Sequential Compactness in Constructive Analysis

By

D. Bridges, H. Ishihara, and P. Schuster

Abstract

A new constructive notion of sequential compactness is introduced, and its relation to completeness and totally boundedness is explored.

In this note we complement the work in [3] by introducing, within the framework of (Bishop’s) constructive mathematics [1], a new approach to sequential compactness. We begin with the fundamental definition on which the paper is based.

A sequence $\mathbf{x} = (x_n)$ in a metric space (X, ρ) has at most one cluster point if the following condition holds:

There exists $\delta_x > 0$ such that if $0 < \delta < \delta_x$ and $\rho(a, b) > 2\delta$, then either $\rho(x_n, a) > \delta$ for all sufficiently large n or else $\rho(x_n, b) > \delta$ for all sufficiently large n.

Note that each subsequence of (x_n) then has at most one cluster point: indeed, the same δ_x works for such a subsequence as for the original sequence \mathbf{x}.

A Cauchy sequence \mathbf{x} has at most one cluster point. To see this, let $\rho(a, b) > 2\delta > 0$. Choose $\varepsilon > 0$ such that $\rho(a, b) > 2(\delta + \varepsilon)$, and then choose N such that $\rho(x_n, x_m) < \varepsilon$ for all $m, n \geq N$. Since

$$(\rho(x_N, a) - \delta - \varepsilon) + (\rho(x_N, b) - \delta - \varepsilon) \geq \rho(a, b) - 2(\delta + \varepsilon) > 0,$$

the sequence \mathbf{x} is not Cauchy. Therefore, \mathbf{x} cannot have a convergent subsequence, and hence it cannot have a cluster point.
either $\rho(x_N, a) > \delta + \varepsilon$ or $\rho(x_N, b) > \delta$. In the first case, $\rho(x_n, a) > \delta$ for all $n \geq N$; in the second, $\rho(x_n, b) > \delta$ for all $n \geq N$.

We call X **sequentially compact** if every sequence in X that has at most one cluster point converges to a limit in X. To see that this notion of sequential compactness is classically equivalent to the usual one, suppose that X is sequentially compact in our sense, and let (x_n) be any sequence in X; if (x_n) does not have a cluster point, then it has at most one cluster point and so converges in X, a contradiction. On the other hand, suppose that X is sequentially compact in the usual sense, and consider a sequence (x_n) in X that has at most one cluster point. Since X is classically sequentially compact, there exists a subsequence $(x_{n_k})_{k=1}^\infty$ of (x_n) that converges to a limit x_∞ in X. If (x_n) does not converge to x_∞, then there exists a subsequence of (x_n) that is bounded away from x_∞; this subsequence has cluster points, but none of those can equal x_∞; this contradicts our hypothesis that (x_n) has at most one cluster point.

Classically, a metric space is sequentially compact if and only if it is complete and totally bounded ([4], (3.16.1)). There is a natural approximate interval-halving proof that $[0,1]$ is constructively sequentially compact in our sense. Given a sequence (x_n) in $[0,1]$ that has at most one cluster point, let $I_0 = [0,1]$. Taking $a = \frac{1}{2}$ and $b = \frac{3}{4}$ in the definition of at most one cluster point, we see that as $|a-b| > \frac{2}{5}$,

- either $|x_n - \frac{1}{2}| > \frac{1}{5}$, and therefore $x_n > \frac{2}{5}$, for all sufficiently large n;
- or else $|x_n - \frac{3}{4}| > \frac{1}{5}$, and therefore $x_n < \frac{3}{5}$, for all sufficiently large n.

In the first case, take $I_1 = [\frac{3}{5}, 1]$; in the second, take $I_1 = [0, \frac{3}{5}]$. Carrying on in this way, we produce closed intervals $I_0 \supset I_1 \supset I_2 \supset \ldots$ such that for each n, $|I_n| = \frac{3}{5}|I_{n-1}|$ and $x_k \in I_n$ for all sufficiently large k. Then there exists a unique point $x_\infty \in \bigcap_{n=0}^\infty I_n$, and it is routine to show that $x_\infty = \lim_{n \to \infty} x_n$.

The following key lemma will enable us to generalise this from $[0,1]$ to any complete, totally bounded metric space.

Lemma 1. Let $x = (x_n)$ be a sequence with at most one cluster point in a metric space X, let δ_x be as in the foregoing definition, and let $0 < \varepsilon < \delta_x$. Suppose that there exists a finitely enumerable set F of X such that for each n there exists $x \in F$ with $\rho(x, x_n) < \varepsilon$. Then $\rho(x_m, x_n) < 8\varepsilon$ for all sufficiently large m and n.

1 The classical property of sequential compactness does not hold constructively even for the pair set $\{0,1\}$, and so is constructively useless.

2 A set is **finitely enumerable** if it is the range of a mapping f from $\{1, \ldots, n\}$, for some natural number n. If also f is one–one, then its range is said to be **finite**.
Proof: Let $\xi_1 \in F$. Either $\rho(\xi, \xi_1) < 3\varepsilon$ for all $\xi \in F$ or else there exists $\xi' \in F$ such that $\rho(\xi', \xi_1) > 2\varepsilon$. In the first case we have $\rho(x_n, \xi_1) < 4\varepsilon$ for all n, and therefore $\rho(x_m, x_n) < 8\varepsilon$ for all m and n; so we may assume that the second case obtains. Accordingly, by our hypothesis on x, either $\rho(x_n, \xi_1) > \varepsilon$ for all sufficiently large n or else $\rho(x_n, \xi_1') > \varepsilon$ for all sufficiently large n. Interchanging ξ_1 and ξ', if necessary, we may assume that $\rho(x_n, \xi_1) > \varepsilon$ for all $n \geq N_1$. If follows that for each $n \geq N_1$ there exists

$$\xi \in F \sim \{\xi_1\} = \{x \in F : x \neq \xi_1\}$$

such that $\rho(x_n, \xi) < \varepsilon$. We may therefore repeat the foregoing argument, with x replaced by $(x_n)_{n \geq N_1}$ and F replaced by $F \sim \{\xi_1\}$. In this way we obtain $\xi_2 \in F \sim \{\xi_1\}$ such that

- either $\rho(x_n, \xi_2) < 4\varepsilon$ for all $n \geq N_1$, and therefore $\rho(x_m, x_n) < 8\varepsilon$ for all $m, n \geq N_1$,
- or else there exists a positive integer $N_2 > N_1$ such that $\rho(x_n, \xi_2) > \varepsilon$ for all $n \geq N_2$.

Executing this procedure a total of at most $\#F$ times, we are guaranteed to produce N such that $\rho(x_m, x_n) < 8\varepsilon$ for all $m, n \geq N$. Q.E.D.

Corollary 2. If X is a totally bounded metric space, then any sequence in X with at most one cluster point is a Cauchy sequence.

Corollary 3. The following are equivalent conditions on a sequence (x_n) in any metric space X:

(i) (x_n) is totally bounded and has at most one cluster point.

(ii) (x_n) is a Cauchy sequence.

The following constructive generalisation of the Bolzano-Weierstraß Theorem is an immediate consequence of Corollary 2.

Theorem 4. A complete, totally bounded metric space is sequentially compact.

We now prove some partial converses of this theorem.

Proposition 5. If X is sequentially compact, then it is complete.

Proof: Every Cauchy sequence in X has at most one cluster point and so converges. Q.E.D.

Proposition 6. Let X be sequentially compact, and let a be a point of X such that for all positives, t with $s < t$, either $\rho(x, a) < t$ for all $x \in X$ or else $\rho(x, a) > s$ for some $x \in X$. Then X is bounded.
Proof: Construct an increasing binary sequence \((\lambda_n)\) such that
\[\vdash \text{if } \lambda_n = 0, \text{then there exists } x \in X \text{ such that } \rho(x, a) > n, \]
\[\vdash \text{if } \lambda_n = 1, \text{then } \rho(x, a) < n + 1 \text{ for all } x \in X. \]

We may assume that \(\lambda_1 = 0\). If \(\lambda_n = 0\), choose \(x_n \in X\) such that
\[\rho(x_n, a) > n; \text{ if } \lambda_n = 1, \text{ set } x_n = x_{n-1}. \]
To prove that \(x = (x_n)\) has at most one cluster point, let \(\rho(y, z) > 2\delta > 0\), and choose a positive integer
\[N > \max \{\rho(a, y), \rho(a, z)\} + \delta. \]
If \(\lambda_N = 1\), then \(x_n = x_N\) for each \(n \geq N\), so that either \(\rho(x_n, y) > \delta\) for all \(n \geq N\) or else \(\rho(x_n, z) > \delta\) for all \(n \geq N\). Consider, on the other hand, what happens if \(\lambda_n = 0\). If \(n \geq N\) and \(\lambda_n = 0\), then \(\rho(x_n, a) > n \geq N\), so
\[\rho(x_n, y) \geq \rho(x_n, a) - \rho(a, y) > \delta \]
and likewise \(\rho(x_n, z) > \delta\). If \(n \geq N\) and \(\lambda_n = 1\), then there exists
\[k \in \{N + 1, \ldots, n\} \text{ such that } \lambda_k = 1 - \lambda_{k-1}; \text{ whence } x_n = x_{n-1} = \cdots = x_{k-1} \text{ where, as above, } \rho(x_{k-1}, y) > \delta \text{ and } \rho(x_{k-1}, z) > \delta. \]
Thus \(x\) has at most one cluster point in \(X\) and therefore converges to a limit \(x_\infty \in X\). Choosing a positive integer \(n > 1 + \rho(x_\infty, a)\) such that
\[\rho(x_n, x_\infty) < 1, \]
we see that \(\lambda_n = 1\). Q.E.D.

The constructive least-upper-bound principle states that if the non-empty subset \(S\) of \(R\) is not only bounded above, but also located — in the sense that for all \(\alpha, \beta\) with \(\alpha < \beta\), either \(\beta\) is an upper bound of \(S\) or else there exists \(x \in S\) with \(x > \alpha\)—then \(\sup S\) exists. The locatedness condition cannot be dropped constructively, although it is redundant classically.

Corollary 7. Under the hypotheses of Proposition 6, \(\sup_{x \in X} \rho(x, a)\) exists.

Proof: Since \(X\) is bounded by Proposition 6, we can apply the least-upper-bound principle to the set \(\{\rho(x, a) : x \in X\}\). Q.E.D.

Proposition 8. Let \(X\) be separable and sequentially compact. Then the following conditions are equivalent.
(i) For each \(\xi \in X\), \(\sup_{x \in X} \rho(x, \xi)\) exists.
(ii) \(X\) is totally bounded.

Proof: Let \((a_n)_{n=1}^\infty\) be a dense sequence in \(X\), and let \(\varepsilon > 0\). Set \(n_0 = 1\), assume (i), and construct an increasing binary sequence \((\lambda_k)_{k=1}^\infty\), and an increasing sequence \((n_k)_{k=1}^\infty\) of positive integers, such that
\[\vdash \text{if } \lambda_k = 0, \text{then } \rho(a_{n_k}, \{a_1, a_2, \ldots, a_{n_k-1}\}) > \varepsilon, \]
\[\vdash \text{if } \lambda_k = 1, \text{then } \sup_{x \in X} \rho(x, \{a_1, a_2, \ldots, a_{n_k-1}\}) < 2\varepsilon. \]
If \(\lambda_k = 0 \), put \(x_k = a_{n_k} \); if \(\lambda_k = 1 \), put \(x_k = x_{k-1} \). We show that the sequence \(x = (x_k)_{k=1}^{\infty} \) has at most one cluster point in \(X \). To this end, let \(0 < \delta < \varepsilon \) and \(\rho(y, z) > 2\delta \), and choose \(j \) such that \(\rho(y, a_j) < \varepsilon - \delta \). Either \(\lambda_k = 1 \) for some \(k \leq j \), or else \(\lambda_j = 0 \). In the first case the sequence \(x \) is eventually constant and so clearly has at most one cluster point. In the second we may assume that \(\lambda_{j+1} = 0 \); so if \(i \geq j + 1 \) and \(\lambda_i = 0 \), then

\[
\rho(y, x_i) = \rho(y, a_n) - \rho(a_j, a_n) > \varepsilon - (\varepsilon - \delta) = \delta.
\]

It follows that if \(i > j + 1 \) and \(\lambda_i = 1 \), then, as \(x_i = x_k \) for some \(k \in \{ j + 1, \ldots, i - 1 \} \) with \(\lambda_k = 0 \), we also have \(\rho(y, x_i) > \delta \). This completes the proof that \(x \) has at most one cluster point.

Since \(X \) is sequentially compact, \(x \) converges to a limit \(x_\infty \in X \). Choose \(\kappa \) such that \(\rho(x_\infty, x_k) < \varepsilon/2 \) for all \(k \geq \kappa \). Then either \(\lambda_\kappa = 1 \) or else \(\lambda_\kappa = 0 \); in the latter case, as \(\rho(x_{\kappa+1}, x_\kappa) < \varepsilon \), we must have \(\lambda_{\kappa+1} = 1 \). Hence \(\{a_1, a_2, \ldots, a_{n_{\kappa+1}}\} \) is an \(\varepsilon \)-approximation to \(X \). This completes the proof that (i) implies (ii).

If, conversely, (ii) holds, then the uniform continuity of the mapping \(x \mapsto \rho(x, \xi) \) ensures that \(\sup_{x \in X} \rho(x, \xi) \) exists ([1], page 94, (4.3)). Q.E.D.

It it tempting to try working with a simpler notion of “\(x \) has at most one cluster point”: namely, that if \(a, b \) are distinct points of \(X \), then either \(x \) is eventually bounded away from \(a \), or \(x \) is eventually bounded away from \(b \). However, Specker’s Theorem ([5]; see also [2], page 58) shows that in the recursive model of constructive mathematics there exists a sequence in \([0, 1]\) which is eventually bounded away from any given recursive real number and, a fortiori, cannot converge.

References

Authors’ addresses: Prof. D. Bridges, Department of Mathematics & Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. Prof. H. Ishi- hara, School of Information Science, Japan Advanced Institute of Science and Technology, Hokoriku, Ishikawa 923–12, Japan. Dr. P. Schuster, Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany.