices with orthonormal columns. The tangent space at U ∈ Vn,2 is given by

TUVn,2 = {U̇ ∈ Rn×2 : U̇TU + UTU̇ = 0} = {U̇ ∈ Rn×2 : UTU̇ is skew-symmetric}.

Following [23], every tangent matrix Ẋ ∈ TXMSymn

2 is of the form

(5.2) Ẋ = U̇SUT + UṠUT + USU̇T,

where Ṡ ∈ Sym2, U̇ ∈ TUVn,2, and Ṡ, U̇ are uniquely determined by Ẋ and U, S, if we
impose the orthogonality condition

(5.3) UTU̇ = 0.

We note the following lemma adapted from [23].
LEMMA 5.1. The orthogonal projection onto the tangent space TXMSymn

2 at X =

USUT ∈MSymn

2 is given by

P Sym
X (Z) = Z − (I − UUT)Z(I − UUT)

for Z ∈ Symn. Analogous results hold for Y ∈ Skewn, this time with S ∈ Skew2.

5.1. A differential equation for rank-two matrices. To derive the differential equation
in the rank-two case, we replace in (4.5) the right-hand sides by the orthogonal projections to
T∆MSymn

2 , TΘMSymn

2 , and TΓMSkewn

2 , respectively, so that solutions starting with rank-two
initial values will retain rank-two for all t. This gives the differential equations

∆̇ = −P Sym
∆

(
Sym

(
(λx+ p) x>

)
+ %∆

)
,

Θ̇ = −P Sym
Θ

(
Sym

(
(νu+ q) u>

)
+ %Θ

)
,

Γ̇ = −P Skew
Γ

(
Skew

(
r w>

)
+ %Γ

)
,

where again p, q, and r are defined by (4.2) and

% =
〈

∆, P Sym
∆

(
Sym

(
(λx+ p) x>

))〉
+

+
〈

Θ, P Sym
Θ

(
Sym

(
(νu+ q) u>

))〉
+
〈

Γ, P Skew
Γ

(
Skew

(
r w>

))〉
.

Since forX ∈MSymn

2 andZ ∈ Symn, we haveP Sym
X (X) = X and 〈X,Z〉 = 〈X,P Sym

X (Z)〉,
(and analogous properties hold forX ∈MSkewn

2 and Y ∈MSkewn

2 ), the system of differential
equations can be rewritten as

∆̇ = −P Sym
∆

(
Sym

(
(λx+ p) x>

))
+ %∆,
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Θ̇ = −P Sym
Θ

(
Sym

(
(νu+ q) u>

))
+ %Θ,(5.4)

Γ̇ = −P Skew
Γ

(
Skew

(
r w>

))
+ %Γ,

with

% =
(〈

∆, P Sym
∆

(
Sym

(
(λx+ p)x>

))〉
+
〈

Θ, P Sym
Θ

(
Sym

(
(νu+ q)u>

))〉
+
〈
Γ, P Skew

Γ

(
Skew

(
r w>

))〉)
.

This system differs from (4.5) in that the free gradient terms are replaced by their orthogonal
projections on the rank-two manifold of the corresponding structure.

To obtain the differential equation in a form that uses the factors in X = USUT rather
than the full n× n matrix X , we use the following result, whose proof is similar to that given
in [23, Prop. 2.1].

LEMMA 5.2. For X = USUT ∈ MSymn

2 with nonsingular S ∈ Sym2 and with
U ∈ Rn×2 having orthonormal columns, the equation Ẋ = P Sym

X (Z) with Z symmetric is
equivalent to Ẋ = U̇SUT + UṠUT + USU̇T, where

Ṡ = UTZU, U̇ = (I − UUT)ZUS−1.

An analogous statement holds for Y ∈MSkewn

2 and Z skew-symmetric.

With the ansatz Z = − λxx> − 1
2px
> + 1

2xp
> and introducing for S1, U1 the quantities

g1 = U>1 x ∈ R2 and h1 = U>1 p ∈ R2, this yields that the differential equation (5.4)
for ∆ = U1S1U

T
1 is equivalent to the following system (5.5) of differential equations.

From (5.2) and (5.3), premultiplying by U> and post-multiplying by U1 we obtain Ṡ1; then
post-multiplying by U1 we obtain U̇1.

Ṡ1 = − λg1g
>
1 −

1

2

(
g1h
>
1 + h1g

>
1

)
+ %S1,

U̇1 =

(
− λxg>1 −

1

2

(
xh>1 + pg>1

)
+ U1

(
λg1g

>
1 +

1

2

(
g1h
>
1 + h1g

>
1

)))
S−1

1 .
(5.5)

Similarly, for Θ = U2S2U
T
2 , setting g2 = U>2 u ∈ R2, h2 = U>2 q ∈ R2, we obtain the system

of differential equations

Ṡ2 = − νg2g
>
2 −

1

2

(
g2h
>
2 + h2g

>
2

)
+ %S2,

U̇2 =

(
− νug>2 −

1

2

(
uh>2 + qg>2

)
+ U2

(
λg2g

>
2 +

1

2

(
g2h
>
2 + h2g

>
2

)))
S−1

2 .
(5.6)

Finally, for Γ = U3S3U
T
3 (with S3 ∈ Skew2), setting g3 = U>3 w ∈ R2, h3 = U>3 r ∈ R2, we

obtain the system of differential equations

Ṡ3 =
1

2

(
− g3h

>
3 + h3g

>
3

)
+ %S3,

U̇3 =

(
1

2

(
− wh>3 + rg>3

)
+ U3

(
1

2

(
g3h
>
3 − h3g

>
3

)))
S−1

3 .
(5.7)

Having established differential equations for rank-two factors, in the next section we discuss
the monotonicity of the functional.
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5.2. Monotonicity of the functional. We have the following monotonicity result, which
establishes that (5.4) is a gradient system for F od

ε (∆(t),Θ(t),Γ(t)).
THEOREM 5.3. Let ∆(t),Θ(t) ∈ MSymn

2 ,Γ(t) ∈ MSkewn

2 satisfy the differential
equation (5.4), and suppose that

F od
ε (∆(t),Θ(t),Γ(t)) > 0.

If λ(t) is a simple eigenvalue of E + ε∆(t), µ(t) is a simple eigenvalue of R+ εΘ(t), and 0
a simple eigenvalue of J + εΓ, then

d

dt
F od
ε (∆(t),Θ(t),Γ(t)) < 0.

Proof. We note that

1

2ε

d

dt
F od
ε (∆,Θ,Γ)

= λ 〈xx>, ∆̇〉+ ν 〈uu>, Θ̇〉+
(〈
px>, ∆̇

〉
+
〈
qu>, Θ̇

〉
+
〈
rw>, Γ̇

〉)
= −

〈
(λx+ p) x>,−P Sym

∆

(
Sym

(
(λx+ p) x>

))〉
+ %〈(λx+ p) x>,∆〉

−
〈

(νu+ q) u>,−P Sym
Θ

(
Sym

(
(νu+ q) u>

))〉
+ %〈(νu+ q) u>,Θ〉

−
〈
r w>,−P Skew

Γ

(
Skew

(
r w>

))〉
+ %〈r w>,Θ〉

= %2 −
∥∥∥P Sym

∆

(
Sym

(
(λx+ p) x>

))∥∥∥2

−
∥∥∥P Sym

Θ

(
Sym

(
(νu+ q) u>

))∥∥∥2

−
∥∥∥P Skew

Γ

(
Skew

(
r w>

))∥∥∥2

,

with

% =
〈

∆, P Sym
∆

(
Sym

(
(λx+ p) x>

))〉
+
〈

Θ, P Sym
Θ

(
Sym

(
(νu+ q) u>

))〉
+
〈

Γ, P Skew
Γ

(
Skew

(
r w>

))〉
.

Applying the Cauchy-Schwarz inequality proves the assertion.

5.3. Computational approach. For the numerical approximation of the rank-two ODEs,
we use Algorithm 1, an adaptation of the method proposed in [10].

Here we solve the system

K̇(t) = F
(
t,K(t)U>0

)
U0

on the interval [t0, t1] by one step of the explicit Euler method.
Similarly, we make use of one Euler step to approximate the solution at time t1 of the

ODE system

Ṡ(t) = U>1 F
(
t, U1S(t)U>1

)
.

If n is large, then the memory requirement and the computing time are significantly reduced
with respect to the integration of the full-rank ODEs.
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Algorithm 1: Low-rank symmetry/skew-symmetry preserving integrator.

Data: Matrix X0 = U0S0U
>
0 , F (t,X), t0, t1, h

Result: Matrix X1 = U1S1U
>
1

begin
1 Solve the n× 2 ODE K̇(t) = F

(
t,K(t)U>0

)
U0, K(t0) = U0S0.

2 Compute a QR-decomposition K(t1) = U1R.

3 Integrate the 2× 2 ODE Ṡ(t) = U>1 F
(
t, U1S(t)U>1

)
with initial value S(t0) = U>1 X0U1 =

(
U>1 U0

)
X0

(
U>1 U0

)>
.

4 Set S1 = S(t1)/‖S(t1)‖,(normalization).

5 Return S1, U1

5.4. An illustrative example. Using the example of Section 4.4, integrating equa-
tions (5.5), (5.6), and (5.7), we obtain the same distance ε∗ and a common null vector c
of the same accuracy as when integrating (4.5), i.e.,

ε∗S1 =

[
−0.2722 0

0 0.0719

]
, ε∗S2 =

[
−0.2053 0

0 0.0205

]
, ε∗S3 =

[
0 0.0529

−0.0529 0

]
,

and

U1 =


−0.2291 0.0737
0.5521 −0.3270
0.0449 0.0453
0.0682 0.9264
0.7975 0.1658

 , U2 =


−0.3685 −0.3829
0.4904 −0.5782
0.0689 0.1841
−0.5685 −0.5870
0.5439 −0.3750

 , U3 =


−0.8360 0.2633
−0.1780 −0.6387
0.4867 −0.0431
0.1176 0.3495
−0.1367 −0.6315

 .

6. Gradient flow for even state dimension. The derivation of the gradients in the case
when the space dimension is even is slightly more complicated since in this case the skew-
symmetric matrix J is not guaranteed to have a zero eigenvalue.

6.1. Computation of the gradient of the functional (3.4). Similarly to the odd case
we have

1

2

d

dt
µ2 = − ε µ

〈
Im
(
wwH

)
, Γ̇〉 = ε µ 〈

(
Re(w) Im(w)> − Im(w) Re(w)>

)
, Γ̇
〉
.

Considering orthogonal projections with respect to the Frobenius inner product onto the
respective matrix manifolds Symn, Skewn, we identify the constrained gradient directions of
the terms associated to eigenvalues as

∆̇ ∝ λxx>, Θ̇ ∝ ν uu>, Γ̇ ∝ µ
(
Re(w) Im(w)> − Im(w) Re(w)>

)
.

Different to the odd case we have to consider

1

2

d

dt

(
(x>Re(w))2

)
=

1

2

d

dt

(
x>Re(w)Re(w)>x

)
= x>Re(w)Re(w)>ẋ+ Re(w)>xx>Re(ẇ),
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and thus

1

2

d

dt

(
− (x>Re(w))2

)
= ε

(
(x>Re(w))Re(w)>L∆̇x+ (Re(w)>x)x>

(
P Γ̇w + P Γ̇w

2

))
= ε

(〈
η L>Re(w)x>, ∆̇

〉
+
〈
η Re(PHxwH), Γ̇

〉)
,

where η = x>Re(w) and P is the pseudoinverse of J + εΓ− iµI . Analogously,

1

2

d

dt

(
− (x>Im(w))2

)
= ε

(〈
ζ L>Im(w)x>, ∆̇

〉
+
〈
ζ Im(PHxwH), Γ̇

〉)
,

where ζ = x>Im(w). Introduce wr := Re(w) and wi := Im(w). In order to compute
the steepest descent direction, we minimize the gradient of F ev

ε and collect the summands
involving ∆̇, Θ̇ and those involving Γ̇. This yields

d

dt
F ev
ε (∆,Θ) = ε 〈(λx+ p) x>, ∆̇〉+ε 〈(νu+ q) u>, Θ̇〉+ε 〈W+η Re(H)+ζ Im(H), Γ̇〉,

with

p = θL>u + L> (ηwr + ζwi) , W = wrw
>
i − wiw

>
r ,

q = θN>x, H = PHxwH .

Taking into consideration projection with respect to the Frobenius inner product of the vector
field onto the manifolds of symmetric and skew-symmetric matrices, this leads to the system
of differential equations,

∆̇ = −Sym
(
(λx+ p) x>

)
+ %∆,

Θ̇ = −Sym
(
(νu+ q) u>

)
+ %Θ,

Γ̇ = −Skew (W + η Re(H) + ζ Im(H)) + %Γ,

where

% =
(
〈∆,Sym

(
(λx+ p)x>

)
〉+ 〈Θ,Sym

(
(νu+ q)u>

)
〉

+ 〈Γ,Skew (W + η Re(H) + ζ Im(H))〉)

is again used to ensure the norm conservation. In this way we have again obtained a structured
flow with matrices in Symn and Skewn, respectively.

REMARK 6.1. Similarly to the odd case it is possible to derive a rank-two gradient system
and obtain a more effective numerical integration.

6.2. A unifying functional. One may also try to construct a unifying function that treats
the odd and even dimension cases together. For this we denote by x the eigenvector associated
with λ, the smallest eigenvalue of E + ε∆, with the goal to make this the common null vector
in the end. Introduce the alternative functional

F̃ε(∆,Θ,Γ) =
1

2

(
λ2 + ν2 + ‖ (R+ εΘ)x‖22 + ‖ (J + εΓ)x‖22

)
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=
1

2

(
λ2 + ν2 + x> (R+ εΘ)

2
x− x> (J + εΓ)

2
x
)
,

with ‖ (∆,Γ,Θ) ‖F = 1.
We observe that

1

2ε

d

dt

(
x> (R+ εΘ)

2
x
)

= −x> (R+ εΘ)
2
L∆̇x+ x> (R+ εΘ) Θ̇x

= − 〈L (R+ εΘ)
2
xx>, ∆̇〉+ 〈(R+ εΘ)xx>, Θ̇〉,

and similarly,

1

2ε

d

dt

(
x> (J + εΓ)

2
x
)

= − x> (J + εΓ)
2
L∆̇x+ x> (J + εΓ) Γ̇x

= − 〈L (J + εΓ)
2
xx>, ∆̇〉+ 〈(J + εΓ)xx>, Γ̇〉.

This leads to the system of ODEs

∆̇ = −Sym
(
(λx+ s) x>

)
+ %∆,

Θ̇ = −Sym
(
νu u> + r x>

)
+ %Θ,

Γ̇ = Skew
(
z x>

)
+ %Γ,

where

% =
(
〈∆,Sym

(
(λx+ s) x>

)
〉+ 〈Θ,

(
νu u> + Sym

(
t x>

))
〉 − 〈Γ,Skew

(
z x>

)
〉
)

and

s = L
(

(J + εΓ)
2 − (R+ εΘ)

2
)
x,

r = (R+ εΘ)x,

z = (J + εΓ)x.

Although this functional appears simpler to manage and does not require the computation
of two pseudoinverses, our experiments seem to indicate that with the previously considered
functionals a higher accuracy can be reached.

7. The outer iteration for ε. In this section we present the outer iteration which is
aimed to compute the optimal value ε, that is, the norm of the smallest perturbation which
determines a common null vector of the considered triplet. An illustrative picture is given
in Figure 7.1, which has been computed for the function f ev(ε) of the first test example of
Section 7.1.

The simplest way to do this is by means of a bisection technique as in Algorithm 2.

7.1. Illustrative examples. To illustrate the performance of the described algorithm, we
consider first a scalable linear mass-spring-damper system that has been used as a model
reduction test case in [20]. This test case generates matrices M = MT ≥ 0, G = −GT ,
D = DT ≥ 0, K = KT > 0 and, in a first-order formulation, leads to a dH pencil

λ

K 0 0
0 M 0
0 0 0


︸ ︷︷ ︸

E

−


 0 K 0
−K 0 −GT

0 G 0


︸ ︷︷ ︸

J

−

0 0 0
0 D 0
0 0 0


︸ ︷︷ ︸

R

 .
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FIG. 7.1. The function fev(ε) for the mass-spring-damper example.

Algorithm 2: Bisection method for distance approximation.

Data: Matrices E,R, J , kmax (max number of iterations), δ, and tolerance tol
ε0, εlb, and εub (starting values for the lower and upper bounds for ε∗)
Result: εδ (upper bound for the distance), ∆(ε∗),Θ(ε∗),Γ(ε∗)
begin

1 Compute ∆(ε0),Θ(ε0),Γ(ε0).
2 Compute f(ε0).
3 Set k = 0.

while k ≤ 1 or |εub − εlb| > tol do
4 if f(εk) < tol then

Set εub = min(εub, εk).
else

Set εlb = max(εlb, εk).

5 Compute εk+1 = (εlb + εub)/2 (bisection step).
if k = kmax then

Return interval [εlb, εub].
Halt.

else
Set k = k + 1.

6 Compute ∆(εk),Θ(εk),Γ(εk).
7 Compute f(εk).

8 Return ε∗ = εk.

This pencil is regular and of index two. If one puts γI in the (3, 3)-block of the matrix R,
then the distance to index 2 and instability is γ. Choosing the dimension N = 100 we obtain
matrices E,R, J ∈ R3N+1.

We fix γ = 10−1. The plot of the function f(ε) obtained by integrating (5.4) for increasing
ε is given in Figure 7.1. As a second example we consider the linear electrical circuit (1.2)
from [29] (see Figure 7.2). We choose the values L = 2, C1 = 0.01, C2 = 0.02, RL = 0.1,
RG = 6, RR = 3, and EG = 1. If we let J unchanged, then we find—as expected—∆E ≈ 0
and

∆R = diag(0,−C1, 0, 0, 0) = diag(0,−0.01, 0, 0, 0).
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FIG. 7.2. Simple DC power network example from [29].

If we vary also J , then we find ε∗ = 1.46 . . . and

∆E =


−0.0227 −0.0696 −0.0715 −0.0302 0.0072
−0.0696 0.0019 −0.0067 0.0013 −0.0004
−0.0715 −0.0067 −0.0084 0.0007 0.0001
−0.0302 0.0013 0.0007 0.0085 −0.0002

0.0072 −0.0004 0.0001 −0.0002 0.0059

 ,

∆R =


−0.0011 −0.0034 −0.0033 −0.0088 0.0068
−0.0034 0.0036 −0.0005 −0.0449 0.0551
−0.0033 −0.0005 0.0036 −0.0438 0.0581
−0.0088 −0.0449 −0.0438 −0.0035 0.0026

0.0068 0.0551 0.0581 0.0026 −0.0042

 ,

∆J =


0 −0.0142 −0.0090 0.1104 0.1130

0.0142 0 −0.0460 0.4787 0.4866
0.0090 0.0460 0 0.4925 0.5148
−0.1104 −0.4787 −0.4925 0 0.2078
−0.1130 −0.4866 −0.5148 −0.2078 0

 .
Conclusions and further work. We have investigated a structured distance problem

related to the study of dissipative Hamiltonian systems that is determining the closest triplet
of matrices to a given one, sharing a common null-space. The approach is based on the
numerical integration of suitable gradient systems derived for an associated functional. A
remarkable low-rank property of extremizers leads to low-rank ODEs which are appealing
from a computational and storage point of view. Extensions to related problems can be derived
with a similar approach. A Matlab package with the algorithms to estimate the distance to
singularity based on the procedures presented in this paper is available at the webpage of the
authors.
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