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1. Introduction and Objectives of  the project 

Based on the experiences and results of  the FFG-funded project ‘EO4Forest’ 
(https://www.rali.boku.ac.at/ivfl/themenfelder/fernerkundung-forstwirtschaft/ffg-asap-projekt-
eo4forest/), the main goal of  BRmon is the extension of  the mapping in scale, time and level of  
detail.  
Based on Copernicus data, mainly Sentinel-2, the land cover of  all Austrian biosphere reserves 
(BRs): BR Wienerwald, BR Großes Walsertal and BRs Salzburger Lungau and Kärntner Nockberge are 
classified. These results can be used as baseline for operational monitoring programs and can serve 
as an input for related research. 
In the BR Wienerwald the level of  detail in terms of  analyzed classes is extended. Additional 
reference data for tree species and grassland areas are collected. As a result, the number of  
identified tree species will increase and information about mowing and forest management 
activities (and calamities) are provided. Next to Sentinel-2 also Sentinel-1 data provided by 
colleagues from the TU Vienna was used. 
For the temporal extension back to 1980s, data from the Landsat data archive are used. Landsat 
data with a spatial resolution of  30 m (compared to 10/20 m of  Sentinel-2) are available from 1982 
(Landsat 4 and 5). Using those data, the historical land cover development of  the BRs is analyzed. 
Based on the outcomes of  the individual activities, the potential of  the Copernicus data (i.e. 
Sentinel-2) for land cover mapping and monitoring of  Austrian BRs are evaluated and a monitoring 
concept is formulated.  
 
Detailed objectives of  the research project are as follows: 

• Objective 1: Land cover maps for all Austrian BRs:  
BR Wienerwald,  
BR Großes Walsertal and  
BRs Salzburger Lungau and Kärntner Nockberge. 

• Objective 2: Detailed land cover analysis (tree species, mowing activities) for the BR 
Wienerwald. 

• Objective 3: Test of  transferability of  the developed models for detailed land cover 
mapping to other regions (BR Großes Walsertal and BRs Salzburger 
Lungau and Kärntner Nockberge) 

• Objective 4: Historical developments of  the land cover of  all Austrian BRs. 
• Objective 5: Monitoring possibilities and monitoring concept for all Austrian BRs. 

 
 

Figure 1 shows the locations of  the four Austrian BRs together in relation to the different Sentinel-
2 orbits. The BR Wienerwald and the BRs Salzburger Lungau and Kärntner Nockberge are in the swath-
overlap of  two different Sentinel-2 orbits. Every five days one of  the two Sentinel-2 satellites collect 
data in the same orbit. Therefore, the temporal resolution in the overlap areas is two scenes in five 
days. In contrast, BR Großes Walsertal is only covered by the swath of  a single Sentinel-2 orbit; 
consequently, a single scene will be acquired every 5 days. 
 

https://www.rali.boku.ac.at/ivfl/themenfelder/fernerkundung-forstwirtschaft/ffg-asap-projekt-eo4forest/
https://www.rali.boku.ac.at/ivfl/themenfelder/fernerkundung-forstwirtschaft/ffg-asap-projekt-eo4forest/
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Figure 1: Location of  Austrian Biosphere Reserves and Sentinel-2 orbit cover and overlap (background: hill shaded 
digital terrain model). 

 

Not only does the data availability differ for Austrian BRs, also the topographic situation is very 
different. BR Wienerwald is located on the foothill of  the Northern Alps located west of  Vienna. 
The landscape is characterized by wooded hills alternating with meadows, pastures, vineyards, and 
dry grasslands. In contrast, the landscapes of  the other BRs are dominated by alpine forests and 
grasslands; large differences in altitude exist. Mountainous areas pose various challenges to satellite-
based remote sensing, especially the negative influence of  cast shadows (during the winter season), 
the duration of  snow cover, and the generally higher probability of  clouds in alpine environments. 
All the aforementioned circumstances influence the amount of  Sentinel-2 data useful for analysis 
of  the different BRs. 
 
Figure 2 shows an overview of  the project work packages and activities separated for the three 
biosphere reserves. All planned work could be implemented in the course of  the project. Only the 
transferability tests were not possible due to insufficient reference data and the significantly worse 
data situation regarding reference data. 
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Figure 2: Overview of  the Project: Work packages (WPs) and Activities for the three different biosphere reserves 
(BRs).  

 
For the dissemination a project webpage with information about the project were launched at the 
BOKU (https://boku.ac.at/rali/geomatics/themenfelder/fernerkundung-wald/oeaw-projekt-
brmon)  and the Biosphärenpark Wienerwald (biosphere reserve Wienerwald) webpage. The 
project and also first results were presented at BPWW Forschungstag – a stakeholder workshop 
with several interest groups. After the presentation was plenty of  time for a fruitful discussion with 
potential users for the produced data, both at university level as well as practitioners (such as 
Biosphärenpark Botschafter). 
The presentation of  some results in the journal of  BR Wienerwald is planned for the second half  
of  2022. 
The combination of  Sentinel-1 and Sentinel-2 for tree species classification was published in 
Remote Sensing (https://doi.org/10.3390/rs14112687). It is planned to present the results also at 
the scientific conference ForestSAT in Berlin (Sep. 2022).  
Michael Lechner wrote his master's thesis in the course of  the project and performed additional 
analyses. The thesis was completed in May 2022. 
 
 
 
 
  

https://boku.ac.at/rali/geomatics/themenfelder/fernerkundung-wald/oeaw-projekt-brmon
https://boku.ac.at/rali/geomatics/themenfelder/fernerkundung-wald/oeaw-projekt-brmon
https://doi.org/10.3390/rs14112687
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2. Land cover maps for all Austrian BRs (WP 2) 

Based on images from the Copernicus’ Sentinel-2 satellites, land cover classifications were created 
for the Austrian biosphere reserves. For this purpose, a 1 km point grid was superimposed on the 
BR Wienerwald and the BRs Salzburger Lungau and Kärntner Nockberge. Due to the smaller spatial 
extent of  the BR Großes Walsertal, the grid was reduced to 0.5 km here. 
Due to the lack of  reference information these points were visually interpreted using orthophotos. 
This worked very well for the BR Wienerwald but in the two mountains BR was due to the 
topography the interpretation partly difficult. 
Table 1 shows the land cover classes principally considered for land cover analysis for the three 
study areas. Sample images for the land cover classes from the BR Großes Walsertal at three different 
time steps are presented in Figure 3 . 

For the BR Wienerwald and the BRs Salzburger Lungau and  Kärntner Nockberge, data from the forestry 
enterprises were additionally used to sharpen the quality of  the samples. Classes with only a few 
samples were then further condensed. Thus, 781 training pixels were obtained for the 
BR Wienerwald, 714 for the BR Großes Walsertal and a total of  1645 training pixels for the BRs 
Salzburger Lungau and Kärntner Nockberge (Figure 4 – Figure 6). 
 

Table 1: Class descriptions for the land cover classification analysis and sample number for the three biosphere reserves 
(BRWW: BR Wienerwald, BRGW: BR Großes Walsertal, BRSLNK: BRs Salzburger Lungau and Kärntner Nockberge). 

Class Definition BRWW BRGW BRSLNK 

Broadleaved forest broadleaf-dominated forest 384 53 61 

Needleleaved forest conifer-dominated forest 97 117 729 

Mixed forest Mixed coniferous and broadleaf  forest - 83 99 

Dwarf  pine Dwarf  mountain pine (Pinus mugo) dominated forest  - - 47 

Farmland Crop cultivation, vine yards 76 - - 

Grassland Grassland, meadows, lawns, pastures, parks, etc. 103 282 466 

Rock Bare rock and stone - 104 123 

Built-up areas Sealed surfaces - buildings, roads and other infrastructure 107 62 68 

Water bodies Lakes, rivers, ponds, etc. 14 - 52 
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Figure 3. Examples of  classes considered for the land cover classification for three different time steps: 199x, 2001 
and 2018 (CIR composite orthoimages) for the BR Großes Walsertal. 

 

 
Figure 4: Sample points (n= 781) representing the land cover classes, created for the BR Wienerwald by use of  
orthophotos and data from forestry enterprises. 
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Figure 5: Sample points (n=714) representing the land cover classes, created for the BR Großes Walsertal by use of  
orthophotos 

 
Figure 6: Sample points (n=1645) representing the land cover classes, created for the BRs Salzburger Lungau and Kärntner 
Nockberge by use of  orthophotos and data from forestry enterprises 
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All available Sentinel-2 scenes were visually checked for their suitability for classification. Exclusion 
criteria were clouds and snow cover. An overview of  the used scenes can be found in Table 2. 
Due to the orbital location, a total of  46 scenes are available at BR Wienerwald. Although 
BR Salzburger Lungau and Kärntner Nockberge is also favoured here, only seven scenes are suitable 
here due to its spatial size and inner-alpine location. For the BR Großes Walsertal, seven suitable 
scenes could also be identified. Furthermore, the BRs Salzburger Lungau and Kärntner Nockberge is in 
the cross-region of  four Sentinel-2-tiles, which made it necessary to mosaic these. 
 

Table 2: Overview of  the used Sentinel-2-scenes used for the land cover-classification of  each BR. (** have been 
created as a quad-mosaic of  tiles 33TUM/33TUN/33TVM/33TVN) 

BR Wienerwald BR Großes Walsertal  BRs Salzburger Lungau and Kärntner Nockberge 

33UWP_122_2017-04-01 33UWP_122_2020-09-12 32TNT_65_2017-06-26 33T**_122_2018-09-28 

33UWP_122_2017-06-20 33UWP_79_2017-05-18 32TNT_65_2017-08-25 33T**_122_2018-10-13 

33UWP_122_2017-08-29 33UWP_79_2017-05-28 32TNT_65_2017-10-14 33T**_122_2019-09-13 

33UWP_122_2017-09-08 33UWP_79_2017-08-01 32TNT_65_2018-10-14 33T**_22_2017-10-16 

33UWP_122_2017-09-28 33UWP_79_2017-08-31 32TNT_65_2019-09-04 33T**_22_2019-09-21 

33UWP_122_2018-04-21 33UWP_79_2017-09-30 32TNT_65_2019-09-29 33T**_22_2019-10-26 

33UWP_122_2018-05-06 33UWP_79_2017-10-15 32TNT_65_2020-07-10 33T**_22_2020-09-05 

33UWP_122_2018-08-09 33UWP_79_2018-04-08   

33UWP_122_2018-08-29 33UWP_79_2018-07-02   

33UWP_122_2018-09-13 33UWP_79_2018-08-21   

33UWP_122_2018-09-18 33UWP_79_2018-09-30   

33UWP_122_2018-09-28 33UWP_79_2018-10-05   

33UWP_122_2018-10-13 33UWP_79_2018-10-10   

33UWP_122_2019-04-01 33UWP_79_2018-10-30   

33UWP_122_2019-04-16 33UWP_79_2019-08-31   

33UWP_122_2019-04-21 33UWP_79_2019-09-15   

33UWP_122_2019-06-30 33UWP_79_2020-04-02   

33UWP_122_2019-07-20 33UWP_79_2020-04-07   

33UWP_122_2019-07-25 33UWP_79_2020-04-12   

33UWP_122_2019-08-09 33UWP_79_2020-04-22   

33UWP_122_2020-04-05 33UWP_79_2020-07-31   

33UWP_122_2020-08-08 33UWP_79_2020-09-09   

33UWP_122_2020-08-28 33UWP_79_2020-10-04   

 
 

Based on these trainings data classification models were created. Therefore, the machine learning 
algorithm random forest (Breiman, 2001) were used, which is based on an ensemble of  
independent decision trees. The implemented bootstrapping provides a reliable measure of  the 
quality of  the model, the so-called out of  bag (OOB) result. One additional advantage of  the 
algorithm is the implanted evaluation of  the variable importance such as the Mean-decrease-in-
Accuracy value.  To improve the model-quality, a recursive feature selection using the variable 
importance values was applied for all models (Immitzer et al., 2019, 2018). The results of  the OOB-
classifications are listed in Table 3 – Table 5. 
The highest overall accuracy (OA) with 95.6% was achieved for the BR Wienerwald, which can be 
explained by the doubled temporal resolution and the thus increased available image data. The six 
predefined classes could be separated very well by the classification model, the best results were 
achieved by the classes broadleaved (producer’s accuracy (PA) = 98.4%, user’s accuracy 
(UA) = 97.7%) and waterbody (PA = 100%, UA = 100%). The classes farmland (PA = 88.2%, 
UA = 93.1%) and grassland (PA = 90.3%, UA = 88.6%), which also showed the lowest user and 
producer accuracies, proved to be the most difficult to separate. 
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Table 3: Confusion matrix based on the OOB-result of  the BR Wienerwald land cover classification (UA: user’s accuracy, 
PA: producer’s accuracy, OA: overall accuracy) 

BRWW - S2 
Land cover 

  
 farmland grassland built-up waterbody broadleaved needleleaved UA 

farmland 67 2 3 0 0 0 93.1% 

grassland 8 93 0 0 4 0 88.6% 

built-up 1 4 103 0 1 0 94.5% 

waterbody 0 0 0 14 0 0 100% 

broadleaved 0 4 0 0 378 5 97.7% 

needleleaved 0 0 1 0 1 92 97.9% 

PA 88.2% 90.3% 96.3% 100% 98.4% 94.8%  

        κ =  0.937 OA =  95.6% 

 
The model was then applied to the entire area of  the BR Wienerwald and a map of  the land cover 
classes was created, which is shown in Figure 7. The heavily populated areas of  the outskirts of  
Vienna and the areas around the western highway to the east into the Tullner Becken, as well as 
individual populated areas within the BR Wienerwald, are clear eyecatchers. The dominance of  
deciduous forest stands in the entire area and the coniferous regions in the southeast and in the 
western part of  the BR are also clearly noticeable. 
 

 
Figure 7: Land cover map of  the BR Wienerwald based on Sentinel-2-imagary from 2017-2020. 

 



 

BRmon - Final report EES-MAB 11 

With an overall accuracy of  OA = 87.8%, the result of  the BR Großes Walsertal classification model 
was somewhat lower. This was mainly caused by the classes broadleaved (PA = 86.3%, 
UA = 71.7%), grassland (PA = 71.7%, UA = 95.5%) and waterbody (PA = 57.8%, UA = 100%). 
For broadleaved and waterbody, this can be explained by the few training pixels represented. 
Nevertheless, we can speak of  very good classification results for this model as well. 
 

Table 4: Confusion matrix based on the OOB-result of  the BR Großes Walsertal land cover classification (UA: user’s 
accuracy, PA: producer’s accuracy, OA: overall accuracy) 

BRGWT - S2 
  

 grassland built-up rock waterbody broadleav. mixed needleleav.  UA 

grassland 274 2 2 0 1 3 5 95.5% 

built-up 0 54 2 0 0 0 0 96.4% 

rock 2 6 99 0 0 0 0 92.5% 

waterbody 0 0 0 13 0 0 0 100% 

broadleaved 0 0 0 0 38 14 1 71.7% 

mixed 0 0 0 0 13 48 10 67.6% 

needleleaved 6 0 1 0 1 18 101 79.5% 

PA 71.7% 87.1% 97.2% 57.8% 86.3% 95.2% 100%  

          κ =  0.841 OA =  87.8% 

 
While almost half  of  the BR Großes Walsertal consists of  grassed areas, it is easy to see that the 
forest areas are, due to the altitude, mainly coniferous forest dominated areas (Figure 8). 
Areas of  deciduous forest can be found especially at lower altitudes and on the slopes of  the valleys. 
Due to the spectral similarity of  the classes built-up and rock, a relatively large number of  rock 
formations were identified as settlements in a false-negative way, which leads to an overestimation 
of  the built-up areas as well as to an underestimation of  the rock surface in the BR. 
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Figure 8: Land cover map of  the BR Großes Walsertal based on Sentinel-2-imagery from 2017-2020. 

 
The classification model of  the BRs Salzburger Lungau and Kärntner Nockberge achieved an OA of  
91.1%, whereby all classes of  the OOB samples could be separated well throughout. Outliers are 
the classes broadleaved (PA = 73.8%, UA = 77.6%) and mixed, (PA = 56.6%, UA = 80.0%) which 
are potentially underrepresented due to the predominant forest communities in the BR. 
 

Table 5: Confusion matrix based on the OOB-result of  the BRs Salzburger Lungau and Kärntner Nockberge land cover 
classification (UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy) 

BRSLKN - S2 
  

 grassland built-up rock waterbody broadleav. mixed needleleav. dwarf  
pine UA 

grassland 452 2 4 0 1 1 18 2 94.2% 

built-up 1 57 7 0 0 0 0 0 87.7% 

rock 3 9 110 1 0 0 1 0 88.7% 

waterbody 0 0 1 50 0 0 0 0 98.0% 

broadleav. 1 0 0 0 45 12 0 0 77.6% 

mixed 0 0 0 0 9 56 4 1 80.0% 

needleleav. 9 0 1 1 6 30 705 20 91.3% 

dwarf  pine 0 0 0 0 0 0 1 24 96.0% 

PA 97.0% 83.8% 89.4% 96.2% 73.8% 56.6% 96.7% 51.1%  

            κ =  0.873 OA =  91.1% 
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In the land cover map of  the BRs Salzburger Lungau and Kärntner Nockberge, shown in Figure 9, these 
clearly have coniferous forest character. Deciduous and mixed forests are found only sporadically, 
and at higher altitudes, European mountain pine can also be found. The centers of  settlement are 
found on the one hand in the Salzburg area around St. Michael to Tamsweg, and on the other hand 
in the Carinthian Gegental east of  the Millstätter See. The Tauern motorway, which formally cuts off  
part of  the park in the western part of  the Carinthian area, is also clearly recognizable. 
In the area of  the Hohe Tauern, similar to the BR Großes Walsertal, rock formations wrongly classified 
as built-up are detectable. 
 

 
Figure 9: Land cover map of  the BRs Salzburger Lungau and Kärntner Nockberge based on Sentinel-2-imagery from 2017-
2020. 
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3. Detailed land cover analysis for the BR Wienerwald (WP 3) 

For the tree species classification of  BR Wienerwald, 1283 training pixels were collected with the 
help of  data from the local forestry enterprises, which are shown in Figure 10. These represent 
seven deciduous and five coniferous tree species. For the classification itself, only the Sentinel-2-
data of  the 2018 vegetation period were used, as the results of  the classification model are to be 
compared with a classification containing data from the Sentinel-1 satellite pair only from the same 
year. In contrast to the Sentinel-2 satellites, which measure reflected light in the visible to short- 
wavelength infrared domain, these satellites, also provided by the Copernicus programme of  the 
EU, using radar sensors. This active imaging technology allows for the acquisition of  data useful 
for remote sensing even in the presence of  atmospheric conditions such as cloud cover. The 
Sentinel-1 data was provided by the Vienna University of  Technology (TU Vienna). 
 

 
Figure 10: Sample points (n=1283) representing the tree species, created for the BR Wienerwald by use of  orthophotos 
and data from forestry enterprises 

 
 
By using Sentinel-2 data listed in Table 6, one tree species classification for the entire forest area 
of  the BR Wienerwald was done. For the classification 14 Sentinel-2 scenes from the vegetation 
season of  2018 were used.   
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Table 6: Detailed summary of  the S2-scenes of  the 2018 vegetation period used for classification. Due the BR 
Wienerwald is in the overlapping area of  two orbits, the amount of  available image material is higher as usual.  

S2-Satellite Date Orbit Sun Zenith Angle Sun Azimuth Angle 

B 08.04.2018 79 43.02 157.29 

B 21.04.2018 122 37.72 160.39 
A 06.05.2018 122 33.06 159.37 

A 02.07.2018 79 28.23 147.73 

B 09.08.2018 122 34.38 155.97 

A 21.08.2018 79 38.49 154.81 

B 29.08.2018 122 40.40 160.44 

A 13.09.2018 122 45.59 163.93 

B 18.09.2018 122 47.41 164.98 

B 28.09.2018 122 51.10 166.96 

A 30.09.2018 79 52.25 164.21 

B 05.10.2018 79 54.08 165.12 

A 10.10.2018 79 55.90 165.94 

A 30.10.2018 79 62.82 168.14 

 
Table 7 shows the confusion matrix based on the OBB-results of  the tree species classification. 
The model achieved an overall accuracy of  83.2% for the 12 tree species. In general, conifers were 
better classified by the model than deciduous trees, with Picea abies (PA = 94.1%, UA = 93.4%) and 
Pinus nigra (PA = 93.0%, UA = 93.0%) were separated best. The worst result among the conifers 
was achieved for Larix decidua (PA = 72.0%, UA = 80.0%). 
The main tree species of  this region, Fagus sylvatica (PA = 90.7%, UA = 75.1%) achieved the best 
classification result among all deciduous trees, which can be explained partly by the high sample 
size used to train the model, but also Alnus glutinosa (PA = 80.8%, UA = 85.7%) as well as Quercus 
spp. (PA = 84.4%, UA = 84.8%) reached good results. The predict of  the tree species, merged with 
the land cover map of  chapter two, can be seen in Figure 11. 
 

Table 7: Confusion matrix based on the OOB-result of  the tree species model considering 7 broadleaved and 5 
needleleaved tree species for the BR Wienerwald (UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy). 

BRWW - S2 - Tree Species               

 FS AG FE QU PR CB AC PA PN PS LD PM UA 

Fagus sylvatica (FS) 272 4 10 26 5 22 15 0 2 0 6 0 75.1% 

Alnus glutinosa (AG) 1 42 3 1 1 1 0 0 0 0 0 0 85.7% 

Fraxinus excelsior (FE) 6 2 64 5 2 4 3 0 2 0 2 0 71.1% 

Quercus sp. (QU) 13 1 7 195 5 4 4 0 0 0 1 0 84.8% 

Prunus sp. (PR) 0 0 0 0 12 0 0 0 0 0 0 0 100.0% 

Carpinus betulus (CB) 3 2 1 1 0 40 1 0 0 0 0 0 83.3% 

Acer sp. (AC) 5 1 0 1 0 0 30 0 0 0 0 0 81.1% 

Picea abies (PA) 0 0 0 0 0 0 0 127 1 4 1 3 93.4% 

Pinus nigra (PN) 0 0 0 0 0 0 2 3 133 1 1 1 94.3% 

Pinus sylvestris (PS) 0 0 0 0 0 0 0 3 3 72 3 5 83.7% 

Larix decidua (LD) 0 0 2 1 0 0 0 0 2 2 36 2 80.0% 

Pseudotsuga menziesii (PM) 0 0 0 0 0 0 0 2 0 0 0 45 95.7% 

PA 90.7% 80.8% 73.6% 84.8% 48.0% 56.3% 54.5% 94.1% 93.0% 91.1% 72.0% 80.4% 
 

                  κ = 0.806 OA = 83.2% 

 



 

BRmon - Final report EES-MAB 16 

The parameters used for the Sentinel-1-classification are listed in Table 8. The pre-processed data 
was available via the Austrian Data Cube (EODC GmbH, 2020). For the classification Backscatter 
averages and ratios from VH and VV polarizations for leave-off  and leave-on conditions were 
used. In addition, several phenological parameters such as start-of-season were obtained from the 
time series data.   
 

Table 8: Summary of  the Sentinel-1-parameters for the BR Wienerwald used for classification provided by the TU 
Vienna. 

Parameter name Parameter description 

20180314_20180326_VH Temporally averaged backscatter for leaf  of  period, VH 
20180314_20180326_VV Temporally averaged backscatter for leaf  of  period, VV 
20180618_20180630_CPR Temporally averaged backscatter for leaf  on period, CPR 
20180618_20180630_VH Temporally averaged backscatter for leaf  on period, VH 
20180618_20180630_VV Temporally averaged backscatter for leaf  on period, VV 

Rat_Leaf_on_of Backscatter ratio between leaf  on and leaf  of  conditions 
eos_doy End of  season – day of  year 
los_days Length of  season in days 
sos_doy Start of  season – day of  year 

HPAR-C1_2018_VH_A073 HPAR, C1 cosine parameter, VH, ascending orbit 73 
HPAR-C1_2018_VH_D022 HPAR, C1 cosine parameter, VH, descending orbit 22 
HPAR-C1_2018_VV_A073 HPAR, C1 cosine parameter, VV, ascending orbit 73 
HPAR-C1_2018_VV_D022 HPAR, C1 cosine parameter, VV, descending orbit 22 
HPAR-C2_2018_VH_A073 HPAR, C2 cosine parameter, VH, ascending orbit 73 
HPAR-C2_2018_VH_D022 HPAR, C2 cosine parameter, VH, descending orbit 22 
HPAR-C2_2018_VV_A073 HPAR, C2 cosine parameter, VV, ascending orbit 73 
HPAR-C2_2018_VV_D022 HPAR, C2 cosine parameter, VV, descending orbit 22 
HPAR-C3_2018_VH_A073 HPAR, C3 cosine parameter, VH, ascending orbit 73 
HPAR-C3_2018_VH_D022 HPAR, C3 cosine parameter, VH, descending orbit 22 
HPAR-C3_2018_VV_A073 HPAR, C3 cosine parameter, VV, ascending orbit 73 
HPAR-C3_2018_VV_D022 HPAR, C3 cosine parameter, VV, descending orbit 22 
HPAR-M0_2018_VH_A073 HPAR, temporal average, VH, ascending orbit 73 
HPAR-M0_2018_VH_D022 HPAR, temporal average, VH, descending orbit 22 
HPAR-M0_2018_VV_A073 HPAR, temporal average, VV, ascending orbit 73 
HPAR-M0_2018_VV_D022 HPAR, temporal average, VV, descending orbit 22 
HPAR-S1_2018_VH_A073 HPAR, S1 sine parameter, VH, ascending orbit 73 
HPAR-S1_2018_VH_D022 HPAR, S1 sine parameter, VH, descending orbit 22 
HPAR-S1_2018_VV_A073 HPAR, S1 sine parameter, VV, ascending orbit 73 
HPAR-S1_2018_VV_D022 HPAR, S1 sine parameter, VV, descending orbit 22 
HPAR-S2_2018_VH_A073 HPAR, S2 sine parameter, VH, ascending orbit 73 
HPAR-S2_2018_VH_D022 HPAR, S2 sine parameter, VH, descending orbit 22 
HPAR-S2_2018_VV_A073 HPAR, S2 sine parameter, VV, ascending orbit 73 
HPAR-S2_2018_VV_D022 HPAR, S2 sine parameter, VV, descending orbit 22 
HPAR-S3_2018_VH_A073 HPAR, S3 sine parameter, VH, ascending orbit 73 
HPAR-S3_2018_VH_D022 HPAR, S3 sine parameter, VH, descending orbit 22 
HPAR-S3_2018_VV_A073 HPAR, S3 sine parameter, VV, ascending orbit 73 
HPAR-S3_2018_VV_D022 HPAR, S3 sine parameter, VV, descending orbit 22 

HPAR-STD_2018_VH_A073 HPAR, model standard deviation, VH, ascending orbit 73 
HPAR-STD_2018_VH_D022 HPAR, model standard deviation, VH, descending orbit 22 
HPAR-STD_2018_VV_A073 HPAR, model standard deviation, VV, ascending orbit 73 
HPAR-STD_2018_VV_D022 HPAR, model standard deviation, VV, descending orbit 22 
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The classification results for the model using only Sentinel-1 input data is shown in Table 9. The 
separation between coniferous and broadleaved trees works quite well, also the class-specific 
accuracies for the coniferous but also for Fagus sylvatica and Quercus spp. are quite good. Nevertheless, 
the overall accuracy of  the Sentinel-1 based classification was not able to come close to the 
Sentinel-2-based classifications.  
The combination of  Sentinel-1 and Sentinel-2 data in Table 10 shows slightly improvements 
compared to the Sentinel-2 only result. The overall accuracy is around 0.5 percentage points higher.  
 

Table 9: Confusion matrix based on the OOB-result for 7 broadleaved and 5 coniferous tree species of  the BR 
Wienerwald using Sentinel-1 data (UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy) 
BRWW – S1 - Tree Species 
              

 FS AG FE QU PR CB AC PA PN PS LD PM UA 

Fagus sylvatica (FS) 236 33 36 86 16 39 34 0 10 4 14 0 46.5% 

Alnus glutinosa (AG) 0 0 0 1 0 1 0 0 0 0 0 1 NA 

Fraxinus excelsior (FE) 3 2 6 2 1 1 4 0 0 0 0 0 31.6% 

Quercus sp. (QU) 47 14 40 140 2 18 13 0 4 1 0 0 50.2% 

Prunus sp. (PR) 1 0 0 0 1 0 0 0 0 0 0 0 50.0% 

Carpinus betulus (CB) 0 0 2 0 0 4 0 1 0 0 0 1 50.0% 

Acer sp. (AC) 0 0 0 0 0 0 0 0 0 0 0 0 NA 

Picea abies (PA) 1 0 0 0 0 2 0 119 2 7 0 24 76.8% 

Pinus nigra (PN) 7 2 2 1 0 5 2 1 114 19 1 5 71.7% 

Pinus sylvestris (PS) 0 0 0 0 1 0 0 5 11 44 1 5 65.7% 

Larix decidua (LD) 5 1 1 0 4 1 2 1 0 2 31 1 63.3% 
Pseudotsuga menziesii 

(PM) 0 0 0 0 0 0 0 8 2 2 3 19 55.9% 

PA 78.7% 0.0% 6.9% 60.9% 4.0% 5.6% 0.0% 88.1% 79.7% 55.7% 62.0% 33.9% 
 

                  κ = 0.469 OA = 55.7% 

 

Table 10: Confusion matrix based on the OOB-result for 7 broadleaved and 5 coniferous tree species of  the BR 
Wienerwald using Sentinel-1 and Sentinel-2 data together (UA: user’s accuracy, PA: producer’s accuracy, OA: overall 
accuracy) 
BRWW – S1+S2 - Tree Species 
              

 FS AG FE QU PR CB AC PA PN PS LD PM UA 

Fagus sylvatica (FS) 271 2 9 28 8 19 16 0 1 0 3 0 75.9% 

Alnus glutinosa (AG) 0 43 1 0 0 1 0 0 0 0 0 0 95.6% 

Fraxinus excelsior (FE) 6 2 64 6 0 3 4 0 1 0 2 0 72.7% 

Quercus sp. (QU) 16 1 9 193 6 4 3 0 0 0 0 0 83.2% 

Prunus sp. (PR) 0 0 0 0 10 0 0 0 0 0 0 0 100% 

Carpinus betulus (CB) 2 3 3 2 0 44 1 0 1 0 0 0 78.6% 

Acer sp. (AC) 4 1 0 0 1 0 29 0 0 0 0 0 82.9% 

Picea abies (PA) 0 0 0 0 0 0 0 129 1 4 1 5 92.1% 

Pinus nigra (PN) 1 0 0 0 0 0 2 3 135 2 2 0 93.1% 

Pinus sylvestris (PS) 0 0 0 0 0 0 0 2 3 70 2 3 87.5% 

Larix decidua (LD) 0 0 1 1 0 0 0 0 1 3 40 2 83.3% 
Pseudotsuga menziesii 

(PM) 0 0 0 0 0 0 0 1 0 0 0 46 97.9% 

PA 90.3% 82.7% 73.6% 83.9% 40.0% 62.0% 52.7% 95.6% 94.4% 88.6% 80.0% 82.1% 
 

                  κ = 0.811 OA = 83.7% 
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Figure 11: Tree species map of  the BR Wienerwald containing detailed information of  7 broadleaved as well as 5 
coniferous tree-species, based on Sentinel-2-imagery 

 
Using the Sentinel-2 tree species classification, a Biodiversity map was calculated for the 
BR Wienerwald. For this, a pixel-based Shannon-Index-calculation was applied on the raster image 
using following formula: 
 

Shannon index (H‘) −�𝑝𝑝𝑖𝑖 ln(𝑝𝑝𝑖𝑖) [0, ln(𝑆𝑆)] 
The Shannon-Index expresses the 
frequency of  the ith species in a 
community 

 
 
The relative biodiversity-range is between 0 and 2.197 for each individual pixel, whereby higher 
values indicate higher tree species diversity. Looking on the biodiversity-map in Figure 12, it is 
noticeable that tree species biodiversity shows a north-south gradient and a west-east gradient, with 
the south-west presenting the highest values.  
In addition, a map of  spectral species was calculated by BR Wienerwald, which is shown in Figure 
13. This concept by Féret and Asner (2014) assumes that species can be distinguished purely based 
on their spectral signature. However, the spectral species do not necessarily have to represent 
biological species. 
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Figure 12: Biodiversity-Shannon-Index calculated for each individual pixel, based on the tree species map of  the BR 
Wienerwald. Higher values indicate higher tree species biodiversity 

 

 
Figure 13: Spectral species map based on Sentienl-2 scenes of  the year 2018 
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4. Analysis of  grasslands in BR Wienerwald (WP 4) 

The reference polygons (“Offenlandkartierung”) were provided by the BR Wienerwald. First, an 
attempt was made to separate the main classes with a focus on the open land using classification 
algorithms. For this purpose, the same Sentinel-2 scenes as for the tree species classification were 
used and again one pixel from each polygon was used for training.  
The achieved classification result shown in Table 11 shows some potential for the separation of  
these broad classes. However, the class-specific accuracies are not satisfying. The reasons for this 
are the similarity of  some classes but especially the spatially small extent of  some classes which do 
not always fit with the 10 or 20 m pixels of  Sentinel-2. A further reduction of  the reference data 
in terms of  size or more intensive matching with higher resolution data, as was done for the tree 
species reference data set, could at least provide some improvement. Also, a restriction to fewer 
but possibly more relevant classes could be considered. 

 
Table 11: Confusion matrix based on the OOB-result for broad classes of  the open land mapping of  the BR Wienerwald 
using Sentinel-2 data (UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy) 

  AWG BRS BS FGR GHFG GGH NAG NRG NFSA NR OG TT W UA 

Äcker & Weingärten 
(AWG) 722 144 107 16 55 39 41 70 10 61 61 0 5 54.2% 

Böschungen, Raine & 
Säume (BRS) 15 61 19 8 17 8 3 6 3 12 10 2 1 37.0% 

Bauland und Siedlung 
(BS) 23 107 476 22 80 139 46 39 30 42 100 7 17 42.2% 

Feucht-Grünland & 
Röhrichte (GHFG) 11 12 7 187 17 17 58 53 5 18 21 1 14 44.4% 

Gebüsche, Hecken, 
Feldgehölze, 
Grabenwälder (GHFG) 

13 61 67 34 437 184 60 31 13 39 93 10 87 38.7% 

Gewässerbegleitende 
Gehölze & 
Hochstaudenfluren 
(GGH) 

1 16 47 17 77 146 11 12 2 5 30 11 18 37.2% 

Nährstoffarmes 
Grünland (NAG) 60 44 45 102 48 18 466 163 14 49 65 0 20 42.6% 

Nährstoffreiches 
Grünland (NRG) 113 46 50 175 45 52 187 528 0 30 131 0 4 38.8% 

Natürliche Fels- & 
Steinbildungen, 
Abbauflächen (NFSA) 

0 0 0 0 0 0 1 0 7 0 0 0 1 77.8% 

Neophyten- & 
Ruderalbestände (NR) 0 1 0 0 0 0 0 0 0 1 0 0 0 50.0% 

Obstbestände & 
sonstige 
Gehölzanpflanzungen 
(OG) 

41 48 132 33 103 98 65 89 3 23 461 2 17 41.3% 

Teiche & Tümpel (TT) 0 1 3 0 2 4 1 0 2 0 0 61 0 82.4% 

Wald (W) 1 6 47 32 119 65 61 9 7 25 28 8 816 66.7% 

PA 72.2% 11.2% 47.6% 29.9% 43.7% 19.0% 46.6% 52.8% 7.3% 0.3% 46.1% 59.8% 81.6%  

      κ = 0.469 OA = 55.7%      
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The experiences of  the FFG-project SatGrass (https://satgrass.at) highlighted that the amount of  
data acquired by Sentinel-2 alone is often not sufficient. This was also the case for the mowing 
analysis in the BR Wienerwald where the already presented data pool of  cloud-free Sentinel-2 data 
was not enough to produce dense time series. Therefore, the cut detection was performed on the 
so-called Harmonized Sentinel-2 and Landsat-8 (HLS) data due to the dense time series it provides 
and space requirement. HLS data is delivered at 30 m resolution, which means some small farm 
plots may not be detectable. It was decided that the trade-off  of  coarser resolution for a denser 
time series and smaller storage space requirements was acceptable.  
The used method was developed in the mentioned project SatGrass and applied to the polygons 
provided by the BR Wienerwald Management. Data was extracted at the plot (polygon) level for the 
years 2016, 2017, 2018, 2019, 2020 and 2021 and cut detection occurred between April 1st and 
November 15th for each year around the BR Wienerwald. The given shapefile contained polygons 
that could cover multiple grassland plots which could lead to missed cuts if  one of  the covered 
plots is in the processing growing while another is being cut. Each plot was shrunk by 10 meters 
(inner buffer) to account a little for the image ‘wobbling’ as the satellites do not extract images in 
the exact same spot every time. This also helps to ensure that only field values were being extracted, 
and not the boundaries of  the farm plot which may have more than just vegetation on them. First, 
potentially cloudy timestamps were identified and removed from the valid observations. Second, a 
light data smoothing was applied, keeping most originally extracted values while removing 
potentially cloudy and shadowy days which escaped masking. 
Mowing events, using the corrected valid observations, were then detected using methods to 
construct an idealized curve adapted from Griffiths in a similar project spanning the grasslands of  
Germany (Griffiths et al., 2020). An idealized growth curve was constructed by smoothing the 
actual valid NDVI and then iteratively smoothing the results of  each smoothing iteration, including 
maximum values in each iteration so that the upper envelope is always being smoothed.  
Cuts were then detected as the difference between the idealized and actual growth curves. If  this 
difference exceeded a -0.1 NDVI, a potential cut could be detected. Cuts could only be detected at 
timestamps which showed a negative net NDVI change. A binary classification model then checked 
each cut detection to ensure the detected cut was not a cloud which made it through the masking 
and preprocessing steps. If  the detection was a cloud, it was removed from potential detections. 
It is possible that multiple detections can occur per actual cut as grass is cut, dries, and is removed 
from the field if  the time series is dense enough. This was accounted for by temporally masking 
out detections 28 days from the most recent detection while moving through the timeline.   
The described cut detection method is a development by the Institute of  Geomatics, University of  
Natural Resources and Life Sciences Vienna for the SatGrass project. 
Figure 14 shows a visualization of  the cut detection methods. These methods were trained using 
only a Sentinel-2 time series for the year 2021 on homogenously managed grasslands. The known 
cut detection day of  June 13th was reported by independent analysts and its accuracy can be trusted. 
The time series depicts removed cloudy days and a false positive which may have skewed cut 
detection results if  not detected. Note how in May and early June there are NDVI dips, but no 
detected cut in the final output. This is due to the model which looks at each detected potential cut 
deciding this was a cloudy day, and not a cut. 

https://satgrass.at/
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Figure 14: Example of  cut detection with known cut dates (training data for developing the method for the satgrass 
project) 

 
Grassland use intensity is then estimated by counting the number of  cuts per season for each plot. 
The cuts per year were further averaged over the years and for all polygons larger than 0.1 ha. The 
plot in Figure 15 shows clear tendencies despite the large scattering within the classes. The 
intensively used classes (“Intensivwiese” and “Glatthafer-Fettwiese”) show the highest number of  cuts. 
Other classes (“Fels-Trockenrasen”) are characterized by a very low number of  cuts per year. Further 
analyses are planned in coordination with the BR Wienerwald Management to analyze differences 
between years and locations. Unfortunately, it was not possible to complete these analyses in the 
course of  the project due to time constraints on the part of  BR. 

 
Figure 15: Cuts per year averaged for the period 2016-2020 for different open land classes provided by the BR 
Wienerwald  
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5. Historical developments of  the land cover of  all Austrian BRs (WP 5) 

For the analysis of  land cover changes the reference points were checked for different time steps. 
For the BR Großes Walsertal orthoimages for different time steps were available. For the other BRs 
the Landsat data were analyzed for changes and in addition, google earth images and web GIS sites 
of  the federal states were checked. The examples in Figure 16 highlights that changes were already 
observed on some reference points, which have to be considered for the model training. 

 
Figure 16. Examples of  changes in land cover from 199x, 2001 and 2018 (CIR composite orthoimages) on reference 
data points for the BR Großes Walsertal. 

Using Landsat satellites, time series of  land cover classes were created for all three biosphere 
reserves, with the period from 1984 to 2018 divided into four time-intervals / periods (Table 12 - 
Table 14).  

Table 12: Overview of  the Landsat-scenes (data pool) used for the BR Wienerwald historical land cover-classification 
for different periods. 

BR Wienerwald 

1984-1992 1993-2004 2005-2011 2012-2018 

LT05_L1TP_190026_19840805_20200918_02_T1 LE07_L1TP_190026_20000910_20200917_02_T1 LT05_L1GS_190026_20111003_20200820_02_T2 LC08_L1TP_190026_20130415_20200912_02_T1 

LT05_L1TP_190026_19850824_20200918_02_T1 LE07_L1TP_190026_20010524_20200917_02_T1 LT05_L1TP_190026_20050527_20200902_02_T1 LC08_L1TP_190026_20130618_20200912_02_T1 

LT05_L1TP_190026_19860624_20201008_02_T1 LE07_L1TP_190026_20030327_20200915_02_T1 LT05_L1TP_190026_20050730_20200902_02_T1 LC08_L1TP_190026_20130805_20200912_02_T1 

LT05_L1TP_190026_19870510_20201014_02_T1 LT05_L1TP_190026_19930424_20200914_02_T1 LT05_L1TP_190026_20060615_20200901_02_T1 LC08_L1TP_190026_20130906_20200912_02_T1 

LT05_L1TP_190026_19880426_20200917_02_T1 LT05_L1TP_190026_19930814_20200913_02_T1 LT05_L1TP_190026_20070720_20200830_02_T1 LC08_L1TP_190026_20150320_20200909_02_T1 

LT05_L1TP_190026_19880731_20200917_02_T1 LT05_L1TP_190026_19950905_20200912_02_T1 LT05_L1TP_190026_20100407_20200824_02_T1 LC08_L1TP_190026_20160914_20200906_02_T1 

LT05_L1TP_190026_19890328_20200916_02_T1 LT05_L1TP_190026_19951023_20200912_02_T1 LT05_L1TP_190026_20110629_20200822_02_T1 LC08_L1TP_190026_20160930_20200906_02_T1 

LT05_L1TP_190026_19910910_20200915_02_T1 LT05_L1TP_190026_19961025_20200911_02_T1  LC08_L1TP_190026_20170410_20200904_02_T1 

LT05_L1TP_190026_19911028_20200915_02_T1 LT05_L1TP_190026_19970403_20200910_02_T1  LC08_L1TP_190026_20170528_20200903_02_T1 

LT05_L1TP_190026_19921014_20200914_02_T1 LT05_L1TP_190026_19970825_20200910_02_T1  LC08_L1TP_190026_20170613_20200903_02_T1 

 LT05_L1TP_190026_19980508_20200909_02_T1  LC08_L1TP_190026_20181006_20200830_02_T1 

 LT05_L1TP_190026_19980812_20200908_02_T1   

 LT05_L1TP_190026_19991018_20200907_02_T1   

 LT05_L1TP_190026_20000513_20200907_02_T1   

 LT05_L1TP_190026_20010430_20200906_02_T1   

 LT05_L1TP_190026_20010820_20200906_02_T1   

 LT05_L1TP_190026_20020620_20200905_02_T1   

 LT05_L1TP_190026_20030810_20200904_02_T1   
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Table 13: Overview of  the Landsat-scenes (data pool) used for the BR Großes Walsertal historical land cover-
classification for different periods. 

BR Großes Walsertal 

1984-1992 1993-2004 2005-2011 2012-2018 

LT05_L1TP_193027_19850728_20200918_02_T1 LE07_L1TP_193027_19990913_20200918_02_T1 LT05_L1TP_193027_20061010_20200831_02_T1 LC08_L1TP_193027_20200728_20200908_02_T1 

LT05_L1TP_193027_19850813_20200918_02_T1 LT05_L1TP_193027_19970915_20200909_02_T1 LT05_L1TP_193027_20061026_20200831_02_T1 LC08_L1TP_193027_20200914_20200919_02_T1 

LT05_L1TP_193027_19880720_20200917_02_T1 LT05_L1TP_193027_19990703_20200908_02_T1 LT05_L1TP_193027_20090815_20200827_02_T1 LC08_L1TP_194027_20140703_20200911_02_T1 

LT05_L1TP_193027_19891027_20200916_02_T1 LT05_L1TP_193027_20000619_20200906_02_T1 LT05_L1TP_193027_20090831_20200825_02_T1 LC08_L1TP_194027_20140719_20200911_02_T1 

LT05_L1TP_193027_19900928_20200915_02_T1 LT05_L1TP_193027_20010825_20200906_02_T1 LT05_L1TP_193027_20110704_20200822_02_T1 LC08_L1TP_194027_20171015_20200902_02_T1 

LT05_L1TP_193027_19901014_20200915_02_T1 LT05_L1TP_193027_20030916_20200904_02_T1 LT05_L1TP_193027_20110906_20200820_02_T1  

LT05_L1TP_193027_19910729_20200915_02_T1 LT05_L1TP_193027_20040630_20200903_02_T1 LT05_L1TP_194027_20090721_20200827_02_T1  

LT05_L1TP_193027_19910830_20200915_02_T1 LT05_L1TP_193027_20040902_20200903_02_T1 LT05_L1TP_194027_20100708_20200823_02_T1  

LT05_L1TP_193027_19920816_20200914_02_T1 LT05_L1TP_193027_20040918_20200903_02_T1   

LT05_L1TP_193027_19920917_20200914_02_T1 LT05_L1TP_194027_19980808_20200908_02_T1   

LT05_L1TP_194027_19910821_20200915_02_T1 LT05_L1TP_194027_19980909_20200908_02_T2   

 LT05_L1TP_194027_19990912_20200907_02_T1   

 LT05_L1TP_194027_20010731_20200906_02_T1   

 LT05_L1TP_194027_20040909_20200903_02_T1   

 

 

Table 14: Overview of  the Landsat-scenes (data pool) used for the BRs Salzburger Lungau and Kärntner Nockberge 
historical land cover-classification for different periods. 

BRs Salzburger Lungau and Kärntner Nockberge 

1984-1992 1993-2004 2005-2011 2012-2018 

LT05_L1TP_191027_19841031_20200918_02_T1 LE07_L1TP_191027_20020603_20200916_02_T1 LE07_L1TP_191027_20050729_20200914_02_T1 LC08_L1TP_191027_20180927_20200830_02_T1 

LT05_L1TP_191027_19851018_20200918_02_T1 LE07_L1TP_191027_20020721_20200916_02_T1 LE07_L1TP_191027_20070719_20200913_02_T1 LE07_L1TP_191027_20120630_20200909_02_T1 

LT05_L1TP_191027_19860903_20200918_02_T1 LE07_L1TP_191027_20030926_20200915_02_T1 LE07_L1TP_191027_20110628_20200910_02_T1 LE07_L1TP_191027_20120918_20200908_02_T1 

LT05_L1TP_191027_19870922_20201014_02_T1 LT05_L1GS_191027_20041006_20200903_02_T2 LE07_L1TP_191027_20111002_20200909_02_T1 LE07_L1TP_191027_20140924_20200905_02_T1 

LT05_L1TP_191027_19880807_20200917_02_T1 LT05_L1TP_191027_19940723_20200913_02_T1 LE07_L1TP_191027_20111018_20200909_02_T1 LE07_L1TP_191027_20141010_20200905_02_T1 

LT05_L1TP_191027_19900712_20200915_02_T1 LT05_L1TP_191027_19960930_20200911_02_T1 LT05_L1TP_191027_20050619_20200902_02_T1 LE07_L1TP_191027_20170831_20200830_02_T1 

LT05_L1TP_191027_19900914_20200915_02_T1 LT05_L1TP_191027_19970629_20200910_02_T1 LT05_L1TP_191027_20060910_20200831_02_T1 LE07_L1TP_191027_20181005_20200828_02_T1 

LT05_L1TP_191027_19900930_20200915_02_T1 LT05_L1TP_191027_19970901_20200909_02_T1 LT05_L1TP_191027_20061012_20200831_02_T1  

LT05_L1TP_191027_19901016_20200915_02_T1 LT05_L1TP_191027_19970917_20200910_02_T1 LT05_L1TP_191027_20090614_20200827_02_T1  

LT05_L1TP_191027_19920818_20200914_02_T1 LT05_L1TP_191027_20000909_20200907_02_T1 LT05_L1TP_191027_20091004_20200825_02_T1  

 LT05_L1TP_191027_20030918_20200904_02_T1 LT05_L1TP_191027_20100921_20200823_02_T1  

 LT05_L1TP_191027_20040819_20200903_02_T1 LT05_L1TP_191027_20110823_20200820_02_T1  

 
The overall accuracies of  the land cover classifications for the BR Wienerwald range between 83.4% 
and 92.1% (Table 15). For all biosphere reserves, the lowest classification accuracies are found in 
the longest dated time intervals 1984-1992, for which only Landsat 5 satellite images were used. 
The younger the time interval, the more a trend towards increased accuracy becomes apparent. 
This can be attributed to a better quality of  the data and a higher spectral resolution of  the 
Landsat-7 and Landsat-8-satellites. Both have an additional panchromatic channel, which records 
in a wavelength range of  0.515 µm to 0.896 µm and 0.503 µm to 0.676 µm, respectively, with a 
spatial resolution of  15 m. The higher the spectral resolution, the more accurate the data in general. 
The best result from the last period is also only slightly worse than the land cover classification 
result based on Sentinel-2 data (Chapter 2).  
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Table 15: Confusion matrix based on the OOB-result of  the BR Wienerwald land cover classification using Landsat-
imagery for the periods 1984-1992, 1993-2004, 2005-2011 and 2012-2018 (UA: user’s accuracy, PA: producer’s accuracy, 
OA: overall accuracy). 

BRWW - LS 1984-1992 

 farmland grassland built-up waterbody broadleaved needleleaved UA 

farmland 66 13 5 0 2 1 75.9% 

grassland 8 64 6 0 9 3 71.1% 

built-up 2 4 94 1 7 0 87.0% 

waterbody 0 0 0 12 0 0 100% 

broadleaved 0 16 2 1 350 28 88.2% 

needleleaved 0 6 0 0 16 65 74.7% 

PA 86.8% 62.1% 87.9% 85.7% 91.1% 67.0%  

        κ =  0.759 OA =  83.4% 

        

BRWW - LS 1993-2004 

 farmland grassland built-up waterbody broadleaved needleleaved UA 

farmland 65 8 3 1 3 0 81.2% 

grassland 10 73 1 0 8 1 78.5% 

built-up 0 6 100 1 3 1 90.1% 

waterbody 0 0 0 12 0 0 100% 

broadleaved 1 15 3 0 363 12 92.1% 

needleleaved 0 1 0 0 7 83 91.2% 

PA 85.5% 70.9% 93.5% 85.7% 94.5% 85.6%  

        κ =  0.843 OA =  89.1% 

        

BRWW - LS 2005-2011 

 farmland grassland built-up waterbody broadleaved needleleaved UA 

farmland 58 5 2 0 2 1 85.3% 

grassland 12 79 2 0 3 1 81.4% 

built-up 3 6 101 2 2 0 88.6% 

waterbody 0 0 0 12 0 0 100% 

broadleaved 2 10 2 0 368 13 93.2% 

needleleaved 1 3 0 0 9 82 86.3% 

PA 76.3% 76.7% 94.4% 85.7% 95.8% 84.5%  

        κ =  0.850 OA =  89.6% 

        

BRWW - LS 2012-2018 

 farmland grassland built-up waterbody broadleaved needleleaved UA 

farmland 69 7 2 0 0 0 88.5% 

grassland 5 81 0 0 7 0 87.1% 

built-up 2 5 103 0 3 1 90.4% 

waterbody 0 0 0 14 0 0 100% 

broadleaved 0 8 2 0 367 11 94.6% 

needleleaved 0 2 0 0 7 85 90.4% 

PA 90.8% 78.6% 96.3% 100% 95.6% 87.6%  

        κ =  0.886 OA =  92.1% 
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At first glance, the maps shown in Figure 17 suggest that the class distribution is all too different. 
However, detailed analyses show that small-scale changes are definitely discernible.  
 

 
Figure 17: Historical land cover maps of  the BR Wienerwald based on Landsat-imagery for the periods 1984-1992, 
1993-2004, 2005-2011 and 2012-2018 

 
The confusion matrices in Table 16 show the OOB-results of  the historical Landsat-models of  
the BR Großes Walsertal. The best overall accuracy of  88.5 % was achieved in the period 2011-
2018, while the results of  the various periods show the same decreasing trend in OA the older 
the periods are. Although most classes achieved good results for both, Producer’s and User’s 
accuracy, the classes mixed and broadleaved couldn’t be separated satisfying. This might be 
explained due to the lack of  samples in the coniferous dominated ecosystem. 
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Table 16: Confusion matrix based on the OOB-result of  the BR Großes Walsertal land cover classification using Landsat-
imagery for the periods 1984-1992, 1993-2004, 2005-2011 and 2012-2018 (UA: user’s accuracy, PA: producer’s accuracy, 
OA: overall accuracy). 

BRGWT - LS 1984-1992 
 grassland built-up rock waterbody broadleaved mixed needleleaved UA 

grassland 274 5 3 0 6 1 12 91.0% 

built-up 1 55 2 0 0 0 0 94.8% 

rock 1 2 99 2 0 0 1 94.3% 

waterbody 0 0 0 10 0 0 0 100% 

broadleaved 1 0 0 0 32 13 1 68.1% 

mixed 2 0 0 0 13 44 14 60.3% 

needleleaved 3 0 0 1 2 25 89 74.2% 

PA 97.2% 88.7% 95.2% 76.9% 60.4% 53.0% 76.1%  

          κ =  0.796 OA =  84.5% 

         

BRGWT - LS 1993-2004 
 grassland built-up rock waterbody broadleaved mixed needleleaved UA 

grassland 268 6 2 1 3 0 5 94.0% 

built-up 1 55 1 0 0 0 0 96.5% 

rock 3 1 101 1 0 0 0 95.3% 

waterbody 0 0 0 11 0 0 0 100% 

broadleaved 1 0 0 0 39 14 1 70.9% 

mixed 3 0 0 0 10 44 14 62.0% 

needleleaved 6 0 0 0 1 25 97 75.2% 

PA 95.0% 88.7% 97.1% 84.6% 73.6% 53.0% 82.9%  

          κ =  0.819 OA =  86.1% 

         

BRGWT - LS 2005-2011 
 grassland built-up rock waterbody broadleaved mixed needleleaved UA 

grassland 272 4 2 0 3 1 5 94.8% 

built-up 1 57 1 0 0 0 0 96.6% 

rock 3 1 101 0 0 0 0 96.2% 

waterbody 0 0 0 13 0 0 0 100% 

broadleaved 0 0 0 0 40 16 0 71.4% 

mixed 3 0 0 0 10 42 15 60.0% 

needleleaved 3 0 0 0 0 24 97 78.2% 

PA 96.5% 91.9% 97.1% 100% 75.5% 50.6% 82.9%  

          κ =  0.832 OA =  87.1% 

         

BRGWT - LS 2012-2018 
 grassland built-up rock waterbody broadleaved mixed needleleaved UA 

grassland 274 3 2 0 3 1 4 95.5% 

built-up 1 58 2 0 0 0 0 95.1% 

rock 1 1 100 0 0 0 0 98.0% 

waterbody 0 0 0 13 0 0 0 100.0% 

broadleaved 1 0 0 0 38 9 1 77.6% 

mixed 1 0 0 0 11 52 15 65.8% 

needleleaved 4 0 0 0 1 21 97 78.9% 

PA 97.2% 93.5% 96.2% 100.0% 71.7% 62.7% 82.9%  

          κ =  0.850 OA =  88.5% 
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The historical land cover maps of  the BR Großes Walsertal can be seen in Figure 18. While the BR 
is coniferous dominated, beroadleaved and mixed species can especially be found lower regions 
of  the valleys. The rock class was often misclassified as a building, which can be explained on the 
one hand by the low number of  samples, but above all by the spectral similarity of  the classes. 
 

 
Figure 18: Historical land cover maps of  the BR Großes Walsertal based on Landsat-imagery 

 

In the OOB results of  the BRs Salzburger Lungau and Kärntner Nockberge, the trend that younger 
periods produce better results is also evident, as in the case of  the other two BRs. However, the 
best result was achieved by period 2005-2011 with OA = 91.7 %, the worst by period 1984-1992 
with OA = 85.5 %. Similar to BR Großes Walsertal, the deciduous and mixed forest classes, which 
are represented with fewer samples, also achieved the lowest results. In particular, the class dwarf  
pine, which was very often classified as coniferous forest, stands out. Since the dwarf  pine itself  is 
also a coniferous forest species, this confusion seems obvious. 
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Table 17: Confusion matrix based on the OOB-result of  the BRs Salzburger Lungau and Kärntner Nockberge land cover 
classification using Landsat-imagery for the periods 1984-1992, 1993-2004, 2005-2011 and 2012-2018 (UA: user’s 
accuracy, PA: producer’s accuracy, OA: overall accuracy). 

BRSLKN - LS 1984-1992 
 grassland built-up rock waterbody broadleaved mixed needleleaved dwarf  pine UA 

grassland 411 9 5 2 3 4 32 4 87.4% 

built-up 0 57 0 1 1 1 0 0 95.0% 

rock 3 1 115 1 1 0 0 0 95.0% 

waterbody 0 0 1 48 0 0 0 0 98.0% 

broadleaved 1 0 1 0 16 18 2 0 42.1% 

mixed 3 0 0 0 35 47 7 1 50.5% 

needleleaved 47 1 1 0 5 29 687 17 87.3% 

dwarf  pine 1 0 0 0 0 0 1 25 92.6% 

PA 88.2% 83.8% 93.5% 92.3% 26.2% 47.5% 94.2% 53.2%  

            κ =  0.791 OA =  85.5% 
          

BRSLKN - LS 1993-2004 
 grassland built-up rock waterbody broadleaved mixed needleleaved dwarf  pine UA 

grassland 443 4 2 0 3 3 17 3 93.3% 

built-up 1 61 1 1 0 0 0 0 95.3% 

rock 1 2 117 0 0 0 0 0 97.5% 

waterbody 0 0 1 50 0 0 0 0 98.0% 

broadleaved 0 0 0 0 32 19 0 0 62.7% 

mixed 2 0 0 0 26 59 12 0 59.6% 

needleleaved 19 1 2 1 0 18 700 13 92.8% 

dwarf  pine 0 0 0 0 0 0 0 31 100% 

PA 95.1% 89.7% 95.1% 96.2% 52.5% 59.6% 96.0% 66.0%  

            κ =  0.868 OA =  90.8% 
          

BRSLKN - LS 2005-2011 
 grassland built-up rock waterbody broadleaved mixed needleleaved dwarf  pine UA 

grassland 453 3 3 0 1 0 11 3 95.6% 

built-up 0 64 0 1 0 0 0 0 98.5% 

rock 1 1 117 1 0 0 0 0 97.5% 

waterbody 0 0 1 50 0 0 0 0 98.0% 

broadleaved 1 0 0 0 29 17 1 0 60.4% 

mixed 0 0 0 0 28 63 7 0 64.3% 

needleleaved 11 0 2 0 3 19 709 20 92.8% 

dwarf  pine 0 0 0 0 0 0 1 24 96.0% 

PA 97.2% 94.1% 95.1% 96.2% 47.5% 63.6% 97.3% 51.1%  

            κ =  0.882 OA =  91.7% 
          

BRSLKN - LS 2012-2018 
 grassland built-up rock waterbody broadleaved mixed needleleaved dwarf  pine UA 

grassland 448 4 4 0 1 0 16 3 94.1% 

built-up 1 60 0 0 0 1 0 0 96.8% 

rock 4 4 117 1 0 0 0 0 92.9% 

waterbody 0 0 0 50 0 0 0 0 100% 

broadleaved 0 0 0 0 31 12 4 0 66.0% 

mixed 0 0 0 0 25 55 4 1 64.7% 

needleleaved 13 0 2 1 4 30 702 24 90.5% 

dwarf  pine 0 0 0 0 0 1 3 19 82.6% 

PA 96.1% 88.2% 95.1% 96.2% 50.8% 55.6% 96.3% 40.4%  

            κ =  0.858 OA =  90.1% 
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The historical land cover maps from BRs Salzburger Lungau and Kärntner Nockberge are shown in 
Figure 19. The strong coniferous forest dominance of  the inner alpine forests as well as a more 
densely populated region in Carinthia and in Salzburg are clearly visible. In particular, when looking 
at the coniferous forest areas, it is noticeable that from the period 1993-2004 onwards these appear 
to be significantly sparser than in the previous period 1984-1992. 
 
 
 

 
Figure 19: Historical land cover maps of  the BRs Salzburger Lungau and Kärntner Nockberge based on Landsat-imagery. 

 
Diagrams in Figure 20 show the change in land cover classes over time in the three biosphere 
reserves during the four comparison periods. The originally pixel-based evaluation has already been 
converted into hectares. It is obvious that the classes are subject to fluctuations over the 
comparison periods, which can be explained by the inaccuracies of  the classification. 
The drop of  the class coniferous wood in the BRs Salzburger Lungau and Kärntner Nockberge from 
the period 1984-1992 to 1993-2004 is striking. If  one compares the maps of  the periods in this 
area, it can be concluded that calamity events, caused by the storm event Uschi in November 2002, 
occurred here. 
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Figure 20: Change in land cover class over the four comparison periods for all biosphere reserves: (a) BR Wienerwald, 
(b) BR Großes Walsertal, (c) BR Salzburger Lungau, (d) BR Kärntner Nockberge and (e) Joint comparison of  the two 
interconnected BRs Salzburger Lungau and Kärntner Nockberge. 
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6. Monitoring possibilities and monitoring concept for all Austrian BRs (WP 6) 

In this chapter, various monitoring options of  the individual BRs will be explained in more detail. 
As a biosphere reserve should not only achieve ecological and social goals, but also economic ones, 
forestry uses play an important role. Figure 21 points out possibilities to identify or quantify these 
forest uses utilizing satellite data. The difference in the Soil Adjusted Vegetation Index (SAVI) 
between the year in which the satellite scene was taken and the previous year was calculated, using 
only one summer scene per year. The greater the difference, the higher the deviation of  the green 
leaf  mass of  the two points in time. In the time series, as an example and starting from the original 
condition of  the summer of  2017, a clearing colored in yellow can be seen in the following year. 
This expands towards the north and west in 2019. In the following year, further use is evident along 
the forest edges in the more northerly area. Since these are coniferous stands and due to the specific 
characteristics of  the use, it can be assumed that this is a forest management activity caused by bark 
beetle calamity in a secondary coniferous forest. 

 
Figure 21: Developing clear-cut, likely caused by bark-beetles. The infestation started in the yellow area and spread to 
the adjacent coniferous trees to the north (orange). Additional usage is visible on the northern area in the last figure 
(red). 

 
The following Figure 22 further shows that the SAVI is not only suitable for finding bare areas but 
is rather a sensitive proxy for green biomass. Thus, it can also be used to monitor and quantify even 
smaller, non-clear-cut uses such as thinning over a large area. 
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Figure 22: Example of  SAVI-responsibility to partial wood crops and thinning of  forest canopies due to silvicultural 
treatments in the BR Wienerwald. 

 
Another monitoring possibility is the complete land-use change from one class to another. Figure 
23 represents the evolution of  a stone pit in the BR Wienerwald based on the historical Landsat time 
series. In the BR Wienerwald itself, there is no dedicated class of  rock, but due to the spectral 
similarity, the class built-up can be used as a proxy. In the first period, the young, still relatively 
small quarry is visible. With further stone mining, a different class is assigned, indicating intensive 
quarrying. Subsequently, the quarry spreads further and further to the east, with the western, older 
area becoming increasingly grassy again. 
 
Monitoring can also be done on a larger scale and for specific events in time. As already mentioned 
in a previous chapter, the storm Uschi swept across Western Europe on 16.11.2002 and was 
responsible for large amounts of  damaged wood, especially in the provinces of  Carinthia and 
Salzburg. This impact can be seen clearly in the graphs in the former chapter, but also in Figure 24 
a significant land-use change can be recognized. On the left side, the situation before the event 
shows nearly closed forest areas on the west side of  the hillside, whereas the scene on the right-
side shows the dramatic loss of  wood surface, which passed over from the class needleleaved to 
the class grassland after the event. 
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Figure 23: Developing of  a stone quarry over the four periods in the BR Wienerwald. 

 

 
Figure 24: Impact of  the 2002s storm ‘Uschi’ in the BRs Salzburger Lungau and Kärntner Nockberge. Wester, wind exposed 
slopes appear blank after the event. 
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The accuracies that can be achieved with Sentinel-2 are by far higher than the Landsat-based 
analysis. This makes it easier to detect and monitor even slow changes such as shrub encroachment. 
With their high temporal, spatial, and spectral resolution, the two Sentinel-2 satellites provide 
excellent data for monitoring changes concerning vegetation and will provide a much better 
representation of  the changes analyzed here with Landsat. An ongoing update of  the models 
should be strived for or change analyses directly on the input data can lead to better or more 
meaningful results. In any case, the classification should be repeated e.g. every three to five years 
to check whether changes in classes such as tree species can be detected. Shorter intervals have the 
disadvantage that they are not always guaranteed due to cloud cover. Therefore, more sophisticated 
methods are needed to detect changes in near real-time, which are currently being researched and 
will be available soon. In this way, forest management activities but also disturbances in the forest 
could be recorded quickly. Also, in open areas, it will be useful to carry out continuous analyses to 
detect changes in the management of  mainly sensitive areas. The detailed analyses carried out in 
the BR Wienerwald regarding tree species as well as the analysis of  open land management have 
great potential to be applied to the other BRs. The already described problems concerning data 
availability (overlapping, frequent clouds, influence of  shadows) have to be considered. 
Nevertheless, useful results can be expected here as well. Especially concerning the analysis of  
changes, the radar-based Sentinel-1 data have enormous potential, since the temporal sequence is 
guaranteed. However, for these data, the demanding topography in the mountainous areas is still a 
big challenge. Finally, it is recommended to all BRs to increase the use of  remote sensing data for 
different purposes, even if  not all analyses can be done in-house, the great potential is currently 
underused. Likewise, many issues not addressed in this project can also be supported by the use of  
remote sensing. Furthermore, it is recommended to push additional initiatives in the field of  
reference data, because only with high-quality information from the ground the great potential of  
earth observation data like Sentinel-2 can be exploited.  
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