
Graser

54

MovingPandas: Efficient Structures

for Movement Data in Python

 GI_Forum 2019, Issue 1

Page: 54 - 68

Full Paper

Corresponding Author:

anita.graser@ait.ac.at

DOI: 10.1553/giscience2019_01_s54

Anita Graser

AIT Austrian Institute of Technology, Vienna, Austria

University of Salzburg, Austria

Abstract

Movement data analysis is a high-interest topic in many scientific domains. Even though

Python is the scripting language of choice in the GIS world, currently there is no Python

library that would enable researchers and practitioners to interact with and analyse

movement data efficiently. To close this gap, we present MovingPandas, a new Python

library for dealing with movement data. Its development is based on an analysis of state-

of-the-art conceptual frameworks and existing implementations (in PostGIS, Hermes, and

the R package trajectories). We describe how MovingPandas avoids limitations of Simple

Feature-based movement data models commonly used to handle trajectories in the GIS

world. Finally, we present the current state of the MovingPandas implementation and

demonstrate its use in stand-alone Python scripts, as well as within the context of the

desktop GIS application QGIS. This work represents the first step towards a general-purpose

Python library that enables researchers and practitioners in the GIS field and beyond to

handle and analyse movement data more efficiently

Keywords:

trajectory, spatio-temporal analysis, python, movement data analysis

1 Introduction

Movement data sources are highly heterogeneous. Datasets vary with respect to temporal
resolution (frequent to sparse, regular or irregular), spatial resolution (fine to coarse), spatial
dimensions (2D or 3D), movement constraints (network-constrained or not), movement
models (Lagrangian or Eulerian), tracking system (cooperative or uncooperative), data size
and privacy constraints. In geography, traditionally, movement data availability was often
limited to information about flows between origins and destinations (OD flows). In contrast,
modern data sources provide increasingly detailed episodic or quasi-continuous movement
data (Andrienko et al., 2013). Movement data that goes beyond simple OD flows is
commonly referred to as trajectory data. Demšar et al. (2015) define trajectory data as a
discrete time series of measured locations. Trajectories can also stem from simulations (Loidl
et al., 2016) or other movement data generators (Technitis et al., 2015). Since trajectories

mailto:anita.graser@ait.ac.at

Graser

55

appear in many different scientific domains (including physics, biology, ecology, chemistry,
transport and logistics, astrophysics, remote sensing, and more), it is not surprising that the
questions posed to trajectory data vary strongly across disciplines. Additionally, neither the
terminology for writing about movement data analysis nor the core functionality of software
tools for handling movement data has so far been well defined.

There are many libraries dealing with movement data, particularly in R (Klus & Pebesma,
2015). For example, Pebesma (2018) lists 27 R packages dealing with movement data.
However, while Python is the scripting language of choice in both proprietary and open-
source GIS environments, to the best of our knowledge there is currently no comparable
Python library available that would enable researchers and GIS practitioners to efficiently
interact with and analyse movement data. In this paper, we therefore introduce
MovingPandas, an extension to the Python data analysis library Pandas (2018) and its spatial
extension GeoPandas (2018), to add functionality for dealing with trajectory data.

The remainder of this paper is structured as follows: Section 2 describes the terminology and
concepts currently used for describing trajectory data. We also analyse current conceptual
frameworks and existing implementations in order to identify relevant core concepts and
functionality for MovingPandas. Section 3 describes the current state of the MovingPandas
implementation and demonstrates its usage. Finally, we discuss our plans for the further
development of MovingPandas and how it fits into research agendas that focus on
understanding and extracting knowledge from movement data.

2 State-of-the-art trajectory analysis

There is no consistent terminology in the field of movement data analysis. Depending on
the research group and application domain, terms such as trajectory, track, path, moving
point, move, travel and segment are used to describe the same or different concepts related
to movement. Similarly, intervals without movement are referred to using terms such as
stops, stays, events or activities. Finally, the individual data points are known, for example, as
nodes, (spatio-temporal) positions, or locations.

Trajectory definitions vary. For example, Alvares et al. (2007) and Baglioni et al. (2009)
define a trajectory as a sequence of moves and stops. According to Andrienko et al. (2013),
the trajectory of a moving object is a function that defines a sequence of spatial positions
(and thematic attributes) for a certain time interval. In contrast, for Spaccapietra et al. (2008)
a trajectory is a segment of the spatio-temporal path covered by a moving object that
represents a semantically meaningful unit of movement for the application. In other words, a
trajectory is a travel (for some application-related purpose) from an initial starting point to
the final destination. Similarly, in the R package trajectories (Klus & Pebesma, 2015), a track is
meant to represent a series of consecutive location/timestamps that are not interrupted by
another activity. Segments are connections between consecutive locations.

In addition to the pure measurements, there are also semantics. Vouros et al. (2018) present
a trajectory ontology focusing on semantic trajectories. A trajectory is a temporal sequence of
semantic nodes or trajectory segments. A semantic node specifies the position of a moving

Graser

56

object in a time period or at a particular instant, or a specific set of spatio-temporal positions
of a single moving object; the node can be associated with contextual information. The
authors also describe the concept of open trajectories, where the last semantic (terminal)
node has not yet been reached, and closed trajectories, in which the last node is specified. A
trajectory can also be classified as an intended trajectory (i.e. a planned or predicted one).
Finally, Vouros et al. (2018) use hasParent and hasSuccessive properties to relate a trajectory
to its parent and successive trajectories, respectively.

2.1 Data models

As well as choices in terminology, there exist a variety of approaches to represent trajectory
data. Most approaches deal only with moving point data, while work on two-dimensional
moving objects, such as moving regions, is rarer (Siabato et al., 2018). Nonetheless, moving
regions, with application areas including modelling of forest fires, oil spills or the spread of
invasive species, are highly relevant in the respective fields. For this paper, however, we
focus on moving point data.

Geometries with timestamps (Simple Features-based trajectories) are the most common
approach in GIS. This data model uses points or lines with timestamp attributes to preserve
both spatial and temporal information. For example, the CSV (comma-separated value) data
model used by the Movebank Data Repository (Wikelski & Kays, 2017) stores points with
timestamps, while the OGC® Moving Features standard (OGC, 2017) uses lines with start
and end timestamps.

Like the Moving Features standard, the R package trajectories (Pebesma et al., 2018) also
implements the line-based approach: a track is meant to represent a single track followed by
a person, animal or object, i.e. a series of consecutive location/timestamps that are not
interrupted by another activity. The connections slot stores all the elements of a track in a
data frame with a line on each row, with x0, y0, x1, y1 (the first four values) followed by
attributes.

The temporal support for trajectories in PostGIS (Graser, 2018) uses a variation of the
Simple Features concept. It stores movement data in LineStringM objects, where the
measure variable M contains the temporal information. The function ST_IsValidTrajectory
ensures that the temporal component increases from one vertex to the next. Matching a
numerical M value to datetime requires application logic, since the database does not enforce
any specific rules. Graser (2018) uses unixtime, but any other numerical representation of
time could be used.

In the context of moving object databases, Pelekis et al. (2015) use the concept of sliced
representation introduced by Güting et al. (2000). The key idea in this concept is to
decompose movement into fragments, called slices, such that the movement within a slice
can be described by a function. For example, Hermes supports first degree polynomials,
circular arcs and the constant function. A moving point object is a collection of time periods
and corresponding movement functions.

Finally, trajectories can be modelled as time series of locations. For example, Chen et al.
(2005), building on established methods for one-dimensional time series, use the concept of

Graser

57

two-dimensional (xy) or three-dimensional (xyz) time series data for trajectories to
derive similarity measures.

2.2 Functions for trajectories

Trajectory analysis encompasses many different analysis types, such as segmentation,
similarity analysis, clustering, outlier detection, classification, hotspot detection, pattern
detection, and flock/group/herd detection. All these analysis types depend on measures
defined on trajectories (Wiratma et al., 2017). Trajectory functions enable us to compute
these measures. As with terminology and concepts, however, there is no consistent
framework for the classification of trajectory functions. Recent work includes Dodge et al.'s
(2008) framework of movement and classification of movement patterns, and Wiratma et
al.'s (2017) measures for trajectories and groups of trajectories.

On the technological side, we will have a closer look at implemented functions for
movement data in the spatial database PostGIS (Graser 2018), the moving object database
Hermes (Pelekis et al., 2015), and the R package trajectories (Pebesma et al., 2018; Moradi et
al., 2018 preprint). Since it is clear that each implementation was created for a different
research or application focus, it is challenging to devise a systematic and objective means of
comparison. It is furthermore worth noting that Hermes syntax and functionality differ
between the Oracle implementation (Hermes@Oracle) described in Pelekis et al. (2015) and
the PostGIS implementation (Hermes@PostGIS) documented in Hermes (2017). The
Hermes functionality described in this paper is a superset of the functions documented in the
two sources.

To characterize movement measures or parameters for individual moving objects, we
use the framework devised by Dodge et al. (2008). This framework distinguishes three
parameter groups (primitive, primary and secondary derivatives) in three dimensions (spatial,
temporal and spatio-temporal). Wiratma et al. (2017) call these ‘measures for a trajectory in
isolation’. Furthermore, we distinguish between global measures that describe the trajectory
as a whole and local measures that describe only parts of the trajectory. This is very much in
line with Pelekis et al. (2015), who state that most Hermes operations come in two versions:
the first is related to a user-defined point in time, while the second is time-independent.
Trajectory implementations should support access to, or computation of, these parameters.
Table 1 provides an overview of the coverage of these measures in PostGIS, Hermes and R
trajectories.

Position (x,y) and instance or interval (t) are the spatial and temporal primitives. The
PostGIS trajectory object provides direct access to the positions of the whole trajectory. In
Hermes, the function f_trajectory() projects the moving point representation to a
geometry on the Cartesian plane. R trajectories provide an @sp slot. To access the local
position at a certain point in time, Hermes at_instant(t) and PostGIS
ST_LocateAlong(trajectory,t) return the position of the moving object at time t. In R
trajectories, approxTrack() is used to access interpolated positions along a trajectory. It
supports different interpolators, including straight line and smooth or not smooth splines.

To access the local time, PostGIS ST_InterpolatePoint(trajectory,point) returns
the m-value along the trajectory that is closest to the point provided. Similarly, Hermes

Graser

58

provides atPoint(trajectory,point), as well as Moving_Point.at_linestring-

(linestring). R trajectories does not support accessing the time at a certain location.

Spatial primary derivatives are distance, direction and spatial extent. These derivatives can be
measured in different ways. Distance, for example, can be measured for the whole trajectory
(PostGIS ST_Length(trajectory); Hermes Length(trajectory)), or between the
trajectory start and a specific point along the trajectory (Hermes f_length(tolerance,t)).
Similarly, direction can be measured as average direction (Hermes
anglexxavg(trajectory)), or as local direction at a specific point along the trajectory
(PostGIS ST_Azimuth(pointA,pointB); Hermes f_direction(Moving_Point,t)).
Finally, spatial extent can be interpreted in many ways, including a simple bounding box, or,
for example, Wiratma et al.'s (2017) measure of area covered by a trajectory (using a disc of
radius r). In PostGIS, this can be computed using ST_Buffer(trajectory) or
ST_Envelope(trajectory). R trajectories offers access to summary statistics, such as
distance and average speed, as well as spatial (bbox) and spatio-temporal (stbox) extent.

Temporal primary derivatives are duration (period of time in which a movement is observed)
and travel time. PostGIS does not provide a built-in function to directly access duration.
Therefore, this measure must be computed from the timestamps of the trajectory start and
end points. Hermes provides duration(trajectory). The R trajectories summary provides
minimum and maximum times.

Spatio-temporal primary derivatives are speed (rate of change of the object’s position) and
velocity (rate of change of position and direction). Hermes provides
Moving_Point.f_speed(t) and averageSpeed(trajectory). In PostGIS, there are no
built-in functions to compute speed or velocity. In R trajectories,
Trajectory@connections provides access to local speed information.

In the implementations investigated, there are almost no built-in functions to directly
compute secondary derivatives as described by Dodge et al. (2008). Spatial secondary
derivatives are spatial distribution, change of direction, and sinuosity (also known as detour
or straightness index) (Wiratma et al., 2017). Temporal secondary derivatives are temporal
distribution and change of duration. Spatio-temporal secondary derivatives are acceleration
and approaching rate. The closest thing to the spatial distribution measure is the R trajectories
statistical functions to detect trajectory patterns based on point patterns using, for example,
density and idw.

Graser

59

Table 1: Comparison of built-in functions for direct access to measures of individual moving objects for

the whole trajectory ‘globally’ (G) and locally (L)

 PostGIS HERMES R trajectories

Spatial
primitives

Position
(x,y)

G trajectory
Moving_Point
.f_trajectory()

trajectory@sp

as(trajectory,
"Spatial")

L

ST_LocateAlong
(trajectory,t)

ST_LocateBetween
(trajectory,t1,t2)

atInstant
(trajectory,t)

atPeriod
(trajectory,perio
d)

Temporal
primitives

Instance
or
interval
(t)

G trajectory
index(trajector
y)

L
ST_InterpolatePoint
(trajectory,point)

atPoint
(trajectory,point
)

Moving_Point
.at_linestring
(linestring)

Spatial
primary
derivative
s

Distance

G
ST_Length
(trajectory)

length
(trajectory)

summary(traject
ory)

trajectory
@connections

L
Moving_Point
.f_length
(tolerance,t)

Direction

G
ST_Azimuth
(pointA,pointB)

anglexxavg
(trajectory)

anglexx(trajector
y)

Summary
(trajectory)

L
ST_Azimuth
(pointA,pointB)

f_direction
(Moving_Point,t)

anglexx(segment)

Trajectory
@connections

Spatial
extent

G

ST_Buffer
(trajectory)

ST_Envelope
(trajectory)

trajectory.bbox
or
trajectory.stbo
x

Temporal
primary
derivates

Duration G
duration
(trajectory)

Summary
(trajectory)

Spatio-
temporal
primary
derivates

Speed

G
averageSpeed
(trajectory)

Summary
(trajectory)

L
Moving_Point
.f_speed(t)

Velocity

Graser

60

Measures for multiple moving objects can be divided into measures for one trajectory
among other trajectories, measures for a single group of trajectories, and measures between
groups of trajectories (Wiratma et al., 2017).

Pairwise similarity or distance has been studied extensively. Well-known geometric similarity
measures are the Fréchet distance and the Hausdorff distance, which are implemented in R
trajectories (dists, frechetDist) and PostGIS (ST_HausdorffDistance), respectively.
Time-aware trajectory similarity measures include time-focused distance, dynamic time-
warping distance, and the edit distance (Wiratma et al., 2017). The moving objects database
Hermes provides a series of distance measures for trajectories, including Generalized
SpatioTemporal Locality Inbetween Polylines (GenSTLIP), Generalized Speed-Pattern
STLIP (GenSPSTLIP), Generalized Acceleration-Pattern STLIP (GenACSTLIP), Directional
Distance (DDIST), and Temporal DDIST (TDDIST). In PostGIS, time-aware distance
measures are limited to closest points of approach (CPA) measures
(ST_ClosestPointOfApproach, ST_DistanceCPA, ST_CPAWithin).

Measures for a single group of trajectories include area covered, size (number of trajectories),
density, and formation stability. Finally, measures between groups of trajectories include
group similarity, closeness and centrality (Wiratma et al., 2017).

Working with trajectories also requires trajectory data manipulation functions, for
example to clip trajectories to an area of interest, or to annotate trajectories with context
information. Hermes supports intersection overlays (intersection) to extract the portion
of the moving point inside a given region. PostGIS's intersection currently drops m-values
and therefore makes it harder to create annotated trajectories (Westermeier 2018).

Range queries to extract trajectories that are fully contained within a given spatio-temporal
window are supported by Hermes (TB_MP_In_SpatioTemporal_Window) and PostGIS
(&&& operator). Similarly, Hermes also directly supports topological queries to extract
trajectories that enter and/or leave a certain area (TB_Topological_Query). In PostGIS,
the same can be achieved by checking whether the start and/or end points fall within those
areas. Convenient spatio-temporal nearest-neighbour queries are supported by Hermes
(IncPointNNSearch, IncTrajectoryNNsearch).

Other trajectory data manipulation functions are segmentation functions to split the raw
location stream into meaningful trajectories and stops, functions for downsampling, and
functions for generalizing trajectory data. R trajectories implements downsample (temporal)
and generalize (spatio-temporal).

An important topic, particularly from a geospatial perspective, is the handling of geographic
coordinates. Hermes is designed to work with data in Euclidean space. Vodas (2013)
describes how Hermes implements transformation of Geographic to/from Topocentric
conversion (EPSG 9837). PostGIS, on the other hand, supports a wide variety of coordinate
reference systems and can handle planar, spherical and ellipsoidal computations. R trajectories
also supports both Cartesian and geodetic coordinates.

Finally, R trajectories also implements visualization functions (stcube, stplot), while
PostGIS trajectories can be visualized in Desktop GIS. Hermes can export its trajectories for
visualization purposes.

Graser

61

This analysis of existing conceptual frameworks and implementations provides an overview
of core functionality for movement data analysis libraries. The presentation of possible
implementations in PostGIS, Hermes and R trajectories is not meant to be exhaustive.
Nonetheless, the overview presents a solid base to determine the necessary core functionality
for the development of our own movement data analysis library.

3 MovingPandas

Common Simple Features-based data models where trajectories consist of geometries with
timestamps can be readily implemented in GIS environments, but they suffer from a lack of
support for the temporal dimension, such as functions for duration and speed.

In stark contrast, the Pandas (2018) data analysis library has been developed with a strong
focus on time series. By choosing Pandas data structures (1D series and 2D DataFrames) as
a base for MovingPandas, we gain access to the library’s built-in functionality, including:
flexible indexing on timestamps and other column types; memory-efficient sparse data
structures for data that is mostly missing or mostly constant; an integrated ‘group by’ engine
for aggregating and transforming datasets, and moving window statistics (rolling mean,
rolling standard deviation, etc.).

GeoPandas (2018) extends the data types that can be used in Pandas DataFrames, thus
creating GeoDataFrames. Geometric operations on these spatial data types are performed by
Shapely (2018). Geopandas further depends on Fiona (2018) for file access (which enables
direct reading of GeoDataFrames from common spatial file formats, such as GeoPackage or
Shapefile), and descartes and matplotlib for plotting.

The source code of MovingPandas is available on Github
(https://github.com/anitagraser/movingpandas). MovingPandas uses the following
terminology. A trajectory is, or more correctly has, a time-ordered series of geometries. These
geometries and associated attributes are stored in a GeoDataFrame df, as shown in Figure 1.
Furthermore, a trajectory can have a parent trajectory and can itself be the parent of
successive trajectories. Raw unsegmented streams of movement data, as well as semantically
meaningful subsections or other subsections, can therefore be represented as trajectories.
Depending on the use case, the trajectory object can access a point-based or a line-based
representation of its data.

Graser

62

Trajectory

id: string

df: GeoDataFrame

crs: string

parent: Trajectory

__str__()

set_crs(crs)

has_parent(): boolean

is_latlon(): boolean

to_linestring(): shapely.geometry.LineString

to_linestringm_wkt(): string

get_start_location(): shapely.geometry.Point

get_end_location(): shapely.geometry.Point

get_bbox(): (minx, miny, maxx, maxy) tuple

get_start_time(): datetime

get_end_time(): datetime

get_duration(): timedelta

get_length(): float

get_direction(): float

get_row_at(timestamp, method='nearest'): pandas.Series

get_position_at(timestamp, method='nearest'): shapely.geometry.Point

interpolate_position_at(timestamp): shapely.geometry.Point

get_linestring_between(timestamp1, timestamp2): shapely.geometry.LineString

get_segment_between(timestamp1, timestamp2): Trajectory

add_direction()

add_speed()

make_line(df): shapely.geometry.LineString

clip(shapely.geometry.polygon): Trajectory

intersection(fiona.feature): Trajectory

Figure 1: Trajectory class diagram

The functionality currently implemented in MovingPandas covers most of the primitive and
primary derivative measures for individual moving objects defined by Dodge et al. (2008), as
listed in Table 2. The functions for computing speed and direction (add_speed() and
add_direction()) add a new column to the trajectory's GeoDataFrame. Individual local
values can be accessed using get_row_at(timestamp, method='nearest'). Global or
window statistics can be computed using appropriate aggregations.

Graser

63

Table 2: MovingPandas functionality

Spatial
primitives

Position
(x,y)

G to_linestring(): shapely.geometry.LineString

L

get_position_at(timestamp, method='nearest'):
shapely.geometry.Point

get_segment_between(timestamp1, timestamp2): Trajectory

Temporal
primitives

Instance or
interval (t)

 < not implemented >

Spatial
primary
derivatives

Distance G get_length(): float

Direction
G get_direction(): float

L add_direction()

Spatial
extent

G get_bbox(): (minx, miny, maxx, maxy) tuple

Temporal
primary
derivates

Duration G get_duration(): timedelta

Spatio-
temporal
primary
derivates

Speed L add_speed()

Velocity < not implemented >

In addition, it is possible to clip trajectories with polygons, and to compute intersections with
polygons. Like GeoDataFrames, trajectories come with coordinate reference system
information. Geometric operations on geographic coordinates use spherical geometry, while
operations on projected coordinates use planar geometry. All distances are computed in two
dimensions, and no specific 3D functions have so far been implemented. To handle 3D
trajectories properly, it will be necessary to provide appropriate ellipsoidal geometry
functions.

3.1 Application examples

This section demonstrates how MovingPandas can be used to handle movement data in
stand-alone Python scripts, as well as within the desktop GIS application QGIS. The two
application examples in this section use the Geolife dataset published by Zheng, Li et al.
(2008), Zhen, Zhang et al. (2009), and Zhen, Xie et al. (2010).

The first example, shown in the Listing, illustrates how the movement data of multiple
moving objects can be read from a common spatial data file format (GeoPackage), converted
to trajectory objects, and finally clipped by a polygon. First, the content of the GeoPackage is
read into a GeoDataFrame and the index is set to the time attribute. Then, the
GeoDataFrame is grouped by trajectory ID and each resulting grouping is converted to a
trajectory. Finally, each trajectory is clipped by a polygon.

Graser

64

Listing: Reading trajectory data from GeoPackage and clipping by a polygon

>>> import os
>>> import sys
>>> import pandas as pd
>>> from geopandas import read_file
>>> from shapely.geometry import Polygon
>>> from trajectory import Trajectory

>>> xmin, xmax, ymin, ymax = 116.3685035,116.3702945,39.904675,39.907728
>>> polygon = Polygon([(xmin,ymin), (xmin,ymax), (xmax,ymax), (xmax,ymin), (xmin,ymin)])

>>> df = read_file(os.path.join(script_path,'demodata_geolife.gpkg'))
>>> df['t'] = pd.to_datetime(df['t'])
>>> df = df.set_index('t')
>>> print("Finished reading {} rows".format(len(df)))

Finished reading 5908 rows

>>> trajectories = []
>>> for key, values in df.groupby(['trajectory_id']):
>>> trajectory = Trajectory(key, values)
>>> print(trajectory)
>>> trajectories.append(trajectory)
>>> print("Finished creating {} trajectories".format(len(trajectories)))

Trajectory 1 (2008-12-11 04:42:14 to 2008-12-11 05:15:46) | Size: 466 | Length: 6210.1m
LINESTRING (116.391305 39.898573, 116.391317 39.898617, 116.390928 39.898613, ...
Trajectory 2 (2009-06-29 07:02:25 to 2009-06-29 11:13:12) | Size: 897 | Length: 38728.7m
LINESTRING (116.590957 40.071961, 116.590905 40.072007, 116.590879 40.072027, ...
Trajectory 3 (2009-02-04 04:32:53 to 2009-02-04 11:20:12) | Size: 1810 | Length: 12739.2m
LINESTRING (116.385689 39.899773, 116.385654 39.899651, 116.385548 39.899699, ...
...

Finished creating 5 trajectories

>>> intersections = []
>>> for key, values in df.groupby(['trajectory_id']):
>>> traj = Trajectory(key, values)
>>> for intersection in traj.clip(polygon):
>>> intersections.append(intersection)
>>> print("Found {} intersections".format(len(intersections)))

Found 3 intersections

To further demonstrate the usefulness of MovingPandas in the context of desktop GIS
applications, we implemented a QGIS plugin called Trajectools
(https://plugins.qgis.org/plugins/processing_trajectory/) building upon MovingPandas.
Figure 2 shows a screenshot of this second application, with results of executing the tools to
add direction and speed information to a layer containing Geolife data. Figure 3 shows the
alternative line-based visualization using the LineStringM trajectory representation.

Graser

65

Figure 2: MovingPandas integration in QGIS, showing added direction and speed information

Figure 3: MovingPandas integration in QGIS showing the LineStringM trajectory representation styled

by speed.

Graser

66

4 Conclusions and future work

In this paper, we presented MovingPandas, a new Python library for dealing with movement
data based on the Pandas data analysis library and GeoPandas extension. We laid out how
MovingPandas differs from other trajectory data modelling approaches commonly used in
the GIS world. We also analysed existing conceptual frameworks and implementations (in
the spatial database PostGIS, the moving objects database Hermes, and the R package
trajectories) to determine the necessary core functionality for a movement data analysis library.
Finally, we documented the current state of the MovingPandas implementation and
illustrated its usefulness in stand-alone Python scripts, as well as within the context of the
desktop GIS application QGIS. While MovingPandas currently supports only moving point
objects, the underlying GeoDataFrame could also store polygons for moving area objects.

Current research agendas that focus on understanding and extracting knowledge from
movement data emphasize challenges related to volume, velocity and variety (Georgiou et al.,
2018). The challenge of volume deals with identifying effective methods for creating
overviews (Robinson et al., 2017) and analysis of large, complex, movement data (Demšar et
al., 2015; Mazimpaka & Timpf, 2016; Georgiou et al., 2018). The challenge of velocity deals
with developing methods to deal with streams of movement data in which data about the
same object can come from multiple sources (Georgiou et al., 2018). (In the big data
literature, ‘velocity’ therefore has a different meaning from the one it has in the movement
data analysis literature, where it refers to changes in distance and direction over time.) The
challenge of variety deals with the integration of different data types from heterogeneous
data sources (Mazimpaka & Timpf, 2016; Georgiou et al., 2018), the development of cross-
scale trajectory data mining (Mazimpaka & Timpf, 2016), and the use of these datasets for
movement prediction (Georgiou et al., 2018).

Ongoing MovingPandas development focuses on the implementation of trajectory sampling
and prediction methods. Our plans for the further development of MovingPandas include
pairwise distance measures, as well as measures for groups of trajectories. Existing
implementations (Burq, 2018) demonstrate that GeoPandas can be used in the context of the
Spark distributed processing environment. Future work will therefore investigate whether
MovingPandas can be used efficiently with Spark to tackle the challenge of volume.

Acknowledgements

This work was supported by the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT) within the programme ‘IKT der Zukunft’ under Grant 861258
(project MARNG).

Graser

67

References

Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, J. A. F., Moelans, B., & Vaisman, A. (2007). A
model for enriching trajectories with semantic geographical information. In Proceedings of the
15th annual ACM international symposium on Advances in geographic information systems (p.
22). ACM.

Andrienko, G., Andrienko, N., Bak, P., Keim, D., & Wrobel, S. (2013). Visual analytics of movement.
Springer Science & Business Media.

Baglioni, M., de Macêdo, J. A. F., Renso, C., Trasarti, R., & Wachowicz, M. (2009). Towards semantic
interpretation of movement behavior. In Advances in GIScience (pp. 271-288). Springer, Berlin,
Heidelberg.

Burq, S. (2018). Github respository: sabman/PySparkGeoAnalysis. Retrieved from
https://github.com/sabman/PySparkGeoAnalysis/blob/master/003-geopandas-and-spark.ipynb

Chen, L., Özsu, M. T., & Oria, V. (2005). Robust and fast similarity search for moving object
trajectories. In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data (pp. 491-502). ACM.

Demšar, U., Buchin, K., Cagnacci, F., Safi, K., Speckmann, B., Van de Weghe, N., Weiskopf, D., &
Weibel, R. (2015). Analysis and visualisation of movement: an interdisciplinary review. Movement
ecology, 3(1), 5.

Dodge, S., Weibel, R., & Lautenschütz, A. K. (2008). Towards a taxonomy of movement patterns.
Information visualization, 7(3-4), 240-252.

Fiona developers (2018). Fiona documentation. Retrieved from
https://fiona.readthedocs.io/en/latest/

GeoPandas developers (2018). GeoPandas documentation. Retrieved from
 https://geopandas.readthedocs.io/en/latest/
Georgiou, H., Karagiorgou, S., Kontoulis, Y., Pelekis, N., Petrou, P., Scarlatti, D., & Theodoridis, Y.

(2018). Moving Objects Analytics: Survey on Future Location & Trajectory Prediction Methods.
arXiv preprint arXiv:1807.04639.

Graser, A. (2018). Evaluating Spatio-temporal Data Models for Trajectories in PostGIS Databases.

GI_Forum ‒ Journal of Geographic Information Science, 1-2018, 16-33.
Güting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., & Vazirgiannis,

M. (2000). A foundation for representing and querying moving objects. ACM Transactions on
Database Systems, 25(1), 1-42.

Hermes developers (2017) Hermes documentation. Retrieved from
http://infolab.cs.unipi.gr/hermes/postgresql/doc/bin/html/functionality.html

Klus, B., & Pebesma, E. (2015). Analysing Trajectory Data in R. Vignette. Retrieved from
http://www.et.bs.ehu.es/cran/web/packages/trajectories/vignettes/tracks.pdf

Loidl, M., Wallentin, G., Cyganski, R., Graser, A., Scholz, J., & Haslauer, E. (2016). GIS and transport
modeling—Strengthening the spatial perspective. ISPRS Int. J. Geo-Inf. 2016, 5, 84.

Mazimpaka, J. D., & Timpf, S. (2016). Trajectory data mining: A review of methods and applications.
Journal of Spatial Information Science, 2016(13), 61-99.

Moradi, M.M., Pebesma, E., & Mateu, J. (2018 preprint). trajectories: Classes and Methods for
Trajectory Data. Journal of Statistical Software. Retrieved from
https://cran.r-project.org/web/packages/trajectories/vignettes/article.pdf

OGC Open Geospatial Consortium Inc. (2011). OpenGIS Implementation Standard for Geographic
information - Simple feature access - Part 1: Common architecture, Version: 1.2.1. Retrieved from
http://www.opengeospatial.org/standards/sfa

OGC Open Geospatial Consortium Inc. (2017). OGC® Moving Features. Retrieved from
http://www.opengeospatial.org/standards/movingfeatures

https://github.com/sabman
https://github.com/sabman/PySparkGeoAnalysis
https://github.com/sabman/PySparkGeoAnalysis/blob/master/003-geopandas-and-spark.ipynb
https://geopandas.readthedocs.io/en/latest/
http://infolab.cs.unipi.gr/hermes/postgresql/doc/bin/html/functionality.html
http://www.et.bs.ehu.es/cran/web/packages/trajectories/vignettes/tracks.pdf
https://cran.r-project.org/web/packages/trajectories/vignettes/article.pdf
http://www.opengeospatial.org/standards/sfa

Graser

68

Pandas developers (2018) Pandas documentation. Retrieved from http://pandas.pydata.org/pandas-
docs/stable/overview.html

Pebesma, E. (2012). spacetime: Spatio-Temporal Data in R. Journal of Statistical Software, 51(7):1-30.
Pebesma (2018). CRAN Task View: Handling and Analyzing Spatio-Temporal Data. Retrieved from

https://cran.r-project.org/web/views/SpatioTemporal.html
Pebesma, E., Klus, B., Graeler, B., Gorte, N., & Moradi, M. (2018). Classes and Methods for

Trajectory Data, Version 0.2-1, R package. Retrieved from
https://cran.r-project.org/web/packages/trajectories/trajectories.pdf

Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2015). HERMES: A trajectory DB engine
for mobility-centric applications. International Journal of Knowledge-Based Organizations
(IJKBO), 5(2), 19-41.

Robinson, A. C., Demšar, U., Moore, A. B., Buckley, A., Jiang, B., Field, K., Kraak, M.J., Cambolm
S.P., & Sluter, C. R. (2017). Geospatial big data and cartography: research challenges and
opportunities for making maps that matter. International Journal of Cartography, 1-29.

Shapely developers (2018) Shapely documentation. Retrieved from
https://shapely.readthedocs.io/en/latest/

Siabato, W., Claramunt, C., Ilarri, S., & Manso-Callejo, M. Á. (2018). A Survey of Modelling Trends in
Temporal GIS. ACM Computing Surveys (CSUR), 51(2), 30.

Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., & Vangenot, C. (2008). A
Conceptual View on Trajectories. Data and Knowledge Engineering 65: 126–46.

Technitis, G., Othman, W., Safi, K., & Weibel, R. (2015). From A to B, randomly: a point-to-point
random trajectory generator for animal movement. International Journal of Geographical
Information Science, 29(6), 912-934.

Vodas, M. (2013). Hermes - Building an Efficient Moving Object Database Engine. Master Thesis,
University of Piraeus. Retrieved from
http://dione.lib.unipi.gr/xmlui/bitstream/handle/unipi/8447/Vodas_Marios.pdf

Vouros, G. A., Doulkeridis, C., Santipantakis, G., & Vlachou, A. (2018). Taming Big Maritime Data to
Support Analytics. In Information Fusion and Intelligent Geographic Information Systems
(IF&IGIS'17) (pp. 15-27). Springer, Cham.

Westermeier, E.M. (2018). Contextual Trajectory Modeling and Analysis. Master Thesis, Interfaculty
Department of Geoinformatics, University of Salzburg.

Wikelski, M., & Kays, R. (2017). Movebank: archive, analysis and sharing of animal movement data.
Hosted by the Max Planck Institute for Ornithology. Retrieved from http://www.movebank.org/

Wiratma, L., van Kreveld, M., & Löffler, M. (2017). On Measures for Groups of Trajectories. In:
Bregt A., Sarjakoski T., van Lammeren R., Rip F. (eds) Societal Geo-innovation. AGILE 2017.
Lecture Notes in Geoinformation and Cartography. Springer, Cham.

Zheng, Y., Li, Q., Chen, Y., Xie, X., & Ma, W.-Y. (2008). Understanding mobility based on GPS data.
In Proceedings of the 10th international conference on Ubiquitous computing, 312–321. ACM.

Zheng, Y., Xie, X., & Ma, W.-Y. (2010). GeoLife: A Collaborative Social Networking Service among
User, Location and Trajectory. IEEE Data Eng. Bull., 33(2):32–39.

Zheng, Y., Zhang, L., Xie, X., & Ma, W.-Y. (2009). Mining interesting locations and travel sequences
from GPS trajectories. In Proceedings of the 18th international conference on World wide web,
791–800. ACM.

http://pandas.pydata.org/pandas-docs/stable/overview.html
http://pandas.pydata.org/pandas-docs/stable/overview.html
https://cran.r-project.org/web/views/SpatioTemporal.html
https://cran.r-project.org/web/packages/trajectories/trajectories.pdf
https://shapely.readthedocs.io/en/latest/
http://dione.lib.unipi.gr/xmlui/bitstream/handle/unipi/8447/Vodas_Marios.pdf
http://www.movebank.org/

