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Abstract 

Movement data analysis is a high-interest topic in many scientific domains. Even though 

Python is the scripting language of choice in the GIS world, currently there is no Python 

library that would enable researchers and practitioners to interact with and analyse 

movement data efficiently. To close this gap, we present MovingPandas, a new Python 

library for dealing with movement data. Its development is based on an analysis of state-

of-the-art conceptual frameworks and existing implementations (in PostGIS, Hermes, and 

the R package trajectories). We describe how MovingPandas avoids limitations of Simple 

Feature-based movement data models commonly used to handle trajectories in the GIS 

world. Finally, we present the current state of the MovingPandas implementation and 

demonstrate its use in stand-alone Python scripts, as well as within the context of the 

desktop GIS application QGIS. This work represents the first step towards a general-purpose 

Python library that enables researchers and practitioners in the GIS field and beyond to 

handle and analyse movement data more efficiently 

Keywords: 

trajectory, spatio-temporal analysis, python, movement data analysis 

1 Introduction  

Movement data sources are highly heterogeneous. Datasets vary with respect to temporal 
resolution (frequent to sparse, regular or irregular), spatial resolution (fine to coarse), spatial 
dimensions (2D or 3D), movement constraints (network-constrained or not), movement 
models (Lagrangian or Eulerian), tracking system (cooperative or uncooperative), data size 
and privacy constraints. In geography, traditionally, movement data availability was often 
limited to information about flows between origins and destinations (OD flows). In contrast, 
modern data sources provide increasingly detailed episodic or quasi-continuous movement 
data (Andrienko et al., 2013). Movement data that goes beyond simple OD flows is 
commonly referred to as trajectory data. Demšar et al. (2015) define trajectory data as a 
discrete time series of measured locations. Trajectories can also stem from simulations (Loidl 
et al., 2016) or other movement data generators (Technitis et al., 2015). Since trajectories 
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appear in many different scientific domains (including physics, biology, ecology, chemistry, 
transport and logistics, astrophysics, remote sensing, and more), it is not surprising that the 
questions posed to trajectory data vary strongly across disciplines. Additionally, neither the 
terminology for writing about movement data analysis nor the core functionality of software 
tools for handling movement data has so far been well defined.  

There are many libraries dealing with movement data, particularly in R (Klus & Pebesma, 
2015). For example, Pebesma (2018) lists 27 R packages dealing with movement data. 
However, while Python is the scripting language of choice in both proprietary and open-
source GIS environments, to the best of our knowledge there is currently no comparable 
Python library available that would enable researchers and GIS practitioners to efficiently 
interact with and analyse movement data. In this paper, we therefore introduce 
MovingPandas, an extension to the Python data analysis library Pandas (2018) and its spatial 
extension GeoPandas (2018), to add functionality for dealing with trajectory data. 

The remainder of this paper is structured as follows: Section 2 describes the terminology and 
concepts currently used for describing trajectory data. We also analyse current conceptual 
frameworks and existing implementations in order to identify relevant core concepts and 
functionality for MovingPandas. Section 3 describes the current state of the MovingPandas 
implementation and demonstrates its usage. Finally, we discuss our plans for the further 
development of MovingPandas and how it fits into research agendas that focus on 
understanding and extracting knowledge from movement data.  

2 State-of-the-art trajectory analysis  

There is no consistent terminology in the field of movement data analysis. Depending on 
the research group and application domain, terms such as trajectory, track, path, moving 
point, move, travel and segment are used to describe the same or different concepts related 
to movement. Similarly, intervals without movement are referred to using terms such as 
stops, stays, events or activities. Finally, the individual data points are known, for example, as 
nodes, (spatio-temporal) positions, or locations. 

Trajectory definitions vary. For example, Alvares et al. (2007) and Baglioni et al. (2009) 
define a trajectory as a sequence of moves and stops. According to Andrienko et al. (2013), 
the trajectory of a moving object is a function that defines a sequence of spatial positions 
(and thematic attributes) for a certain time interval. In contrast, for Spaccapietra et al. (2008) 
a trajectory is a segment of the spatio-temporal path covered by a moving object that 
represents a semantically meaningful unit of movement for the application. In other words, a 
trajectory is a travel (for some application-related purpose) from an initial starting point to 
the final destination. Similarly, in the R package trajectories (Klus & Pebesma, 2015), a track is 
meant to represent a series of consecutive location/timestamps that are not interrupted by 
another activity. Segments are connections between consecutive locations.  

In addition to the pure measurements, there are also semantics. Vouros et al. (2018) present 
a trajectory ontology focusing on semantic trajectories. A trajectory is a temporal sequence of 
semantic nodes or trajectory segments. A semantic node specifies the position of a moving 
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object in a time period or at a particular instant, or a specific set of spatio-temporal positions 
of a single moving object; the node can be associated with contextual information. The 
authors also describe the concept of open trajectories, where the last semantic (terminal) 
node has not yet been reached, and closed trajectories, in which the last node is specified. A 
trajectory can also be classified as an intended trajectory (i.e. a planned or predicted one). 
Finally, Vouros et al. (2018) use hasParent and hasSuccessive properties to relate a trajectory 
to its parent and successive trajectories, respectively. 

2.1 Data models 

As well as choices in terminology, there exist a variety of approaches to represent trajectory 
data. Most approaches deal only with moving point data, while work on two-dimensional 
moving objects, such as moving regions, is rarer (Siabato et al., 2018). Nonetheless, moving 
regions, with application areas including modelling of forest fires, oil spills or the spread of 
invasive species, are highly relevant in the respective fields. For this paper, however, we 
focus on moving point data.  

Geometries with timestamps (Simple Features-based trajectories) are the most common 
approach in GIS. This data model uses points or lines with timestamp attributes to preserve 
both spatial and temporal information. For example, the CSV (comma-separated value) data 
model used by the Movebank Data Repository (Wikelski & Kays, 2017) stores points with 
timestamps, while the OGC® Moving Features standard (OGC, 2017) uses lines with start 
and end timestamps.  

Like the Moving Features standard, the R package trajectories (Pebesma et al., 2018) also 
implements the line-based approach: a track is meant to represent a single track followed by 
a person, animal or object, i.e. a series of consecutive location/timestamps that are not 
interrupted by another activity. The connections slot stores all the elements of a track in a 
data frame with a line on each row, with x0, y0, x1, y1 (the first four values) followed by 
attributes. 

The temporal support for trajectories in PostGIS (Graser, 2018) uses a variation of the 
Simple Features concept. It stores movement data in LineStringM objects, where the 
measure variable M contains the temporal information. The function ST_IsValidTrajectory 
ensures that the temporal component increases from one vertex to the next. Matching a 
numerical M value to datetime requires application logic, since the database does not enforce 
any specific rules. Graser (2018) uses unixtime, but any other numerical representation of 
time could be used. 

In the context of moving object databases, Pelekis et al. (2015) use the concept of sliced 
representation introduced by Güting et al. (2000). The key idea in this concept is to 
decompose movement into fragments, called slices, such that the movement within a slice 
can be described by a function. For example, Hermes supports first degree polynomials, 
circular arcs and the constant function. A moving point object is a collection of time periods 
and corresponding movement functions. 

Finally, trajectories can be modelled as time series of locations. For example, Chen et al. 
(2005), building on established methods for one-dimensional time series, use the concept of 
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two-dimensional (xy) or three-dimensional (xyz) time series data for trajectories to 
derive similarity measures. 

2.2 Functions for trajectories 

Trajectory analysis encompasses many different analysis types, such as segmentation, 
similarity analysis, clustering, outlier detection, classification, hotspot detection, pattern 
detection, and flock/group/herd detection. All these analysis types depend on measures 
defined on trajectories (Wiratma et al., 2017). Trajectory functions enable us to compute 
these measures. As with terminology and concepts, however, there is no consistent 
framework for the classification of trajectory functions. Recent work includes Dodge et al.'s 
(2008) framework of movement and classification of movement patterns, and Wiratma et 
al.'s (2017) measures for trajectories and groups of trajectories.  

On the technological side, we will have a closer look at implemented functions for 
movement data in the spatial database PostGIS (Graser 2018), the moving object database 
Hermes (Pelekis et al., 2015), and the R package trajectories (Pebesma et al., 2018; Moradi et 
al., 2018 preprint). Since it is clear that each implementation was created for a different 
research or application focus, it is challenging to devise a systematic and objective means of 
comparison. It is furthermore worth noting that Hermes syntax and functionality differ 
between the Oracle implementation (Hermes@Oracle) described in Pelekis et al. (2015) and 
the PostGIS implementation (Hermes@PostGIS) documented in Hermes (2017). The 
Hermes functionality described in this paper is a superset of the functions documented in the 
two sources.  

To characterize movement measures or parameters for individual moving objects, we 
use the framework devised by Dodge et al. (2008). This framework distinguishes three 
parameter groups (primitive, primary and secondary derivatives) in three dimensions (spatial, 
temporal and spatio-temporal). Wiratma et al. (2017) call these ‘measures for a trajectory in 
isolation’. Furthermore, we distinguish between global measures that describe the trajectory 
as a whole and local measures that describe only parts of the trajectory. This is very much in 
line with Pelekis et al. (2015), who state that most Hermes operations come in two versions: 
the first is related to a user-defined point in time, while the second is time-independent. 
Trajectory implementations should support access to, or computation of, these parameters. 
Table 1 provides an overview of the coverage of these measures in PostGIS, Hermes and R 
trajectories.  

Position (x,y) and instance or interval (t) are the spatial and temporal primitives. The 
PostGIS trajectory object provides direct access to the positions of the whole trajectory. In 
Hermes, the function f_trajectory() projects the moving point representation to a 
geometry on the Cartesian plane. R trajectories provide an @sp slot. To access the local 
position at a certain point in time, Hermes at_instant(t) and PostGIS 
ST_LocateAlong(trajectory,t) return the position of the moving object at time t. In R 
trajectories, approxTrack() is used to access interpolated positions along a trajectory. It 
supports different interpolators, including straight line and smooth or not smooth splines. 

To access the local time, PostGIS ST_InterpolatePoint(trajectory,point) returns 
the m-value along the trajectory that is closest to the point provided. Similarly, Hermes 
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provides atPoint(trajectory,point), as well as Moving_Point.at_linestring-

(linestring). R trajectories does not support accessing the time at a certain location.  

Spatial primary derivatives are distance, direction and spatial extent. These derivatives can be 
measured in different ways. Distance, for example, can be measured for the whole trajectory 
(PostGIS ST_Length(trajectory); Hermes Length(trajectory)), or between the 
trajectory start and a specific point along the trajectory (Hermes f_length(tolerance,t)). 
Similarly, direction can be measured as average direction (Hermes 
anglexxavg(trajectory)), or as local direction at a specific point along the trajectory 
(PostGIS ST_Azimuth(pointA,pointB); Hermes f_direction(Moving_Point,t)). 
Finally, spatial extent can be interpreted in many ways, including a simple bounding box, or, 
for example, Wiratma et al.'s (2017) measure of area covered by a trajectory (using a disc of 
radius r). In PostGIS, this can be computed using ST_Buffer(trajectory) or 
ST_Envelope(trajectory). R trajectories offers access to summary statistics, such as 
distance and average speed, as well as spatial (bbox) and spatio-temporal (stbox) extent. 

Temporal primary derivatives are duration (period of time in which a movement is observed) 
and travel time. PostGIS does not provide a built-in function to directly access duration. 
Therefore, this measure must be computed from the timestamps of the trajectory start and 
end points. Hermes provides duration(trajectory). The R trajectories summary provides 
minimum and maximum times.  

Spatio-temporal primary derivatives are speed (rate of change of the object’s position) and 
velocity (rate of change of position and direction). Hermes provides 
Moving_Point.f_speed(t) and averageSpeed(trajectory). In PostGIS, there are no 
built-in functions to compute speed or velocity. In R trajectories, 
Trajectory@connections provides access to local speed information.  

In the implementations investigated, there are almost no built-in functions to directly 
compute secondary derivatives as described by Dodge et al. (2008). Spatial secondary 
derivatives are spatial distribution, change of direction, and sinuosity (also known as detour 
or straightness index) (Wiratma et al., 2017). Temporal secondary derivatives are temporal 
distribution and change of duration. Spatio-temporal secondary derivatives are acceleration 
and approaching rate. The closest thing to the spatial distribution measure is the R trajectories 
statistical functions to detect trajectory patterns based on point patterns using, for example, 
density and idw.  
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Table 1: Comparison of built-in functions for direct access to measures of individual moving objects for 

the whole trajectory ‘globally’ (G) and locally (L)  

   PostGIS HERMES R trajectories 

Spatial 
primitives 

Position 
(x,y)  

G trajectory 
Moving_Point 
.f_trajectory() 

trajectory@sp 

as(trajectory, 
"Spatial") 

L 

ST_LocateAlong 
(trajectory,t) 

ST_LocateBetween 
(trajectory,t1,t2) 

atInstant 
(trajectory,t) 

atPeriod 
(trajectory,perio
d) 

 

Temporal 
primitives 

Instance 
or 
interval 
(t) 

G trajectory  
index(trajector
y) 

L 
ST_InterpolatePoint 
(trajectory,point) 

atPoint 
(trajectory,point
) 

Moving_Point 
.at_linestring 
(linestring) 

 

Spatial 
primary 
derivative
s 

Distance  

G 
ST_Length 
(trajectory) 

length 
(trajectory) 

summary(traject
ory) 

trajectory 
@connections 

L  
Moving_Point 
.f_length 
(tolerance,t) 

 

Direction 

G 
ST_Azimuth 
(pointA,pointB) 

anglexxavg 
(trajectory) 

anglexx(trajector
y) 

Summary 
(trajectory) 

L 
ST_Azimuth 
(pointA,pointB) 

f_direction 
(Moving_Point,t) 

anglexx(segment) 

Trajectory 
@connections 

Spatial  
extent  

G 

ST_Buffer 
(trajectory) 

ST_Envelope 
(trajectory) 

 

trajectory.bbox 
or 
trajectory.stbo
x 

Temporal 
primary 
derivates 

Duration  G  
duration 
(trajectory) 

Summary 
(trajectory) 

Spatio-
temporal 
primary 
derivates  

Speed 

G  
averageSpeed 
(trajectory) 

Summary 
(trajectory) 

L  
Moving_Point 
.f_speed(t) 

 

Velocity      
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Measures for multiple moving objects can be divided into measures for one trajectory 
among other trajectories, measures for a single group of trajectories, and measures between 
groups of trajectories (Wiratma et al., 2017). 

Pairwise similarity or distance has been studied extensively. Well-known geometric similarity 
measures are the Fréchet distance and the Hausdorff distance, which are implemented in R 
trajectories (dists, frechetDist) and PostGIS (ST_HausdorffDistance), respectively. 
Time-aware trajectory similarity measures include time-focused distance, dynamic time-
warping distance, and the edit distance (Wiratma et al., 2017). The moving objects database 
Hermes provides a series of distance measures for trajectories, including Generalized 
SpatioTemporal Locality Inbetween Polylines (GenSTLIP), Generalized Speed-Pattern 
STLIP (GenSPSTLIP), Generalized Acceleration-Pattern STLIP (GenACSTLIP), Directional 
Distance (DDIST), and Temporal DDIST (TDDIST). In PostGIS, time-aware distance 
measures are limited to closest points of approach (CPA) measures 
(ST_ClosestPointOfApproach, ST_DistanceCPA, ST_CPAWithin).  

Measures for a single group of trajectories include area covered, size (number of trajectories), 
density, and formation stability. Finally, measures between groups of trajectories include 
group similarity, closeness and centrality (Wiratma et al., 2017). 

Working with trajectories also requires trajectory data manipulation functions, for 
example to clip trajectories to an area of interest, or to annotate trajectories with context 
information. Hermes supports intersection overlays (intersection) to extract the portion 
of the moving point inside a given region. PostGIS's intersection currently drops m-values 
and therefore makes it harder to create annotated trajectories (Westermeier 2018).  

Range queries to extract trajectories that are fully contained within a given spatio-temporal 
window are supported by Hermes (TB_MP_In_SpatioTemporal_Window) and PostGIS 
(&&& operator). Similarly, Hermes also directly supports topological queries to extract 
trajectories that enter and/or leave a certain area (TB_Topological_Query). In PostGIS, 
the same can be achieved by checking whether the start and/or end points fall within those 
areas. Convenient spatio-temporal nearest-neighbour queries are supported by Hermes 
(IncPointNNSearch, IncTrajectoryNNsearch). 

Other trajectory data manipulation functions are segmentation functions to split the raw 
location stream into meaningful trajectories and stops, functions for downsampling, and 
functions for generalizing trajectory data. R trajectories implements downsample (temporal) 
and generalize (spatio-temporal).  

An important topic, particularly from a geospatial perspective, is the handling of geographic 
coordinates. Hermes is designed to work with data in Euclidean space. Vodas (2013) 
describes how Hermes implements transformation of Geographic to/from Topocentric 
conversion (EPSG 9837). PostGIS, on the other hand, supports a wide variety of coordinate 
reference systems and can handle planar, spherical and ellipsoidal computations. R trajectories 
also supports both Cartesian and geodetic coordinates. 

Finally, R trajectories also implements visualization functions (stcube, stplot), while 
PostGIS trajectories can be visualized in Desktop GIS. Hermes can export its trajectories for 
visualization purposes.  
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This analysis of existing conceptual frameworks and implementations provides an overview 
of core functionality for movement data analysis libraries. The presentation of possible 
implementations in PostGIS, Hermes and R trajectories is not meant to be exhaustive. 
Nonetheless, the overview presents a solid base to determine the necessary core functionality 
for the development of our own movement data analysis library. 

3 MovingPandas 

Common Simple Features-based data models where trajectories consist of geometries with 
timestamps can be readily implemented in GIS environments, but they suffer from a lack of 
support for the temporal dimension, such as functions for duration and speed. 

In stark contrast, the Pandas (2018) data analysis library has been developed with a strong 
focus on time series. By choosing Pandas data structures (1D series and 2D DataFrames) as 
a base for MovingPandas, we gain access to the library’s built-in functionality, including: 
flexible indexing on timestamps and other column types; memory-efficient sparse data 
structures for data that is mostly missing or mostly constant; an integrated ‘group by’ engine 
for aggregating and transforming datasets, and moving window statistics (rolling mean, 
rolling standard deviation, etc.).  

GeoPandas (2018) extends the data types that can be used in Pandas DataFrames, thus 
creating GeoDataFrames. Geometric operations on these spatial data types are performed by 
Shapely (2018). Geopandas further depends on Fiona (2018) for file access (which enables 
direct reading of GeoDataFrames from common spatial file formats, such as GeoPackage or 
Shapefile), and descartes and matplotlib for plotting. 

The source code of MovingPandas is available on Github 
(https://github.com/anitagraser/movingpandas). MovingPandas uses the following 
terminology. A trajectory is, or more correctly has, a time-ordered series of geometries. These 
geometries and associated attributes are stored in a GeoDataFrame df, as shown in Figure 1. 
Furthermore, a trajectory can have a parent trajectory and can itself be the parent of 
successive trajectories. Raw unsegmented streams of movement data, as well as semantically 
meaningful subsections or other subsections, can therefore be represented as trajectories. 
Depending on the use case, the trajectory object can access a point-based or a line-based 
representation of its data.  
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Trajectory 

id: string 

df: GeoDataFrame 

crs: string 

parent: Trajectory 

__str__() 

set_crs(crs) 

has_parent(): boolean 

is_latlon(): boolean 

to_linestring(): shapely.geometry.LineString 

to_linestringm_wkt(): string 

get_start_location(): shapely.geometry.Point 

get_end_location(): shapely.geometry.Point 

get_bbox(): (minx, miny, maxx, maxy) tuple 

get_start_time(): datetime 

get_end_time(): datetime 

get_duration(): timedelta 

get_length(): float 

get_direction(): float 

get_row_at(timestamp, method='nearest'): pandas.Series 

get_position_at(timestamp, method='nearest'): shapely.geometry.Point 

interpolate_position_at(timestamp): shapely.geometry.Point 

get_linestring_between(timestamp1, timestamp2): shapely.geometry.LineString 

get_segment_between(timestamp1, timestamp2): Trajectory 

add_direction() 

add_speed() 

make_line(df): shapely.geometry.LineString 

clip(shapely.geometry.polygon): Trajectory 

intersection(fiona.feature): Trajectory 

Figure 1: Trajectory class diagram 

The functionality currently implemented in MovingPandas covers most of the primitive and 
primary derivative measures for individual moving objects defined by Dodge et al. (2008), as 
listed in Table 2. The functions for computing speed and direction (add_speed() and 
add_direction()) add a new column to the trajectory's GeoDataFrame. Individual local 
values can be accessed using get_row_at(timestamp, method='nearest'). Global or 
window statistics can be computed using appropriate aggregations.  
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Table 2: MovingPandas functionality 

Spatial 
primitives 

Position 
(x,y)  

G to_linestring(): shapely.geometry.LineString 

L 

get_position_at(timestamp, method='nearest'): 
shapely.geometry.Point 

get_segment_between(timestamp1, timestamp2): Trajectory 

Temporal 
primitives 

Instance or 
interval (t) 

 < not implemented > 

Spatial 
primary 
derivatives 

Distance  G get_length(): float 

Direction 
G get_direction(): float 

L add_direction() 

Spatial 
extent  

G get_bbox(): (minx, miny, maxx, maxy) tuple 

Temporal 
primary 
derivates 

Duration  G get_duration(): timedelta 

Spatio-
temporal 
primary 
derivates  

Speed L add_speed() 

Velocity   < not implemented > 

In addition, it is possible to clip trajectories with polygons, and to compute intersections with 
polygons. Like GeoDataFrames, trajectories come with coordinate reference system 
information. Geometric operations on geographic coordinates use spherical geometry, while 
operations on projected coordinates use planar geometry. All distances are computed in two 
dimensions, and no specific 3D functions have so far been implemented. To handle 3D 
trajectories properly, it will be necessary to provide appropriate ellipsoidal geometry 
functions.  

3.1 Application examples 

This section demonstrates how MovingPandas can be used to handle movement data in 
stand-alone Python scripts, as well as within the desktop GIS application QGIS. The two 
application examples in this section use the Geolife dataset published by Zheng, Li et al. 
(2008), Zhen, Zhang et al. (2009), and Zhen, Xie et al. (2010). 

The first example, shown in the Listing, illustrates how the movement data of multiple 
moving objects can be read from a common spatial data file format (GeoPackage), converted 
to trajectory objects, and finally clipped by a polygon. First, the content of the GeoPackage is 
read into a GeoDataFrame and the index is set to the time attribute. Then, the 
GeoDataFrame is grouped by trajectory ID and each resulting grouping is converted to a 
trajectory. Finally, each trajectory is clipped by a polygon.  
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Listing: Reading trajectory data from GeoPackage and clipping by a polygon 

>>> import os 
>>> import sys 
>>> import pandas as pd 
>>> from geopandas import read_file 
>>> from shapely.geometry import Polygon 
>>> from trajectory import Trajectory  

>>> xmin, xmax, ymin, ymax = 116.3685035,116.3702945,39.904675,39.907728 
>>> polygon = Polygon([(xmin,ymin), (xmin,ymax), (xmax,ymax), (xmax,ymin), (xmin,ymin)]) 

>>> df = read_file(os.path.join(script_path,'demodata_geolife.gpkg')) 
>>> df['t'] = pd.to_datetime(df['t']) 
>>> df = df.set_index('t') 
>>> print("Finished reading {} rows".format(len(df))) 

Finished reading 5908 rows  

>>> trajectories = [] 
>>> for key, values in df.groupby(['trajectory_id']): 
>>>     trajectory = Trajectory(key, values) 
>>>     print(trajectory) 
>>>     trajectories.append(trajectory) 
>>> print("Finished creating {} trajectories".format(len(trajectories))) 

Trajectory 1 (2008-12-11 04:42:14 to 2008-12-11 05:15:46) | Size: 466 | Length: 6210.1m 
LINESTRING (116.391305 39.898573, 116.391317 39.898617, 116.390928 39.898613, ... 
Trajectory 2 (2009-06-29 07:02:25 to 2009-06-29 11:13:12) | Size: 897 | Length: 38728.7m 
LINESTRING (116.590957 40.071961, 116.590905 40.072007, 116.590879 40.072027, ... 
Trajectory 3 (2009-02-04 04:32:53 to 2009-02-04 11:20:12) | Size: 1810 | Length: 12739.2m 
LINESTRING (116.385689 39.899773, 116.385654 39.899651, 116.385548 39.899699, ... 
... 

Finished creating 5 trajectories 

>>> intersections = [] 
>>> for key, values in df.groupby(['trajectory_id']): 
>>>     traj = Trajectory(key, values) 
>>>     for intersection in traj.clip(polygon): 
>>>         intersections.append(intersection) 
>>> print("Found {} intersections".format(len(intersections))) 

Found 3 intersections 

To further demonstrate the usefulness of MovingPandas in the context of desktop GIS 
applications, we implemented a QGIS plugin called Trajectools 
(https://plugins.qgis.org/plugins/processing_trajectory/) building upon MovingPandas. 
Figure 2 shows a screenshot of this second application, with results of executing the tools to 
add direction and speed information to a layer containing Geolife data. Figure 3 shows the 
alternative line-based visualization using the LineStringM trajectory representation. 
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Figure 2: MovingPandas integration in QGIS, showing added direction and speed information 

 

Figure 3: MovingPandas integration in QGIS showing the LineStringM trajectory representation styled 

by speed. 
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4 Conclusions and future work 

In this paper, we presented MovingPandas, a new Python library for dealing with movement 
data based on the Pandas data analysis library and GeoPandas extension. We laid out how 
MovingPandas differs from other trajectory data modelling approaches commonly used in 
the GIS world. We also analysed existing conceptual frameworks and implementations (in 
the spatial database PostGIS, the moving objects database Hermes, and the R package 
trajectories) to determine the necessary core functionality for a movement data analysis library. 
Finally, we documented the current state of the MovingPandas implementation and 
illustrated its usefulness in stand-alone Python scripts, as well as within the context of the 
desktop GIS application QGIS. While MovingPandas currently supports only moving point 
objects, the underlying GeoDataFrame could also store polygons for moving area objects.  

Current research agendas that focus on understanding and extracting knowledge from 
movement data emphasize challenges related to volume, velocity and variety (Georgiou et al., 
2018). The challenge of volume deals with identifying effective methods for creating 
overviews (Robinson et al., 2017) and analysis of large, complex, movement data (Demšar et 
al., 2015; Mazimpaka & Timpf, 2016; Georgiou et al., 2018). The challenge of velocity deals 
with developing methods to deal with streams of movement data in which data about the 
same object can come from multiple sources (Georgiou et al., 2018). (In the big data 
literature, ‘velocity’ therefore has a different meaning from the one it has in the movement 
data analysis literature, where it refers to changes in distance and direction over time.) The 
challenge of variety deals with the integration of different data types from heterogeneous 
data sources (Mazimpaka & Timpf, 2016; Georgiou et al., 2018), the development of cross-
scale trajectory data mining (Mazimpaka & Timpf, 2016), and the use of these datasets for 
movement prediction (Georgiou et al., 2018).  

Ongoing MovingPandas development focuses on the implementation of trajectory sampling 
and prediction methods. Our plans for the further development of MovingPandas include 
pairwise distance measures, as well as measures for groups of trajectories. Existing 
implementations (Burq, 2018) demonstrate that GeoPandas can be used in the context of the 
Spark distributed processing environment. Future work will therefore investigate whether 
MovingPandas can be used efficiently with Spark to tackle the challenge of volume.  
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