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Abstract

Let g,5 : [a,b] — R be nonnegative nondecreasing functions such that
gand / have a continuous first derivative and g(a) = 4(a), g(b) = h(b).
Let p = (p1,p2) be a pair of positive real numbers py, po such that
p1+po=1

) If  : [a, b)) — R be a nonnegative nondecreasing function, then for
rys <1

M) (J £ () dﬂj B (1) £(2) df) = J (M o(2), (1)) £ (7) e

holds, and for r, s > 1 the inequality is reversed. M
b) If f : [¢,6] — R is a nonnegative nonincreasing function then for

r <1< s (1) holdsand for » > 1 > s the inequality is reversed.

Similar results are derived for quasiarithmetic and logarithmic means.
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1. Introduction

Gauss mentioned the following result in [2]:
If [ is a nonnegative and decreasing function then

<J:o ) dx>2§ gJ:o J (o) doe JOO f(x)de.(2)

0
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Polya and Szego classical book “Problems and Theorems in Analysis, I”
[7] gives the following generalization and extension of Gauss’ inequality

).

Theorem A. (Pilya’s inequality) Let a and b be nonnegative real numbers.
a) If f:]0,00) — R isa nonnegative and decreasing function, then

< J:‘) X f () dx)2 < <1 - <%>2> J:° W2 () de

[t 6)

0

whenever the integrals exist.
D) If £:10,1) — R isa nonnegative and increasing function, then

<J ; W dx>2 - (1 } (ﬁ)z) E K f ()

X r x® f(xc) . (4)

0

Obviously, putting 2 = 0 and 4 = 2 in (3) we obtain Gauss’ inequality.
Recently Pecaric¢ and Varosanec [6] obtained a generalization.

Theotem B. Let f:[a,b] — R be nonnegative and increasing, and let

x;: [a,b] — R(i = 1,. .., n) be nonnegative increasing functions with a continnons
first derivative. If p;, (i = 1,...,n) are positive real numbers such that
ZZ»:W% =1, then
b n ! n b 1/ps
[ (Tt ) soa=T1(] ~or0a) . 6
a \ ;=1 i=1 a

If xi(a) =0 foralli = 1,... ,nand if f is a decreasing function then the reverse
inequality holds.

The previous result is an extension of the Polya’s inequality. If we sub-
stitute in (5): #=2,p =pr=2,a=0,b=1,g(x) = x> h(x) =
x? % where u, v > 0, we have (4).

In this paper we provide generalizations of Theorem B in a number of
directions. In Section 2 we first provide the inequality for weighted
means. We note that, as is suggested by notation for means, our result
extends to the case when the ordered pair (p1,p2) is replaced by an
n-tuple. We derive also a version of our theorem for higher derivatives.
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Section 4 treats some corresponding results when M is replaced by
quasiarithmetic mean. This can be done when the function involved
enjoys appropriate convexity properties. A second theorem in Section 4
allows one weight p; to be positive and the others negative.

Section 5 addresses the logarithmic mean.

2. Results Connected with Weighted Means

M f[f] (a) denotes the weighted mean of order r and weights p =
(p1y ..., pa) of a positive sequence @ = (ay, . .., a,). The n-tuple p is of
positive numbers p; with > _; p; = 1. The mean is defined by

p 1/r
szﬂf for r#0
MM (ﬂ) — i=1
» "
H al” for r=0.
=1

In the special cases »r = —1,0, 1 we obtain respectively the familiar har-
monic, geometric and arithmetic mean.

The following theorem, which is a simple consequence of Jensen’s
inequality for convex functions, is one of the most important inequalities
between means.

Theorem C. Ifa andp are positive n-tuples and s < t,5,1 € R, then
M @) < M) for s <, (6)

with equality ifandonly if ) = ... = a,,.

A well-known consequence of the above statement is the inequality
between arithmetic and geometric means. Previous results and refine-
ments can be found in [3].

The following theorem is the generalization of Theorem B.

Theotem 1. Let g, b : [a,b] — R be nonnegative nondecreasing functions such
that g and b have a continnous first derivative and g(a) = h(a), g(b) = h(b). Let
P = (p1, p2) bea pair of positive real numbers py, pa such that py + p, = 1.

a) If f + |a, b] — R bea nonnegative nondecreasing function, then for r,s < 1

b b b /
i (| g [ o) < [ (o) soa
(7)
holds, and for r, s > 1 the inequality is reversed.
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b) Iff = [a, b] — R isanonnegative nonincreasing function thenfor r < 1 < s (7)
holds and for r > 1 > s the inequality is reversed.

Proof: Let us suppose that 7, s < 1 and fis nondecreasing. Using inequal-
ity (6) we obtain

Ml ([ o

b

B (2)f(2) dt>

a

= [ (w0 101

A similar proof applies in each of the other cases. []

Remark 1. In Theorem 1 we deal with two functions g and 4. Obviously
a similar result holds for # functions xi, ..., x, which satisfy the same
conditions as g and 4.
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Remark 2. It is obvious that on substituting » = s = 0 into (7) we have
inequality (5) for #» = 2. The result for » = 5 = 0 is given in [1].

In the following theorem we consider an inequality involving higher
derivatives.

Theorem 2. Let f : [a,b] — R, x; : [a,b] — R(i =1,...,m) be nonnega-
tive functions with continuous n-th derivatives such that x;" , (i = 1, ..., m) are nonne-

gative functions and p;, (i = 1,...,m) be positive real numbers such that
m
i=1 pi =1

(8)

<ot [ (M) s a
holds, where
A= Sy o)
(Z P = (MY (0, ,x,ﬂ<f>>)“’)> b
y

Ifr,s > 1, then the inequalities (8) and (10) are reversed.
B) I (—=1)" £ ") isanonnegative function, thenfor r < 1 < s the inequalities (8) and
(10) hold andfor r > 1 > s they are reversed.
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Proof: a) Let rand s be less than 1. Integrating by part #-times and using (6),
we obtain

< ' (J 0 ... J () £() df)

a

- r MY (i (2), . .. ,xm(z‘))(—l)("_1)f(”)(z‘) dt

S <n— ( 1);1 ,él sz k) )

B J MY, )1 £ ) i

a

We shall prove that A = 0 if x;,7 = 1, ..., m, satisfy (9).
Let us use notation Ap = x(/@) (a) for £#=0,1,...,7— 1. Then
b )( ) = Ay. Consider the A-th otder detivative of function
y? where y is an atbitrary function with £-th order derivative. First, there
exists function ¢/ such that

(" =615 S,
This follows by induction on &. For & = 1 we have ()?) = py?~1 ' =

(bgp] (9, 9). Suppose that proposition is valid for all ; < £+ 1. Then
using Leibniz’s rule we get

() = (gt )W

=0 \J

. (11)
=p3(B) 0 e

J=0
= ¢[kp+1(]7 )/7 7J’(k+l))
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Suppose that s # 0 and use the abbreviated notation M(#) for the
mean MY (x1(2), .. ., 5,(#)). Then M'(#) = 7, Pixc!(#). The state-
ment “M (k)( ) = A" will be proved by induction on 4. It is easy to
check for £ = 0and £ = 1.

Suppose it holds for all j < &4 1. Then

” (k+1)
<Z P/Xf(f)> sz [I/]e-q—l < ;‘(f)v R 7Xz(‘lé+l)(f))
=1

- ¢(K=+1 (Ao, Aty ... 7A/<+1)
&
D3 () T T

+¢,€: (AO)Ala"'vAk)AkJrl-

On the other hand, using (11) we get
k

(M) =50 ( f) oV (M(a), M (a),..., MY ()

J=0

X MU (@) + 6 (M(@), M), .., MW (@) M4 a)

£
N N

0
(Ao, Aty ..., A)MED(4).

Comparing these two results we obtain that M (k+1) (a) = Apyq, whichis
enough to conclude that A = 0.

In the other cases the proof is similar, except in the case s = 0 which is
left to the reader. [

3. Applications

Now we will restrict our attention to the case when » = 0 and the x; are
power functions.

The case when 7 = 1.
Set:r =0,n=1,a=0,b=1 xl(z‘) = 1P in (8), where a; > — 1 for

i=1,.. mpZ>OandZZ 1 L —.We obtain that A = 0and
1 - 1/pi m 1 1/pi
07, (a0, + 1) ,
FOTRO (4 gy > =TT J 1P F (1) dt ,
J, s = BRI (] o

(12)
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if f isanondecreasing function. Itis an improvement of Polya’s inequality
(4). Some other results related to this inequality can be found in [5] and

[8]:
For example, combining (12) and the inequality

m

D at2> ﬁ(@p[ +2)/7

=1 i=1

which follows from the inequality between arithmetic and geometric
means, we obtain

Jl I (aps + 1) (aips +2))'"”

leJr +a, Adr >
0 f() B (1 +Ez 1d1)(2+22 1ﬂ,>

1/pi
X H(J 1 f dt> . (13)
The case when 7 = 2.

Set:r =0,n=2,a=0,b=1 x,( ) = %72 in (8), where a; > —]%for
i=1,...,mp; > 0and X7, - = 1. After some simple calculation, we
obtam that A =0and 1nequaf1ty (13) holds if f is a concave function.

So inequality (13) applies not only for / nondecreasing, but also for f
concave.

4. Results for Quasiarithmetic Means

Definition 2. Let / be a monotone real function with inverse /=1, p =
(P1y--spn) = (pi);ya=(a1,...,a,) = (a;); be real n-tuples. The qua-

siarithmetic mean of #-tuple « is defined by

My (4 p) = ( sz az)

where P, =7, pi.

For p; > 0,P, =1, f(x) = x"(r #0) and f(x) =lnx(r =0) the
quasiarithmetic mean M;(a; p) is the weighted mean M, () of order r.
Theotem 3. et p be a positive n-tuple, x; : [a,b] — R(i =1,...,n) be non-
negative functions with continnous first derivative such that x;(a) = x;(a), x;(b) =
xi(b),i, ) =1,...,n

a) If p is a nonnegative nondecreasing function on [a, b| and if f and g are convex:
increasing or concave decreasing functions, then

u, ((j (7)) df)j; NE [ Mesnimeran a9

a a



On Gauss-Polya’s Inequality 79

If f and g are concave increasing or convex decreasing functions, the inequality is reversed.
b) If  is a nonnegative nonincreasing function on [a, b), fconvex increasing or concave
decreasing function and g is concave increasing or convex decreasing, then (14) holds.
If 1 is concave increasing or convex: decreasing function and g is convex increasing or
concave decreasing, then (14) is reversed.

Progf: Suppose that ¢ is nondecreasing and f and g are convex func-
tions. We shall use integration by patts and the well-known Jensen
inequality for convex functions. The latter states that if (p;) is a positive
n-tuple and a; € I, then for every convex function f : I — R we have

1 <& 1 &
f(P_ﬂ 2 Pidz‘) < P—”;Pif(ﬂi)- (15)

We have

Mf((f X (1)p(7) df)l_;p> =/ (Pi; pif (Jk i (£)(2) dz‘))

>33 | Moea=| 5 (Z pz-x;o)) o)

:Pi” :1 szz'(f)@(l‘”i - api” (Z:: p,'xj(f)> do(1)
> iﬂ 4” szz(f)@(fﬂﬁ - ; g_l (Piﬂ (i pg(x,—(l‘))) dp(?)
=53 p R0~ | Mal)ip) ol

_ %Z (oA = M(x:(9) 5 ) ()]

+ | M(pe0 = | M) pe0 . O

a a

Theorem 4. Let x;,i = 1,. .., n, satisfy assumptions of Theorems 4 and let p be a
real n-tuple such that
p>0, p;<0 (i=2,...,n), P,>0. (16)

a) If p is a nonnegative nonincreasing finction on |a, b and if f and g are concave
increasing or convex decreasing functions, then (14) holds, while if f and g are convex
increasing or concave decreasing (14) is reversed.
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b) If p is a nonnegative nondecreasing function on |a, b), f is convex increasing or con-
cave decreasing and g concave increasing or convex decreasing, then (14) holds.

If [ is concave increasing or convex: decreasing and g is convex: increasing or concave
decreasing, then (14) is reversed.

The proof is similar to that of Theorem 4. Instead of Jensen’s inequal-
ity, a reverse Jensen’s inequality [3, p. 6] is used: that is, if p; is real #-tuple
such that (16) holds,; € I,i = 1,...,mand (1/P,) >""_, pia; € I, then
for every convex function f : I — R (15) is reversed.

Remark 3. In Theorem 4 and 5 we deal with first derivatives. We can
state an analogous result for higher-order derivatives as in Section 2.

Remark 4. The assumption that p is a positive #-tuple in Theorem 4
can be weakened to p being a real #-tuple such that

£
0<> p<P, (1<k<n), P,>0
i=1

and ([ x(#)¢(#) df), and (x;(2)),, # € |a, b] being monotone -tuples.
In that case, we use Jensen-Steffenen’s inequality [3, p. 6]. instead of
Jensen’s in-equality in the proof.
InTheorem 5, the assumption on #-tuple p can be replaced by p being a

real #-tuple such that for some £ € {1, e m}
k n
Zpi < 0(k<m) and 2 < 0(k > m)
=1 =k

and ([ xH(2)@(#) dt),, (x:(2)),, t € [a, b] being monotone n-tuples.
We use the reverse Jensen-Steffensen’s inequality (see [3, p. 6] and [4]) in
the proof.

5. Results for Logarithmic Means

We define the logarithmic mean I, (x, y) of distinct positive numbers x, y

by
1 r+1 _ o+l 1/r
< J X > r#—1,0
y—x r+1
1
1 /27—
Ly(x,y) = —Gﬁ r=0
e \x*
lny—1In x
— r=—1
\ J—x

and take L, (x, x) = x. The function 7 +—1,(x, ) is nondecreasing.
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It is easy to see that Li (x, y) = 32 and using method similar to that of
the previous theorems we obtain the following result.

Theotem 5. Let g, b : [a,b] — R be nonnegative nondecreasing functions with
continnous first derivatives and g(a) = h(a), g(b) = h(b).
a) If  is a nonnegative increasing function on [a, b), and if r, s < 1, then

b

L([ ¢oma [ sorwa) < [ Lenuosoa e

a a a

If ry s > 1 then the reverse inequality holds.
b) If f is a nonnegative nonincreasing function then for r < 1 < s (16) holds, and for
r > 1> s the reverse inequality holds.

Proof: Let fbe a nonincreasing functionand r < 1 < s5. Using F' = —f,
integration by parts and inequalities between logarithmic means we get

L([ o] sosoa)

a a

b b b
<u(] 20swa | vor0a) =3 w0+ 500
5 () +5(0) dF (1)

N~ N —= N -

(g0) + B S () + j

a

b

(NS + J Ly(g(2), 4(#)) dF(7)

IN
+
>~

(()
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