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WHEN DOES THE LANCZOS ALGORITHM COMPUTE EXACTLY?∗

DOROTA ŠIMONOVÁ† AND PETR TICHÝ†

Abstract. In theory, the Lanczos algorithm generates an orthogonal basis of the corresponding Krylov subspace.
However, in finite precision arithmetic the orthogonality and linear independence of the computed Lanczos vectors is
usually lost quickly. In this paper we study a class of matrices and starting vectors having a special nonzero structure
that guarantees exact computations of the Lanczos algorithm whenever floating point arithmetic satisfying the IEEE
754 standard is used. Analogous results are formulated also for an implementation of the conjugate gradient method
called cgLanczos. This implementation then computes approximations that agree with their exact counterparts to
a relative accuracy given by the machine precision and the condition number of the system matrix. The results are
extended to the Arnoldi algorithm, the nonsymmetric Lanczos algorithm, the Golub-Kahan bidiagonalization, the
block-Lanczos algorithm, and their counterparts for solving linear systems.
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1. Introduction. Given a starting vector v ∈ Rn and a symmetric matrix A ∈ Rn×n,
one can consider a sequence of nested subspaces

Kk(A, v) = span{v,Av, . . . , Ak−1v}

called Krylov subspaces. The Lanczos algorithm is a frequently-used algorithm for computing
an orthogonal basis of the corresponding Krylov subspace. At the same time, it can be seen as
a method for approximating a few eigenvalues (and eventually eigenvectors) of A using the
underlying Rayleigh-Ritz procedure; see, e.g., [28].

Since the introduction of the algorithm in 1950 by Lanczos [18] it has been known that
the orthogonality of the computed basis vectors need not be preserved due to rounding errors.
As a consequence, an eigenvalue of A can be approximated by several eigenvalues of the
Jacobi matrix produced by the Lanczos algorithm in finite precision arithmetic.

The numerical behavior of the Lanczos algorithm was analyzed by Paige [23, 24]. Paige
showed that the effects of rounding errors on the Lanczos algorithm can be described mathe-
matically. Based on these results, Greenbaum [11] proved that the results of finite precision
computations can be interpreted as the results of the exact Lanczos algorithm applied to a
larger (augmented) problem with a matrix having many eigenvalues distributed throughout tiny
intervals around the eigenvalues of A. In other words, Greenbaum found and constructed a
mathematical model of the finite precision Lanczos computations. In particular, Greenbaum’s
model matrix is a Jacobi matrix, and the starting vector is a multiple of the first column e1 of
the identity matrix. Another model used for showing some stability results was introduced by
Paige [25, 26]. However, here the constructed augmented matrix is no more tridiagonal. The
results of Paige and Greenbaum stimulated further development in the analysis of the numerical
behavior of the Lanczos and the conjugate gradient (CG) algorithms; see, e.g., [13, 31, 32, 33].
For a comprehensive summary and a detailed explanation, see [21].

In this paper we prove and extend an interesting observation made by Marie Kubínová in
her PhD. thesis [17, p. 77]: if the Lanczos algorithm is applied to a Jacobi matrix and a multiple
of e1, then no rounding errors appear. In other words, the finite precision Lanczos algorithm
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computes exactly. Note that by a Jacobi matrix it is meant a real symmetric tridiagonal matrix
with positive off-diagonal elements. In this paper we also formulate an analogous statement
for a variant of the CG algorithm called cgLanczos. For the above mentioned input data,
cgLanczos computes approximations that agree with their exact counterparts to a relative
accuracy given by the machine precision and the condition number of A. The obtained results
have several consequences discussed in detail in Section 7. We hope that these results could
be useful in the further analysis of the behavior of the Lanczos and CG algorithms.

The paper is organized as follows. In Sections 2 and 3 we recall the standard version
of the Lanczos algorithm and summarize operations and transformations that are performed
exactly in floating point arithmetic. Section 4 investigates a nonzero structure of the input data
that ensures exact computation of the Lanczos algorithm in floating point arithmetic satisfying
the IEEE 754 standard. In Section 5 we formulate analogous results for a variant of the CG
method. Section 6 shows that the results of Sections 4 and 5 can be generalized to other
algorithms like the Arnoldi algorithm, the nonsymmetric Lanczos algorithm, the Golub-Kahan
bidiagonalization, the block-Lanczos algorithm, and their counterparts for solving linear
systems. Finally, in Section 7 we discuss consequences and a possible use of the obtained
results.

2. Lanczos algorithm. The dimension of the Krylov subspaces is increasing up to an
index d = d(A, v), called the degree of v with respect to A, for which the maximal dimension
is attained, and Kd(A, v) is invariant under multiplication with A. Having an index k < d, the
Lanczos algorithm (Algorithm 1) constructs an orthonormal basis v1, . . . , vk+1 of the Krylov

Algorithm 1 Lanczos algorithm.
1: input A, v
2: β1 = ‖v‖, v0 = 0
3: v1 = v/β1
4: for i = 1, . . . , k do
5: w = Avi − βivi−1

6: αi = wT vi
7: z = w − αivi
8: βi+1 = ‖z‖
9: if βi+1 = 0 then stop

10: vi+1 = z/βi+1

11: end for

subspace Kk+1(A, v). The Lanczos vectors vj satisfy the three-term recurrence

βi+1vi+1 = Avi − αivi − βivi−1, i = 1, . . . , k,

or, written in matrix form,

AVk = VkTk + βk+1vk+1e
T
k ,

where Vk = [v1, . . . , vk], the vector ek denotes the kth column of the identity matrix of
appropriate size (here of the size k), and Tk is the k by k symmetric tridiagonal matrix of the
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Lanczos coefficients,

Tk =


α1 β2

β2
. . . . . .
. . . . . . βk

βk αk

 .
Since the coefficients βj are positive, Tk is a Jacobi matrix. The Lanczos algorithm works for
any symmetric matrix, but if A is positive definite, then Tk is positive definite as well.

During computations in floating point arithmetic, rounding errors may have a significant
influence on the computed results. In particular, the orthogonality among the Lanczos vectors
is usually lost very quickly. In this paper we are interested in happy cases when this situation
does not happen. In more detail, assuming that d = n and considering the standard model of
floating point arithmetic that satisfies the IEEE 754 standard, we look for a nonzero pattern of
A and v such that no rounding errors appear during the computation of the Lanczos algorithm.
The classical examples of arithmetics satisfying the IEEE 754 standard are the double precision
(binary64), single precision (binary32), or half precision; i.e., binary16.

3. Exact computations in floating point arithmetic. Let F denote the set of floating
point numbers, and let “◦” be one of the basic operations, i.e., addition, subtraction, multipli-
cation, division, and square root. Suppose that α and β are floating point numbers and that
α ◦ β is within the exponent range, meaning that α ◦ β does not overflow or underflow and
that α ◦ β has a normalized representation fl(α ◦ β). Then, considering the standard model of
floating point arithmetic, it holds that

fl(α ◦ β) = (α ◦ β)(1 + δ), |δ| ≤ u,

where u is the unit roundoff. Obviously, if α ∈ F, then

fl(1 · α) = α, fl(−α) = −α, fl(0 · α) = 0, fl(α− α) = 0, fl(α/α) = 1.

It is easy to see that if P ∈ Fn×n is a permutation matrix, v ∈ Fn, and A ∈ Fn×n, then

fl(PTP ) = I, fl(Pv) = Pv, fl(PA) = PA, fl(AP ) = AP.

The following lemma states that if α ∈ F and if α2 is within the exponent range, then the
square root of α2 computed in finite precision arithmetic is exactly |α|; see [16, Problem 2.20]
and the solution [16, p. 533].

LEMMA 3.1. Consider the standard model of floating point arithmetic. Let α ∈ F be a
floating point number such that α2 is within the exponent range. Then it holds that

|α| = fl
(√

fl (α2)
)
.

Consider a vector

(3.1) z = αej , α ∈ F,

such that α2 is within the exponent range. The previous lemma shows that the Euclidean norm
of z is computed exactly in the standard model of floating point arithmetic. On the other hand,
if z is not a multiple of ej , then, in general, one can expect that rounding errors occur. In
other words, the only structure of z that guarantees that no rounding errors occur during the
computation of its Euclidean norm is the structure (3.1).
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4. Lanczos algorithm in floating point arithmetic. On line 8 of Algorithm 1, the
Euclidean norm of the vector z is computed. To guarantee that the Lanczos algorithm computes
exactly for any matrix and any starting vector having a given structure, the Lanczos vectors
must necessarily be equal to the columns of the identity matrix (up to the sign); see (3.1) and
the discussion thereafter. In particular, since the normalized starting vector is the first Lanczos
vector v1, it must hold that v1 = ±ej for some j = 1, . . . , n. To simplify the notation, we
define a signed permutation matrix as a permutation matrix with entries ±1 instead of 1. In
the following lemma we investigate the parametrization of all matrices A and vectors v with
d = n such that the exact Algorithm 1 produces Lanczos vectors having just one nonzero
entry.

LEMMA 4.1. Assuming exact arithmetic, Algorithm 1 applied to a symmetric A ∈ Rn×n
and v ∈ Rn such that d = n produces Lanczos vectors equal to plus or minus the columns of
the identity matrix if and only if

A = PTPT , v = β̃1Pe1,

with P ∈ Rn×n being a signed permutation matrix and T ∈ Rn×n being a tridiagonal matrix
of the form

T =


α̃1 β̃2

β̃2
. . .

. . .
. . .

. . . β̃n
β̃n α̃n

 ,

where β̃j > 0, j = 1, . . . , n. Moreover, the tridiagonal matrix Tn resulting from Algorithm 1
is equal to T .

Proof. Suppose first that the Lanczos vectors are equal to plus or minus the columns of the
identity matrix and that d = n, i.e., there is a signed permutation matrix P such that Vn = P.
Since d = n, we obtain in the last iteration of the Lanczos algorithm AVn = VnTn so that

A = VnTnV
T
n = PTPT ,

where we set T = Tn. Moreover, v1 = Pe1, and therefore the starting vector v has to have
the form v = β̃1Pe1 for some β̃1 > 0.

On the other hand, suppose thatA = PTPT and v = β̃1Pe1 for some signed permutation
matrix P and β̃1 > 0. Applying the Lanczos algorithm to A and v, we get

(4.1) AVn = VnTn.

The choice of v ensures that the first column v1 of Vn is equal to the first column p1 of P .
Moreover, from the assumption on the structure of A it follows

(4.2) AP = PT.

Comparing (4.1) and (4.2) and using the fact that p1 = v1, P is orthogonal, and T is Jacobi
with positive off-diagonal entries, we obtain Tn = T and Vn = P .

In the following theorem we show that the structure of A and v introduced in Lemma 4.1
is sufficient for the Lanczos algorithm to compute exactly in the standard floating point
arithmetic.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXACT LANCZOS ALGORITHM 551

THEOREM 4.2. Consider the standard model of floating point arithmetic. Let

(4.3) A = PTPT and v = β̃1Pe1,

where P ∈ Fn×n is a signed permutation matrix and T ∈ Fn×n is tridiagonal of the form

T =


α̃1 β̃2

β̃2
. . .

. . .
. . .

. . . β̃n
β̃n α̃n


with β̃j > 0 and β̃2

j within the exponent range. Then Algorithm 1 applied to A and v computes
exactly, i.e., no rounding errors appear during the computations. As a consequence, it holds
that Tn = T .

Proof. The proof is by induction. Let us denote the results of the computations in floating
point arithmetic by a bar. We start on lines 2 and 3 of Algorithm 1. It is easy to verify that
v̄ = fl(β̃1Pe1) = v, v̄0 = 0 = v0, β̄1 = fl(‖v‖) = β̃1 = β1, and v̄1 = fl(v/β1) = v1 are
computed exactly.

Define the vector e0 = 0 and assume that for 1 ≤ i ≤ n − 1 the vectors vj = Pej ,
j = 0, . . . , i, the coefficients αj = α̃j , j = 1, . . . , i − 1, and βj = β̃j , j = 1, . . . , i, are
computed exactly. Using the results of Section 3, the induction hypothesis, and observing that
w̄ = fl(fl(Avi)− fl(βivi−1)) = Pfl(Tei − βiei−1), we obtain on line 5

w̄ = Pfl
(
β̃iei−1 + α̃iei + β̃i+1ei+1 − βiei−1

)
= P

(
α̃iei + β̃i+1ei+1

)
= w.

Further, on line 6 we get

ᾱi = fl(wT vi) = α̃i = αi

and, using fl(αivi) = αiPei, on line 7

z̄ = fl(w − fl(αivi)) = Pfl
(
αiei + β̃i+1ei+1 − αiei

)
= β̃i+1Pei+1 = z.

Hence, z = z̄ on line 8 is of the form (3.1), and

β̄i+1 = fl(‖z‖) = β̃i+1 = βi+1,

yielding v̄i+1 = fl(z/βi+1) = Pei+1 = vi+1 on line 10.
Note that the same results can be shown also for the classical Gram-Schmidt variant of

Algorithm 1, where we first compute αk as αk = vTk Avk and then evaluate

z = Avk − αkvk − βkvk−1.

The results of Theorem 4.2 together with Lemma 4.1 indicate that the only nonzero
structure of A and v that guarantees exact computations of the Lanczos algorithm in floating
point arithmetic is given by (4.3). If A and v do not have the special structure (4.3), then the
Lanczos algorithm can still compute exactly, but only in very special cases where the particular
input data are chosen such that no rounding errors appear.

Theorem 4.2 and Lemma 4.1 can be analogously formulated for A and v with d < n. In
such case, instead of P and T we consider block diagonal matrices P̃ and T̃ of the form

P̃ =

[
P 0
0 R1

]
, T̃ =

[
T 0
0 R2

]
,

where P is a signed permutation matrix of size d, T is a d by d tridiagonal matrix defined as
in Theorem 4.2 and Lemma 4.1, and R1, R2 are arbitrary square matrices of size n− d.
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5. The conjugate gradient method. The results of the previous section motivate the
question whether analogous results can be obtained also for the conjugate gradient method,
which is closely related to the Lanczos algorithm.

Given a symmetric and positive definite (SPD) matrix A ∈ Rn×n and a right-hand side
vector b ∈ Rn, we wish to solve a system of linear algebraic equations

Ax = b

using the conjugate gradient method (CG). Consider first the classical Hestenes and Stiefel
variant of CG (HS CG) formulated in Algorithm 2.

Algorithm 2 Conjugate gradients (HS CG).
input A, b, x0
r0 = b−Ax0
p0 = r0
for k = 1, 2, . . . until convergence do
γk−1 =

rTk−1rk−1

pTk−1Apk−1

xk = xk−1 + γk−1pk−1

rk = rk−1 − γk−1Apk−1

δk =
rTk rk

rTk−1rk−1

pk = rk + δkpk−1

end for

It is well-known that the vectors and the coefficients generated by CG and the Lanczos
algorithm are closely related. In particular, if Algorithm 1 is started with A and v = r0, then,
in exact arithmetic,

(5.1) vj+1 = (−1)j
rj
‖rj‖

, j = 0, . . . , k.

Let us recall that for A and v having the structure (4.3), the Lanczos vectors vj+1 are
computed without any roundoff error, i.e, they remain exactly orthogonal during finite precision
computations. Based on the relation (5.1) one could expect that the normalized CG residual
vectors, computed by Algorithm 2 started with the same input data, will also be close to
orthogonal. We now perform a numerical experiment showing that the orthogonality among
residuals can be lost in general if HS CG is applied to A and b having the structure (4.3).

We will construct a tridiagonal matrix with the eigenvalues equal to those of the Strakoš
matrix [31], namely,

(5.2) λi = λ1 +
i− 1

n− 1
(λn − λ1)ρn−i, i = 2, . . . , n,

and then apply HS CG to this tridiagonal matrix with the initial (right-hand side) vector e1. We
first define Λ to be the diagonal matrix having the eigenvalues (5.2) on its diagonal and choose
the starting vector v = [1, . . . , 1]T so that v has equal components in the eigenvector basis.
To get the corresponding tridiagonal matrix, we apply the Lanczos algorithm with double
reorthogonalization to Λ and v. Note that double reorthogonalization is used to ensure that
the computed results will closely approximate the results of exact computations. In the last
Lanczos iteration we obtain the symmetric tridiagonal matrix T̄n having (almost) the same
spectrum as Λ. In particular, we choose n = 24, λ1 = 10−3, λn = 1, and ρ = 0.7.
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Define x0 ≡ 0, A ≡ T̄n, and b ≡ e1 so that the input data A and b for the HS CG
algorithm have the desired structure (4.3). Theorem 4.2 ensures that Algorithm 1 applied to
A and b computes exactly. However, Figure 5.1 demonstrates that this is no more true for
Algorithm 2.

In Figure 5.1 we plot the loss of orthogonality among the normalized residual vectors

ṽj+1 ≡ (−1)j
r̄j
‖r̄j‖

, j = 0, . . . , k,

computed by Algorithm 2. The loss of orthogonality is measured using the quantity∥∥∥Ṽ Tk Ṽk − I∥∥∥
F

(shown in dotted line),

where Ṽk = [ṽ1, . . . , ṽk]. We further plot the A-norm of the error (solid). We observe that the
orthogonality is lost quickly and the convergence is substantially delayed. As a consequence,
HS CG (Algorithm 2) does not compute exactly, and rounding errors influence significantly
the performance of the algorithm.
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FIG. 5.1. The A-norm of the error and the loss of orthogonality measured by ‖Ṽ T
k Ṽk − I‖F in Algorithm 2.

We did not find a nonzero structure of the input data A and b such that Algorithm 2
computes (almost) exactly. Since the coefficients γk−1 and δk are ratios of two floating
point numbers, it is very unlikely that such a structure exists. Nevertheless, for the input
data having the structure (4.3), we can use the knowledge about the exact computations of
the Lanczos algorithm and the close relationship between both algorithms to develop an
algorithmic version of CG that computes “almost exactly” in the sense that the computed
approximations agree with their exact counterparts to several significant digits. The number of
significant digits depends on u and κ(A). The idea is simply to compute the exact Lanczos
vectors and reconstruct the CG quantities from the Lanczos vectors. Sometimes, this variant
of the CG method is denoted as the cgLanczos algorithm; see [27].

By comparing the corresponding recurrences for computing the Lanczos vectors vj+1

(Algorithm 1) and the CG residual vectors rj (Algorithm 2) and using (5.1), one can find the
following relationship among the Lanczos and CG coefficients:

(5.3) βk+1 =

√
δk

γk−1
, αk =

1

γk−1
+
δk−1

γk−2
, δ0 = 0, γ−1 = 1.
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Writing (5.3) in matrix form we find that CG implicitly computes the LDLT factorization of
Tk,

Tk =


1

`1
. . .
. . . . . .

`k−1 1



d1

. . .
. . .

dk




1 `1
. . . . . .

. . . `k−1

1

 ,
where

`j =
√
δj , j = 1, . . . , k − 1, and dj = γ−1

j−1, j = 1, . . . , k,

are easily expressible from the CG coefficients. Therefore, knowing Tk, we can compute its
LDLT factorization to reconstruct the CG coefficients. The factorization can be computed
using

(5.4) d1 = α1, `j =
βj+1

dj
, dj+1 = αj+1 − βj+1`j , j = 1, . . . , k − 1;

see, e.g., [7, p.25].
Suppose now that the Lanczos vectors and coefficients are known. Assuming for simplicity

x0 = 0, we would like to reconstruct the CG approximate solutions xk from the Lanczos
process. It is well-known that

xk = Vkyk, Tkyk = ‖b‖e1.

In the special case of the input data having the structure (4.3) one can assume that Tk ∈ Fk×k
and ‖b‖ ∈ F are computed exactly using Algorithm 1. If we were able to compute the solution
of the system Tkyk = ‖b‖e1 exactly, then xk = Vkyk would be the exact CG approximation
since the columns of Vk are just plus or minus the columns of the identity matrix. However,
in general the system Tkyk = ‖b‖e1 has to be solved numerically and only the computed
solution ȳk is available.

Using [16, Theorem 9.14, p. 176], the numerical solution ȳk of the system with tridiagonal
symmetric and positive definite Tk computed using the LDLT factorization of Tk is the exact
solution of the perturbed problem

(Tk + ∆) ȳk = ‖b‖e1, |∆| ≤ 5u|Tk| = 5uTk.

Therefore

yk = (I + T−1
k ∆)ȳk,

so that

xk − x̄k = Vk(yk − ȳk) = VkT
−1
k ∆ȳk.

Assuming that 5uκ(A) < 1, we get

‖T−1
k ∆‖ ≤ 5uκ(Tk) ≤ 5uκ(A) < 1 .

Hence, I + T−1
k ∆ is nonsingular and

‖(I + T−1
k ∆)−1‖ ≤ 1

1− ‖T−1
k ∆‖

.
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Finally, using ‖xk‖ = ‖Vkyk‖ = ‖yk‖ we obtain

‖xk − x̄k‖
‖xk‖

=

∥∥T−1
k ∆ȳk

∥∥
‖yk‖

=

∥∥T−1
k ∆(I + T−1

k ∆)−1yk
∥∥

‖yk‖

≤ 5uκ(Tk)

1− 5uκ(Tk)
≤ 5uκ(A)

1− 5uκ(A)
.

The results are summarized in the following theorem.
THEOREM 5.1. Let a symmetric and positive definite matrix A and a vector b have

the structure (4.3). Suppose that Vk and Tk are computed using the Lanczos algorithm
(Algorithm 1) applied to A and b and that the system Tkyk = ‖b‖e1 is solved numerically
using the LDLT factorization giving the computed solution ȳk. Let x0 = 0. Then, under the
assumption 5uκ(A) < 1, the computed CG approximate solution x̄k = Vkȳk, k > 0, satisfies

(5.5)
‖xk − x̄k‖
‖xk‖

≤ 5uκ(A)

1− 5uκ(A)
,

where xk is the exact CG approximation.
The above results demonstrate that if the data has the structure (4.3), then the CG ap-

proximate solutions that agree with their exact counterparts to several significant digits can
be computed without reorthogonalization. Naturally, the above-mentioned version of CG is
not too efficient since it requires storing the Lanczos vectors Vk and the matrix Tk. Below we
derive a more efficient version of CG that preserves the above idea: first compute the Lanczos
vectors and coefficients and then reconstruct the CG related quantities. Using

‖rk‖ =
√
δkδk−1 . . . δ1‖r0‖ = `1 . . . `k‖r0‖,

we obtain

rk = (−1)k‖rk‖ vk+1 = (−1)k‖r0‖`1 . . . `k vk+1,(5.6)
pk = rk + δkpk−1 = rk + `2kpk−1,(5.7)

xk = xk−1 + γk−1pk−1 = xk−1 +
pk−1

dk
.(5.8)

The final cgLanczos algorithm is given by Algorithm 3. For simplicity we choose x0 = 0 so
that r0 = b. Note that the cgLanczos algorithm follows in a straightforward way from the
results of [27, Section 4].

Algorithm 3 has three parts marked out by brackets. First, the Lanczos vectors and
coefficients are computed as in Algorithm 1. In the second part the algorithm computes
the LDLT factorization via (5.4), and the last part computes the CG vectors pj , rj , and xj
using (5.6)–(5.8). We can see immediately that if we apply Algorithm 3 to A and b having
the structure (4.3), then the residual vectors are exactly orthogonal during finite precision
computations as in the case of Algorithm 1. The computed coefficients ¯̀

j and d̄j are almost
exact in the sense

Tk + ∆ = L̄kD̄kL̄
T
k , |∆| ≤ 5uTk

(see [16, p. 174]), where L̄k and D̄k are the computed factors of the LDLT factorization of Tk.
Therefore, one can expect that the CG approximate solution x̄k computed using Algorithm 3
will satisfy the relation (5.5).
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Algorithm 3 Conjugate gradients (cgLanczos).
input A, b
β1 = 0, v0 = 0, `0 = 0, x0 = 0
r0 = b, p0 = r0
ρ0 = ‖b‖
v1 = b/ρ0
for k = 1, 2, . . . do
w = Avk − βkvk−1

αk = wT vk
w = w − αkvk

 Tk and Vk
βk+1 = ‖w‖
vk+1 = w/βk+1

dk = αk − βk`k−1

`k = βk+1

dk

}
Tk = LkDkL

T
k

ρk = `kρk−1

xk = xk−1 + pk−1

dk

rk = (−1)kρkvk+1

}
vectors xk, rk, and pk

pk = rk + `2kpk−1

end for

For numerical demonstration we consider the same problem as at the beginning of this
section, i.e., we consider A and b having the structure (4.3) that has been obtained from the
Lanczos algorithm with double reorthogonalization applied to Λ and v. However, instead of
HS CG (Algorithm 2) we apply the cgLanczos algorithm (Algorithm 3) to solve the system
Ax = b with x0 = 0. It is clear that the residuals must be exactly orthogonal. Hence, we
measure the quality of results computed by Algorithm 3 using the A-orthogonality of the
reconstructed direction vectors, the A-norm of the error, and also the relative distance between
the exact and the computed CG approximations.

0 5 10 15 20 25

10
-15

10
-10

10
-5

10
0

FIG. 5.2. The A-norm of the error, the relative error, and the loss of A-orthogonality among direction vectors
in Algorithm 3.
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In Figure 5.2 we display the A-norm of the error (solid) and the loss of A-orthogonality
(dotted) among the normalized direction vectors

p̃k =
p̄k
‖p̄k‖A

computed with Algorithm 3. The loss ofA-orthogonality is measured by the Frobenius norm of
the matrix P̃Tk AP̃k − I , where P̃k = [p̃0, . . . , p̃k−1]. As expected, the loss of A-orthogonality
is close to the machine precision level. Moreover, we also plot the quantity

‖xk − x̄k‖
‖xk‖

(dashed), where x̄k were computed in double precision using Algorithm 3 and the exact
approximations xk were computed using Algorithm 3 in extended precision arithmetic with
128 valid digits; specifically using Matlab’s vpa arithmetic. As expected and predicted by
Theorem 5.1, the relative error is close to the machine precision level. Note that κ(A) = 103.

Comparing Figures 5.1 and 5.2, we observe that the finite precision behaviour of HS CG
(Algorithm 2) and cgLanczos (Algorithm 3) applied to A and b having the structure (4.3)
differ significantly. For HS CG, orthogonality is lost, and convergence is delayed while for
cgLanczos orthogonality is preserved, and the algorithm converges in at most n iterations.

200 400 600 800 1000 1200

10
-15

10
-10

10
-5

HS CG

cgLanczos

ST CG

FIG. 5.3. The A-norm of the error computed using HS CG (Algorithm 2), cgLanczos (Algorithm 3), and ST CG.

Note that for a general A and b, both algorithms usually exhibit very similar numerical
behavior and it seems that there is no significant advantage of using cgLanczos over HS CG in
practical computations. Consider for example the matrix bcsstk03 of order n = 112 from
the SuiteSparse matrix collection [3] and choose a unit norm vector b such that it has equal
components in the eigenvector basis. In Figure 5.3 we display the A-norm of the error for
three CG implementations: HS CG (solid), the three-term (Stiefel) CG implementation [2,
Algorithm 2.1] denoted as ST CG (dash-dotted), and the cgLanczos algorithm (dashed). For all
implementations we observe a significant delay of convergence. Comparing the delay, HS CG
seems to be the best choice, and cgLanczos performs better than ST CG. Concerning the
maximum attainable accuracy, HS CG is again the winner. Here ST CG reaches a better level
of accuracy than cgLanczos. In our other numerical experiments the differences in numerical
behavior of the considered CG implementations were much less visible. In summary, it seems
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that a significant difference between the behavior of HS CG and cgLanczos in finite precision
arithmetic is restricted only to the very special case of A and b having the structure (4.3).

6. Other algorithms. In Section 4 we parametrized matrices A and starting vectors v
that guarantee exact computations of the Lanczos algorithm. In this section we demonstrate
that the ideas of Section 4 can be generalized to other algorithms for computing bases of
Krylov subspaces. In particular, ifA is not symmetric, we can use the Arnoldi algorithm [1] for
computing the orthonormal basis or the nonsymmetric Lanczos algorithm [18] for computing
the bi-orthogonal basis. When working with Krylov subspaces generated by symmetric
matrices ATA or AAT , one can consider the Golub-Kahan bidiagonalization [6]. The ideas
can be further generalized to block Krylov subspace methods like the block-Lanczos [8] or
block-Arnoldi algorithms. We will show that there exists a nonzero structure of the input data
that guarantees exact computations of the above-mentioned algorithms. For each algorithm we
define the index d that corresponds to the maximal dimension of the corresponding subspaces
and formulate the final results for d = n. Nevertheless, all results can be generalized to the
case d < n similarly as for the Lanczos algorithm; see Section 4.

6.1. Arnoldi algorithm. A natural generalization of the Lanczos algorithm for nonsym-
metric matrices is the Arnoldi algorithm; see [1]. Given a square matrix A ∈ Rn×n and
assuming k < d = d(A, v), the Arnoldi algorithm (Algorithm 4) computes an orthonormal
basis v1, . . . , vk+1 of the Krylov subspaceKk+1(A, v). The computed vectors and coefficients

Algorithm 4 Arnoldi algorithm.
input A, v
v1 = v/‖v‖
for j = 1, . . . , k do
w = Avj
for i = 1, . . . , j do
hi,j = vTi w
w = w − hi,jvi

end for
hj+1,j = ‖w‖
vj+1 = w

hj+1,j

end for

satisfy

AVk = VkHk + hk+1,kvk+1e
T
k ,

where Vk = [v1, . . . , vk] and

Hk =


h1,1 . . . . . . h1,k

h2,1
. . .

...
. . . . . .

...
hk,k−1 hk,k


is upper Hessenberg with hj+1,j > 0, for j = 1, . . . , k − 1. Note that if A is symmetric, then
Hk is symmetric and tridiagonal, and Algorithm 4 is equivalent to Algorithm 1.

Theorem 4.2 for the Lanczos algorithm can now be generalized in a straightforward way
to the Arnoldi algorithm. We state the corresponding theorem without a proof.
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THEOREM 6.1. Consider the standard model of floating point arithmetic. Let

A = PHPT , v = h̃1,0Pe1,

where P ∈ Fn×n is a signed permutation matrix and

H =


h̃1,1 . . . . . . h̃1,n

h̃2,1
. . .

...
. . .

. . .
...

h̃n,n−1 h̃n,n


with h̃j+1,j > 0 and h̃2j+1,j within the exponent range, j = 0, . . . , n− 1. Then Algorithm 4
applied to A and v computes exactly. As a consequence, it holds that Hn = H .

6.2. Nonsymmetric Lanczos algorithm. Given A ∈ Rn×n and v, w ∈ Rn such that
wT v 6= 0, we denote

d = min(d(A, v), d(AT , w)).

Assuming k < d and βi+1 6= 0, i = 1, . . . , k, the nonsymmetric Lanczos algorithm [18]
(Algorithm 5) computes two sets v1, . . . , vk+1 and w1, . . . , wk+1 of bi-orthogonal vectors.

Algorithm 5 nonsymmetric Lanczos algorithm.
input A, v, w
v0 = w0 = 0, γ1 = ‖v‖, v1 = v/γ1
β1 = wT v1, w1 = w/β1
for i = 1, . . . , k do
αi = wTi Avi
v = Avi − αivi − βivi−1

γi+1 = ‖v‖
vi+1 = v/γi+1

w = ATwi − αiwi − γiwi−1

βi+1 = vTi+1w
wi+1 = w/βi+1

end for

The vectors and coefficients generated by Algorithm 5 satisfy

AVk = VkTk + γk+1vk+1e
T
k ,

ATWk = WkT
T
k + βk+1wk+1e

T
k ,

WT
k Vk = I,

where Vk = [v1, . . . , vk] ∈ Rn×k, Wk = [w1, . . . , wk] ∈ Rn×k, and

Tk =


α1 β2

γ2
. . . . . .
. . . . . . βk

γk αk

 .
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The nonsymmetric Lanczos algorithm is based on two three-term recurrences similar to
the recurrence from the Lanczos algorithm. Using the same technique as for the Lanczos
algorithm, we obtain an analogy of Theorem 4.2 that we present without a proof.

THEOREM 6.2. Consider the standard model of floating point arithmetic. Let

A = PTPT , v = γ̃1Pe1, w = β̃1Pe1,

where P ∈ Fn×n is a signed permutation matrix and T ∈ Fn×n is tridiagonal of the form

T =


α̃1 β̃2

γ̃2
. . .

. . .
. . .

. . . β̃n
γ̃n α̃n


with β̃j 6= 0, γ̃j > 0, and γ̃2j within the exponent range, for j = 1, . . . , n. Then Algorithm 5
applied to A, v, and w computes exactly. As a consequence, it holds that Tn = T .

6.3. Golub-Kahan bidiagonalization. Let A ∈ Rn×m, v ∈ Rn, and denote

d = min(d(AAT , v), d(ATA,AT v)).

Assuming k < d, the Golub-Kahan bidiagonalization [6] (Algorithm 6) generates two sets of
orthonormal vectors s1, . . . , sk+1 and w1, . . . , wk. The coefficients γi and δi+1 that appear in
Algorithm 6 are normalization coefficients.

Algorithm 6 Golub-Kahan bidiagonalization.
input A, v
w0 = 0
δ1s1 = v
for i = 1, . . . , k do
γiwi = AT si − δiwi−1

δi+1si+1 = Awi − γisi
end for

Denoting Sk = [s1, . . . , sk] ∈ Rn×k and Wk = [w1, . . . , wk] ∈ Rm×k, the vectors and
coefficients generated by Algorithm 6 satisfy

ATSk = WkL
T
k ,

AWk = SkLk + sk+1δk+1e
T
k ,

where

Lk =


γ1
δ2 γ2

. . . . . .
δk γk

 .
Under the assumption k < d, the coefficients γi as well as δi, i = 1, . . . , k, are positive.

It is well known that the Golub-Kahan bidiagonalization is closely related to the Lanczos
algorithm. In more detail, the orthonormal columns of Sk can be seen as the Lanczos vectors
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generated by AAT with the starting vector v. Similarly, Wk contains the Lanczos vectors
generated by ATA and AT v. Therefore, it is not surprising that the results of Section 4 for the
Lanczos algorithm can be analogously formulated also for the Golub-Kahan bidiagonalization.
We present here (without a proof) an analogy of Theorem 4.2 formulated for A ∈ Fn×n.

THEOREM 6.3. Consider the standard model of floating point arithmetic. Let

A = PLPT , v = δ̃1Pe1,

where P ∈ Fn×n is a signed permutation matrix and L ∈ Fn×n is bidiagonal of the form

L =


γ̃1
δ̃2 γ̃2

. . .
. . .
δ̃n γ̃n

 ,
with γ̃j , δ̃j > 0 and γ̃2j , δ̃

2
j within the exponent range, for j = 1, . . . , n. Then Algorithm 6

applied to A and v computes exactly. As a consequence, it holds that Ln = L.

6.4. Block Lanczos algorithm. The Lanczos algorithm has also an analogy for block
matrices known as the block-Lanczos algorithm; see [8]. Given a block symmetric matrix
A ∈ Rn×n with p by p blocks, i.e., n = mp for some m ∈ N, and a block vector U1 ∈ Rn×p,
we can define a sequence of block Krylov subspaces

Kk(A,U1) = colspan{U1, AU1, . . . , A
k−1U1}

and denote the maximal achievable dimension of these nested subspaces as d = d(A,U1).
Let I denote the p by p identity matrix, and let 0 denote the p by p zero matrix. Let

d = Km(A,U1) = n and U1 have orthonormal columns. Assuming k < m, the block Lanczos
algorithm (Algorithm 7) generates an orthonormal sequence of block vectors Ui ∈ Rn×p, i.e.,

Algorithm 7 block Lanczos algorithm.
input A ∈ Rn×n, U1 ∈ Rn×p such that UT1 U1 = I
U0 = U1, B1 = 0
M1 = UT1 AU1

for i = 1, . . . , k do
Ri+1 = AUi − UiMi − Ui−1B

T
i

Ri+1 = Ui+1Bi+1 (QR factorization of Ri+1)
Mi+1 = UTi+1AUi+1

end for

UTi Uj = δi,jI (δi,j denotes the Kronecker delta) satisfying the relation

A [ U1, . . . , Uk ] = [ U1, . . . , Uk ]Tk +Rk+1 [ 0, . . . , 0, I ] ,

where

Tk =


M1 BT2

B2
. . . . . .
. . . . . . BTk

Bk Mk


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is a block tridiagonal matrix. The blocks Mj ∈ Rp×p, j = 1, . . . , k, are symmetric matrices
and Bj+1 ∈ Rp×p, j = 1, . . . , k − 1, are upper triangular matrices.

Further, we define a signed block permutation matrix as a square block matrix with only
one nonzero block in each block row and block column, where the nonzero blocks are sign
permutation matrices. We now present an analogy of Theorem 4.2.

THEOREM 6.4. Consider the standard model of floating point arithmetic. Let n = mp
for n,m, p ∈ N, and let

A = PTPT , U1 = P [ I, 0, . . . , 0 ]
T
,

where P ∈ Fn×n is a signed block permutation matrix with blocks of size p, I, 0 ∈ Fp×p, and
T ∈ Fn×n is a block tridiagonal matrix of the form

T =


M̃1 B̃T2

B̃2
. . .

. . .
. . .

. . . B̃Tm
B̃m M̃m

 ,

where M̃i ∈ Fp×p are symmetric and B̃i+1 ∈ Fp×p are upper triangular with positive entries
on the diagonal. Assume that the QR factorization in Algorithm 7 is computed using the
classical or modified Gram-Schmidt algorithm without any underflow or overflow. Then
Algorithm 7 applied to A and U1 computes exactly. As a consequence, it holds that Tm = T .

6.5. Linear solvers. In the previous sections we discussed algorithms for computing
bases of the corresponding subspaces. We have shown that if the input data have the prescribed
nonzero structure, then the basis (block) vectors as well as the projected matrices (defined
through the coefficients that appear in the algorithms) are computed exactly.

The general idea of linear solvers is to look for an approximate solution xk as a linear
combination of the basis vectors. The coefficients of the linear combination are defined to be
the solution of the projected problem. If the algorithm for computing the basis is exact, then
the projected problem is given exactly. To obtain xk, we have to solve the (exact) projected
problem numerically. Hence, x̄k is influenced only by rounding errors arising when solving
the projected problem. Note that projected problems are solved using direct methods like
Cholesky or QR factorizations whose numerical behavior is well understood; see, e.g., [16]. Ill-
conditioned matrices may raise numerical difficulties when solving projected problems, which
leads to inaccurate solutions. In summary, one can expect that the computed approximate
solution x̄k is close to xk if the projected problem is solved accurately.

To demonstrate the above general ideas, consider for example the Arnoldi algorithm (see
Section 6.1) applied to A and v having the structure described by Theorem 6.1. For simplicity
assume that ‖v‖ = 1. Then Vk as well as

Hk+1,k ≡
[

Hk

hk+1,ke
T

]
are computed exactly. Starting with x0 = 0, the GMRES method [29] constructs approxima-
tions xk to the solution of Ax = v of the form

xk = Vkyk, yk = arg min
y
‖Hk+1,ky − e1‖ ,

where the least-squares problem is solved numerically using the QR factorization. Denote the
computed coordinate vector by ȳk. Then the computed approximate solution x̄k satisfies

‖xk − x̄k‖ = ‖Vkyk − Vkȳk‖ = ‖yk − ȳk‖.
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Similar consideration can be made for other linear solvers that are based on algorithms
discussed in Sections 6.2–6.4.

7. Discussion of the results. In this section we discuss our results related to the Lanczos
algorithm from Sections 4 and 5. Analogous considerations can be made also for other methods
discussed in Section 6.

7.1. Various representatives of the original problem. Let M,N ∈ Rn×n be symmet-
ric matrices, and let r, s ∈ Rn. We define an equivalence relation in the following way. We
say that the problem represented by (M, r) is equivalent to the problem (N, s), if there is
an orthogonal matrix Q ∈ Rn×n such that N = QTMQ and s = QT r. Having defined the
equivalence relation, one may split the set of all couples (M, r) into equivalence classes.

In the case of the Lanczos algorithm, the original problem is represented by a symmetric
matrix A and a unit norm starting vector v1, so that all equivalent problems are of the form
(QTAQ,QT v1). The equivalence of problems can also be seen via the distribution function
ω(λ) that corresponds to the original data. Let UΛUT be the spectral decomposition of A,
where U = [u1, . . . , un] is orthogonal and Λ = diag(λ1, . . . , λn). Assume for simplicity that
the eigenvalues λi of A are distinct and increasingly ordered. For i = 1, . . . , n, denote

ωi ≡
(
vT1 ui

)2
so that

n∑
i=1

ωi = 1.

The distribution function ω(λ) that corresponds to A and v1 is defined using

ω(λ) ≡


0 for λ < λ1 ,∑i

j=1 ωj for λi ≤ λ < λi+1 , 1 ≤ i ≤ n− 1 ,

1 for λn ≤ λ ;

see Figure 7.1.

...

0

1

ω1

ω2

ω3

ω4

ωn

λ1 λ2 λ3
. . . . . . λn

FIG. 7.1. The distribution function ω(λ).

If two problems share the same distribution function, then there exists an orthogonal
matrix Q that transforms one problem into the other, i.e., the problems are equivalent. All
problems with the same distribution function form an equivalence class, and (A, v1) can be
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seen as a representative of this equivalence class. Another representative is (Λ, w), where

w ≡
[
ω
1/2
1 , . . . , ω

1/2
n

]T
,

or (Λ, w̃), where w̃ ≡ UT v1. Finally, assuming for simplicity that ωi 6= 0, for i = 1, . . . , n, it
holds that d = n, and (Tn, e1) resulting from the exact Lanczos algorithm applied to A and v1
stands for yet another representative; see Figure 7.2. Therefore, any theoretical behaviour of
the Lanczos algorithm (represented by the generated tridiagonal matrices Tk) can be observed
for the initial data having the structure (4.3). In other words, concentrating on test problems
having the structure (4.3) is not restrictive and covers any theoretical behaviour of the Lanczos
algorithm.

ω(λ)

A and v1

Λ and w

Tn and e1

FIG. 7.2. Various representatives of ω(λ).

The representative (Λ, w) provides directly the key information about the distribution
function. On the other hand, (Tn, e1) is the only representative that guarantees that the Lanczos
algorithm (or the corresponding Stieltjes process, see, e.g., [10, 22]) will not be affected by
rounding errors; see Theorem 4.2.

Assuming d = n and having one of the representatives, one can ask how to compute
the other representatives in a numerically reliable way. Starting from (A, v1), we can find
(Tn, e1) using the Lanczos (or Arnoldi) algorithm with double reorthogonalization [5, 13]. If
the double reorthogonalization is not used, then the rounding errors can strongly influence the
computations, and the computed T̄n can be completely different from the exact Tn. Instead of
double reorthogonalization, one can alternatively use Householder reflections to transform
(A, v1) to (T̃ , ṽ1), where T̃ is tridiagonal, and then Givens rotations to transform ṽ1 to e1
while preserving the tridiagonal structure of the transformed matrix using the chasing the
bulge strategy. In general, to compute the representative (Tn, e1) in a numerically reliable
way, one has to store a dense matrix, and the cost of computations is then O(n3) flops.

Concerning the other two representatives, there exist numerically reliable transformations
between (Tn, e1) and (Λ, w) with the cost of O(n2) flops and low memory requirements. In
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more detail, starting from (Tn, e1), one can use the Golub-Welsh algorithm [9] to compute
(Λ, w). In the opposite way, having (Λ, w), the rkpw algorithm of Gragg and Harrod [10] or
the pftoqd algorithm of Laurie [19] are capable to compute (Tn, e1) reliably.

7.2. Any theoretical behavior is observable also numerically. To investigate theoreti-
cal as well as numerical behaviour of Krylov subspace methods, it is crucial to ask convenient
questions that help in understanding complicated phenomenons. Here we discuss three ques-
tions of that kind related to the Lanczos and CG algorithms, and emphasize the connection
with data having the structure (4.3).

An important question asked in the literature (see, e.g., [4, 12, 14, 15, 20, 30]) is about
possible theoretical behaviour of the considered method. For example, in the case of the
conjugate gradient method, one can prescribe any decreasing convergence curve for the A-
norm of the error and, at the same time, any convergence curve for the residual norms (positive
numbers), and then construct a symmetric positive definite matrix A and a right-hand side
b such that exact CG applied to Ax = b generates the prescribed convergence curves; see
[15, 20]. In more detail, the CG coefficients δk (see Algorithm 2) satisfy

δk =
‖rk‖2

‖rk−1‖2
.

Therefore, if the residual norms are given, then the δk are known. Moreover, since

‖x− xk‖2A = γk‖rk‖2 + ‖x− xk+1‖2A

(see [15]), and the residual norms as well as the A-norms of the error are prescribed, also
the values γk are known. Finally, as discussed in Section 5, CG computes implicitly the
LDLT factorization of the tridiagonal matrix Tk. Assuming again for simplicity that d = n,
the coefficients δ1, . . . , δn−1 and γ0, . . . , γn−1 determine uniquely the tridiagonal matrix Tn.
Letting A = Tn and b = ‖r0‖e1, we obtain a system of linear equations such that exact CG
applied to Ax = b generates the prescribed residual norms and A-norms of the error. For
more details and the related discussion, see [20]. Let us emphasize that the constructed matrix
is a Jacobi matrix and that the right-hand side vector is a multiple of e1, i.e., the data have
the structure (4.3). Therefore, any possible theoretical CG behavior can be observed also
numerically; up to some inaccuracy comparable to machine precision and κ(A).

Another question that can help in understanding the numerical behaviour of Krylov
subspace methods is the following one. Can the observed numerical behaviour be interpreted
as the behaviour of the exact algorithm applied to a problem that is, in some sense, close to the
original one? In other words, we would like to find a mathematical model of the results of finite
precision computations of the considered algorithm. Note that the term “a problem close to the
original one” can have different meanings. For example, it can be understood in the classical
backward error sense, i.e., one can look for a small perturbation of the original data, or, as
in the case of the Lanczos and CG algorithms, one can look for a small perturbation of the
distribution function ω(λ) discussed in Subsection 7.1. In particular, Greenbaum [11] showed
that the results of the finite precision Lanczos algorithm can be interpreted as the results
of the exact Lanczos algorithm applied to a larger problem with a matrix having clustered
eigenvalues around the original eigenvalues of A; see also [25, 26] for a different approach.
The perturbed distribution function has larger support (clusters of eigenvalues), and the sum of
weights that correspond to the ith cluster is equal to the original weight ωi. Analogous results
can be obtained also for CG, but here the exact CG algorithm applied to the model problem
will not generate exactly the same convergence curves (the residual norms and the A-norms
of the error) as the finite precision CG algorithm applied to the original data. However, it
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will generate very close approximations; see [11]. Note that the larger matrix used in [11] for
simulating the behaviour of the finite precision Lanczos algorithm was a Jacobi matrix, and
that the starting vector was a multiple of e1, i.e., having the structure (4.3).

Finally, as already mentioned above, results of this paper can be used to get the answer to
the following question: Can any theoretical behavior of the Lanczos and CG algorithms be
observed also numerically (up to the relative accuracy limited by machine precision) without
using reorthogonalization or extended precision arithmetic? In more detail, the theoretical
behaviour of the Lanczos algorithm is represented by the generated matrices Tk. As discussed
in Section 7.1, any theoretical behavior of the Lanczos algorithm can be observed for the
representative (T, e1), where T ∈ Rn×n is a Jacobi matrix. The results of the exact Lanczos
algorithm applied to T and e1 are then represented by the leading principal submatrices of T .
Converting the matrix T into the considered floating point arithmetic we obtain T̄ = fl(T ),
and the data (T̄ , e1) have the structure (4.3). Therefore, the finite precision Lanczos algorithm
applied to T̄ and e1 computes exactly, i.e., it generates the leading principal submatrices T̄k
of T̄ , and it holds that T̄k = fl(Tk). In this sense, any theoretical behavior of the Lanczos
algorithm represented by real matrices Tk can be observed also numerically. Using the results
of Section 5, analogous conclusion holds also for CG implemented using Algorithm 3.

8. Conclusions. We discussed some often-used algorithms for computing bases of
(block) Krylov subspaces. These algorithms compute a representative of the original data in
the generated bases. The representative has some nonzero structure depending on the choice
of the algorithm and properties of the matrix. We have shown that if we apply the considered
algorithms to the input data that already have the nonzero structure of the representative, then
all finite precision computations are exact. Our results imply that any theoretical behavior
of the considered algorithms is observable also numerically (without using reorthogonaliza-
tion) within the limits of the given arithmetic. We hope that these results could be useful in
the further analysis of the behavior of the considered algorithms or in demonstrating some
interesting phenomena in exact or floating point arithmetic.
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