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Abstract

Substantiated knowledge of future demographic changes that is derived from sound
statistical and mathematical methods is a crucial determinant of regional planning.
Of the components of demographic developments, migration shapes regional
demographics the most over the short term. However, despite its importance, existing
approaches model future regional migration based on deterministic assumptions
that do not sufficiently account for its highly probabilistic nature. In response to
this shortcoming in the literature, our paper uses age- and gender-specific migration
data for German NUTS-3 regions over the 1995–2019 period and compares the
performance of a variety of forecasting models in backtests. Using the best-
performing model specification and drawing on Monte Carlo simulations, we present
a stochastic forecast of regional migration dynamics across German regions until
2040 and analyze their role in regional depopulation. The results provide evidence
that well-known age-specific migration patterns across the urban-rural continuum of
regions, such as the education-induced migration of young adults, are very likely to
persist, and to continue to shape future regional (de)population dynamics.
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1 Introduction

Regional differences in demographic trends related to population size and structure
are well documented across countries (see, for example, BiB, 2021; De Beer et al.,
2010; OECD, 2018, among others). Having precise knowledge of the quality and
the quantity of those developments is crucial for regional infrastructure planning,
such as for estimating the supply of childcare and schools needed, or for labor
market planning (Wilson, 2015a; Zhang and Bryant, 2020). Similarly, the future
demand for healthcare due to population aging (Vanella et al., 2020b) or for housing
depends on the future population size and structure (Gløersen et al., 2016; Vanella
et al., 2020a). Therefore, both governments and enterprises have a strong interest
in regional population forecasts that can provide them with a quantitative basis for
decision-making (Wilson et al., 2021).

Notably, of the three components of demographic change – fertility, mortality
and migration – migration shapes regional populations the most over the short term
(Deschermeier, 2011), while fertility and mortality trends are more important over
the long term (Vanella et al., 2020a). Migration dynamics can have substantial effects
on a region’s population, and particularly in smaller areas, where outflows can have
a large impact on both the size and the structure of the population (Deschermeier,
2011; Zhang and Bryant, 2020).

The causes and the consequences of migration are multi-faceted, and have been
studied using a wide range of approaches across disciplines.1 However, a pivotal
distinction can be made between its two different but nonetheless contiguous
components: internal and international flows.2

Discussions of internal migration frequently address issues such as persistent
net out-migration from economically weaker regions, particularly among younger,
more educated and skilled sub-populations, which is likely to be driven by
varying regional opportunities (Fratesi and Percoco, 2013; Sander, 2014). Regional
heterogeneity in mobility, health services, shopping opportunities, housing, labor
market opportunities and education (Zhang and Bryant, 2020), or in attractiveness
(Skirbekk et al., 2007) based on factors such as architecture and landscape, may drive

1 Given the scope of this paper, we do not provide a comprehensive cross-disciplinary review of
approaches to (regional) migration. However, suitable starting points for corresponding investigations
may be recent contributions across disciplinary boundaries, such as in King (2011) or Pisarevskaya
et al. (2020), among others.
2 In this paper, the term flow generally refers to any migratory movement of people. Normally, the
flows are documented as directional data, i.e., as migrations from certain origin regions to certain target
regions.
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internal migration, and can ultimately lead to the emergence of regional demographic
disparities in larger countries (Eberhardt et al., 2014). Importantly, when a significant
share of the younger population leaves a region, an echo effect can occur: i.e., as
the population of reproductive age decreases, birth numbers decline, which, in turn,
further accelerates depopulation trends.

By contrast, a wide range of factors, from crises and macroeconomic conditions
(Vanella and Deschermeier, 2018) to environmental change (Black et al., 2011), can
heavily affect international migration flows. In host countries, international flows
are likely to affect different regions to varying degrees (see, for example, Heider
et al., 2020, for the case of German regions). Moreover, there is evidence that
the two components are closely intertwined (see King and Skeldon, 2010 for a
comprehensive discussion): i.e., high levels of international immigration lead to
further internal migration flows. For instance, the correlation coefficient between
annual international immigration to Germany for the years 1994 to 2018 and the
one-year delayed out-migration of the German districts (i.e., migration over district
borders in 1995–2019) is 94.8% (own computation based on GENESIS-Online,
2021; Statistische Ämter des Bundes und der Länder, 2021a).

Given the fundamental complexity of migration and its importance for regional
demographic changes, and thus for regional planning in general, gaining a better
understanding of future developments in regional migration is key to developing
policies aimed at either counteracting regional depopulation and aging or mitigating
the expected developments by, for example, adjusting infrastructure supply based
on diminishing or changing regional demand (Iwanow and Gutting, 2020; Krüger,
2020). However, the existing approaches do not account for uncertainty in regional
migration projections (e.g., Maretzke et al., 2021). By relying on deterministic
assumptions, these projections are generally unable to quantify the probability that
specific migration scenarios will occur, or the resulting migration flows. Given
the importance of migration for regional population dynamics, these approaches
clearly have significant shortcomings. At the same time, modeling migration is
demanding, as it has a high degree of stochasticity; that is, migration tends to be
volatile and sensitive to acute events (Vanella and Deschermeier, 2018). In the present
paper, we evaluate potential approaches to incorporating stochasticity into small
area migration forecasting, while simultaneously accounting for varying patterns
and correlations across different age groups and regions. By incorporating both
international and internal migration into a joint framework, we propose a novel,
parsimonious stochastic forecasting approach.

The remainder of the paper is structured as follows. In the next section, we
give a short overview of the state of research on migration projections with an
emphasis on regional migration and discuss the features and limitations of existing
(deterministic) approaches. In the third section, we introduce the data sources used
and the properties of the best-performing model among a variety of models compared
based on a backtest. Then, based on this model, we provide in the fourth section a
stochastic forecast of age-specific future migration among German regions until 2040,
indicating both the extent and the probabilities of migration-induced population
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declines. In the last section, we present our conclusions and a discussion of the
results and the limitations of the study, while pointing out the need for more detailed
data and further methodological advances.

2 (Regional) migration projections: An illustrative overview

Typically, population projections take into account three demographic components
of population change: fertility, mortality and migration. Those projections draw
on a variety of methodological procedures at both the national3 and the regional
level.4 Notably, of the three major components, migration is the most challenging to
forecast (UN DESA, 2022), largely due to data limitations caused by the under-
detection of actual migrations in the reported data (Rogers et al., 2010), and
to inconsistencies between different datasets and territorial changes, which can
complicate the construction of consistent time series (Vanella and Deschermeier,
2018). Moreover, the sensitivity of migratory movements to political, social,
economic and environmental trends and events implies that such movements
are characterized by high stochasticity and inherently limited predictability. This
is because the phenomena underlying migration may themselves be difficult to
predict (Vanella and Deschermeier, 2018, 2020), and can appear rather abruptly,
as demonstrated by the war-related refugee flows from Syria and Iraq between
2014 and 2016 (Vanella et al., 2022), or, more recently, the refugee flows from
Afghanistan (Heidelberg Institute for International Conflict Research, 2022) and
Ukraine (UNHCR, 2022).

Given the wide range of challenges associated with migration forecasting, there
is no consensus on “best practices.” Approaches differ regarding what and how
to forecast; that is, regarding which target variables should be used, e.g., what
modeling flows or rates should be employed and what degree of detail they should
have. Moreover, there is no consensus on the overall modeling framework that should
be used. The latter raises questions that are inevitably related to the incorporation of
risk and uncertainty in the model, including questions ranging from what estimation
strategy and what determinants should be used, to what cross- and autocorrelations
should be considered, to what underlying assumptions about future migration should
be included.

2.1 Flows, rates and the degree of detail: Target variables

Initially, migration forecasts depend primarily on the target variables to be modeled.
While the approaches used by the statistical offices generally target gross or net

3 For a general overview, see Vanella et al. (2020a).
4 A recent comprehensive survey is given by Wilson et al. (2021).
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migration flows, many authors, such as Bĳak (2011) or Fuchs et al. (2021), have
argued against forecasting migration flows. Fuchs et al. (2021) pointed to the
“philosophical advantages” of forecasting migration rates instead of flows. Migration
rates show relatively robust age patterns (Rogers and Castro, 1981), which implies
that rates should be less volatile than flows. Migration rates are computed based on
the population at risk of migrating. Consequently, forecasting rates rather than flows
accounts for structural changes in the size and the age structure of the population,
which can, in turn, significantly influence migration flows. Moreover, forecasts of
migration flows using very small baseline populations, such as the oldest-old or
the populations of sparsely populated regions, may lead to negative simulations
for the end-of-period population. This combination may, in absolute values, result
in net out-migration estimations that exceed the initial population base – which is,
obviously, impossible (Fuchs et al., 2021). Thus, particularly, albeit not exclusively, in
regional forecasting contexts, estimating rates appears to have advantages compared
to estimating flows.

Indeed, regional migration rate forecasts have a long tradition (see, e.g., Rogers
and Castro, 1981 or Rogers et al., 2010). However, one clear limitation of forecasting
regional migration rates is that in-migration rates are difficult to define. Whereas
out-migration rates from one region can be easily computed, at least in countries with
adequate regional population and migration data, computing in-migration rates is
not as straightforward, since the baseline population is not well-defined. Calculating
migration rates based on the regions of origin of the migrants is not feasible in
many contexts, and especially in the case of international migration from countries
with less reliable statistical documentation. While computing rates based on the
corresponding population of the target region for the purposes of projection is
an alternative approach, it is philosophically questionable, as we do not use the
population at risk in the denominator, but instead approximate the gravity of more
populous regions in lieu of computing migration rates (Fuchs et al., 2021).

In addition to the question of whether to model flows or rates, the question of
what degree of detail is appropriate can arise when deciding whether to incorporate
the target variable disaggregated by categories such as age, gender or citizenship,
as substantial differences in these categories have been documented. Raymer et al.
(2011) estimated migrations by origin, destination, age and gender for European
countries, and found age- and gender-specific patterns across countries. Similarly,
Van Mol and de Valk (2016) demonstrated that the age and gender structure of
migrants differs depending on both their citizenship and their destination country.

2.2 Consistency in forecasts of internal and international migration

On the regional level, migration comprises both international and internal flows.
These flows affect and shape regions within a country quantitatively and qualitatively,
and to different degrees (Fratesi and Percoco, 2013). In Germany, for example,
distinct internal migration patterns have been observed in recent decades, as,
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following reunification, the number of people migrating from East Germany to
West Germany greatly exceeded the number of people migrating in the opposite
direction (see, as a recent example, Rosenbaum-Feldbrügge et al., 2022). While
this demonstrates that both components should be included in projections, it also
suggests that the target variables should be further distinguished for this category
as well. The latter point is again supported by empirical evidence. For example, in
the case of Germany, scholars have shown that out-migration from East Germany is
selective in terms of age and gender (Kröhnert and Vollmer, 2012; Leibert, 2016).

However, relying on highly disaggregated target variables along all these
dimensions faces two limitations in empirical applications. First, detailed regional
migration data5 are usually sparse (Rowe et al., 2019; Wilson et al., 2021).
Second, even when these data are available, the dimensionality increases drastically,
particularly for approaches that include region-to-region flows, which may even be
disaggregated by gender, age and citizenship, as outlined above.

Migration projections that focus on the national level, such as those by UN DESA
(2022), do not cover the regional perspective, and are, therefore, not necessarily
compatible with regional projections for the same country. For the case of Germany,
Maretzke et al. (2021) followed a hierarchical procedure that, first, assumed one of the
variants suggested by Destatis (2019) for international migration between Germany
and other countries, and, second, assumed internal migration rates in Germany
based on a qualitative assessment and past data. While this approach has merit, it
cannot capture changes in internal migration patterns after immigration shocks.6
Moreover, due to its complex model structure, which is based on bi-directional
internal migration, it is not feasible to sufficiently incorporate uncertainty into the
projection, particularly given the high stochasticity in international migration (for
more on that problem, see Section 2.4).

2.3 Modeling migration processes and determinants

Closely connected to questions of which target variables should be selected is the
decision about which general modeling framework should be used, e.g., which
migration determinants should be included. A large body of literature has emphasized
the importance of including determinants in analyses of migration patterns. Among
the potential drivers of migration that have been discussed in the literature are
economic reasons (e.g., Bertoli et al., 2013; Grogger and Hanson, 2011; Mayda,
2010), the impact of education (e.g., Bernard and Bell, 2018; Lutz and KC, 2011;

5 Bell et al. (2014) present a comprehensive overview of internal migration data for the 193 UN
member states.
6 Even after internal and international migrations have been separated, there is still a variety of
possible approaches to incorporating these flows. Interested readers may consult Rees et al. (2015),
who discussed a variety of approaches to modeling international migration streams in subnational
population projections.
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Lutz, 2021), network effects (e.g., Beine et al., 2011; Pedersen et al., 2008), the
institutional framework (e.g., Geis et al., 2013; Ortega and Peri, 2013), personal
preferences (Mulliner et al., 2020; also amenity migration, e.g., Steinicke et al.,
2012) and environmental causes (e.g., Beine and Parsons, 2015; Black et al., 2011;
Cai et al., 2016).7

Notably, these scholars found that the observed migration patterns are usually
explained by more than one of those drivers, or by interactions between them.
For example, Leibert (2016) attributed the abovementioned internal migration in
Germany, in which gender-selective out-migration plays a large role, to a combination
of economic and context-specific institutional factors, including the labor market
situation in East Germany after reunification combined with high levels of labor
force participation among East German women. Heider et al. (2020) found that
the locational choices of international migrants across German regions are strongly
driven by network effects as well as by individual-level factors, such as educational
considerations. Prenzel (2021), using German data, showed that regional population
aging fueled by the selective out-migration of younger individuals may itself
reinforce out-migration, and thus that polarization dynamics, in addition to the
other discussed reasons, may be another explanatory factor in regional migration
patterns.8

Just as a variety of migration determinants have been discussed across disciplines,
a wide range of approaches have been used to forecast migration. While statistical
offices (e.g., UN DESA, 2022) tend to rely on rather simple models for migration
computations, more sophisticated alternatives have been applied in the literature. For
instance, Kubis and Schneider (2020) used an econometric panel model that predicted
immigration and emigration by EU citizens in Germany, and included labor market
and freedom-of-movement variables as predictors. Lipps and Betz (2005) suggested
forecasting cumulative net migration to Germany using an ARIMA model. Vanella
and Deschermeier (2018) proposed ARIMA forecasting of principal components
derived from age-, gender- and nationality-specific net migration to Germany.
Moreover, migration forecasts between certain regions can also be performed based
on directional models. Examples of studies that used this approach include Abel and
Cohen (2019) and the sources cited therein. An example for forecasting bi-directional
flows between Germany and Poland was provided by Bĳak (2011).

Importantly, the methodological approach to migration forecasting may
also vary depending on the extent to which cross-correlations between in-
migration and out-migration, age and gender groups (which also model fam-
ily migration indirectly), and different regions are included in the model.

7 For further discussions, see, among others, Simpson (2022) or Van Hear et al. (2018). Interested
readers may also refer to collections of interdisciplinary perspectives on migration, such as Brettell and
Hollifield (2022).
8 For a more detailed discussion of the drivers of migration between East and West Germany, see
Rosenbaum-Feldbrügge et al. (2022).
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Vanella and Deschermeier (2018), for example, covered these correlations on
the national level by employing the abovementioned approach. From a regional
perspective, simple (top-down) models do not sufficiently account for correlations
in migration between regions. An illustrative example is that large inflows to a major
city like Berlin will be highly correlated with migration flows to or from neighboring
regions; in this case, Brandenburg. These correlations might be negative in the case
of movements between Berlin and Brandenburg, or they may be positive if large
inflows to Berlin are associated with large inflows to the neighboring regions because,
for example, migrants are unable to find accommodation in Berlin due to a lack of
available housing (Henger and Oberst, 2019a). At the same time, co-movement, such
as family migration, will be observable in the data due to high positive correlations
between corresponding age groups. This is a well-known phenomenon that has been
investigated by Rogers and Castro (1981), and in later studies on the age schedule of
migration.

2.4 Incorporating risk and uncertainty

Finally, migration projections, like demographic projections in general, differ in
how they include risk and uncertainty. Migration projections are often categorized
as either deterministic or stochastic approaches. While deterministic population
projections were frequently employed in the past, as they were widely used
by statistical agencies (Deschermeier, 2011; Vanella and Deschermeier, 2020),
stochastic approaches have become increasingly popular in recent decades, at least
on the national level.9

Deterministic approaches, which are often scenario-based (see, e.g., UN DESA,
2022), seek to identify several realistic outcomes. Some authors use rather naïve
assumptions: i.e., that the most recent observations form the basis for the most
probable future scenarios. For instance, the United Nations Population Division relies
on such an assumption in its projections of international non-refugee migration in
the medium scenario of its World Population Prospects (UN DESA, 2022). In cases
in which the assumption that recent migration flows will continue in the future is not
realistic, alternative values may be proposed, either for the near future (specifying a
level) or for the medium to long term (specifying a full future trajectory). For instance,
the national population projections for Germany proposed by Destatis (2019) assume
that net migration will, in sum, converge to levels computed as the historical means
over three varying periods. In this example, net migration to Germany is assumed to
reach a level of between 111,000 and 300,000 in 2030.

Among the reasons why deterministic approaches have been popular are that
they can be computed quickly, and they can be easily used to compare a range
of different policy scenarios and the corresponding effects (Vanella et al., 2020a).

9 For a survey on Germany, see Vanella and Deschermeier (2020).
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For example, Lomax et al. (2020) recently discussed a series of Brexit-dependent
migration scenarios and presented corresponding deterministic projections for each
scenario. Lutz et al. (2019), developed several demographic scenarios for the
European Union in which they analyzed the impacts of fertility, mortality, migration,
education and labor force participation. They showed that projections of how many
people, stratified by skill level, will be living and working in the European Union
in 2060 differed depending on which assumptions were applied. Similarly, Marois
et al. (2020) compared six scenarios for the EU-28 that differed depending on
which assumptions regarding immigration volumes, the educational selectivity of
migrants, and labor force integration and participation were used, and analyzed
the corresponding impacts on various dependency ratios. De Beer et al. (2010),
taking a smaller-scale perspective, compared four policy scenarios based on different
assumptions for reducing socioeconomic inequalities and moderating climate change
across European regions, and assessed the impact of these policies on demographic
developments such as (working-age) population growth and population aging.

However, despite being popular, deterministic approaches have major limitations,
as they rely on scenario assumptions; that is, on fixing the relevant parameters
at predefined values, and then making a straightforward calculation of the
corresponding future developments. As these approaches are unable to quantify the
probability that the respective scenarios will occur (Vanella et al., 2020a), they do not
reflect future uncertainty, but instead only present a rather small number of realistic
scenarios. While these scenarios may be informative, the statistical probability that
they will actually take place is close to zero (Keilman et al., 2002). By contrast,
stochastic (population) projections overcome these limitations, as they quantify the
probability that future trajectories will occur by relying on statistical information and
methods for both frequentist (e.g., Fuchs et al., 2018 or Vanella and Deschermeier,
2020) and Bayesian (e.g., Azose et al., 2016) frameworks.

Despite having these favorable properties, the stochastic modeling of (interna-
tional) migration has previously been performed for only a few individual countries
(Azose et al., 2016), such as Germany (Vanella and Deschermeier, 2018), or for
migration between countries, such as between Germany and Poland (Bĳak, 2011).
However, as was noted above, the quantification of prediction intervals instead of
point forecasts is preferable, since it allows researchers to assign probabilities to the
outcomes of the respective future migration trajectories (Vanella and Deschermeier,
2018). Nonetheless, given its volatile nature, migration is particularly difficult to
forecast, even when a stochastic framework is applied.10

Notably, in addition to stochastic approaches, there is also a series of approaches
that combine both (scenario) assumptions and policy comparisons. For example,
Lutz et al. (1998) suggested randomizing expert-based scenarios to derive stochastic

10 Which additionally lowers the predictive value of selective (i.e., deterministic) scenarios, as the
probability of an outcome is lower than it is for processes that are easier to predict, such as mortality
improvements.
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expert-based forecasts. Abel et al. (2016) incorporated future education pathways
based upon the Sustainable Development Goals in a Bayesian framework. Marois
et al. (2021) used a stochastic microsimulation model for China with pre-defined
parameter values, e.g., for the total fertility rate, to project adjusted old-age
dependency ratios that factored in both educational attainment and labor force
participation. Similarly, Bĳak (2011) and Azose et al. (2016), among others, have
recently suggested using Bayesian approaches to combine the information derived
from the data with qualitative knowledge or assumptions regarding future migration.
The use of such approaches is conceivable if the necessary data are not available
or are erroneous, or if we believe that the past data are unlikely to reflect future
developments in migration.

2.5 Migration forecasts for German regions

For the reasons outlined above, the approaches to modeling regional migration are, in
practice, quite heterogeneous. However, deterministic approaches are used even more
frequently for regional projections than for projections on the national level. This is
illustrated by looking at various recent population projections for German regions,
some of which have already been addressed. For example, Maretzke et al. (2021)
provided comprehensive population estimates for German NUTS-3 regions until
2040. They modeled internal migration using high dimensional region-to-region
migration data from 2011–2017 and assuming constant mean outflow rates in the
future, disaggregated by age and gender. Similarly, they modeled net international
migration by applying a series of deterministic assumptions based on regional data
from the observation period and assumptions about the overall levels of migration to
Germany in the future. Reinhold and Thomsen (2015) provided population projection
results for NUTS-3 regions of the German federal state of Lower Saxony using an
average of different projection techniques. While they relied on several deterministic
assumptions about regional migration dynamics, such as constant inward to outward
migration ratios or zero net migration, they did not differentiate between internal and
international migration. Breidenbach et al. (2018) provided much more fine-grained
estimates, projecting the total population in Germany until 2050 using a 1 × 1-km
grid. They did not take internal migration dynamics into account. Moreover, they
assumed that net international migration to Germany will remain at constant levels,
and will be distributed across regions proportionally to the total population. Regional
projections using the subnational data of other countries often relied on deterministic
modeling as well (e.g., Eurostat, 2021; Raymer et al., 2006; Wilson, 2015a).

By contrast, fewer regional migration projections have taken uncertainty into
account. Ballas et al. (2005) estimated the internal migration probabilities for regions
in Ireland over the 1991–2002 period by using Monte Carlo sampling from individual
census records. However, they excluded international migration from their analysis
due to a lack of data. Bryant and Zhang (2016) estimated regional emigration rates
disaggregated by sex and age in New Zealand over the 2014–2038 time interval
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using a complex Bayesian approach. Similarly, Zhang and Bryant (2020) used a
sophisticated Bayesian model to project migration between Icelandic regions.

Thus, even though migration dynamics play a crucial role in the demographic
development – and, consequently, in the overall economic and social development –
of regions, most regional projection approaches do not rely on a consistent (including
both international and internal migration) and accurate (stochastic) modeling strategy.
Investigating either international or internal migration, but not both, fails to account
for the interdependencies or regionally differing effects of these two migration
components. Furthermore, as Fuchs et al. (2021) demonstrated, in addition to
relying on the sensitivity to the assumed parameter values, modeling migration
deterministically implies a heavy dependence on a detailed approach for modeling
in-migration and out-migration dynamics. This issue is of particular importance
on the regional level, as Wilson and Bell (2004) showed for internal migration. In
the same vein, Wilson et al. (2021) underlined the need for stochastic modeling of
regional population changes in future research.

Therefore, given the state of the research and the respective implications and
limitations of the prevailing deterministic methods outlined above, we propose in
the upcoming section a comprehensive and parsimonious stochastic framework for
forecasting migration on the regional level in Germany.

3 Data and methods

Based on the literature, we can identify a series of potentially relevant characteristics
of a model for forecasting migration between German regions. However, the
incorporation of these factors is constrained by data availability, which we discuss
below. Moreover, ex-ante, there is ambiguity about which modeling approach
performs the best. Therefore, the comparison of different specifications may be
necessary.

Previous studies have evaluated a series of candidate models to find out which one
performs the best. Reinhold and Thomsen (2015), using data for selected German
regions, compared the accuracy of individual and model averaging forecasting
techniques. Rayer (2008) compared the forecast error levels of different population
forecasting techniques using data on U.S. counties. Wilson (2015b), building upon
the findings of Rayer (2008) and others, compared the forecast accuracy of more
than 200,000 simple to more complex averaged and composite model specifications
for regions in Australia, England and Wales and New Zealand.

In line with these examples, and based on both the relevant factors discussed in the
review above and the available data for German regions, we identified eight models
to be tested and compared to each other:

• a prediction of gross migration flows using naïve status quo assumptions,
• a prediction of gross migration flows using observed mean and median values,
• a prediction of net migration flows using principal component analysis,
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• a prediction of log-gross migration flows using principal component analysis,
• a prediction of gross migration rates using naïve status quo assumptions,
• a prediction of gross migration rates using observed mean and median values,
• a prediction of net migration rates using principal component analysis and
• a prediction of log-gross migration rates using principal component analysis.

Thus, our empirical strategy consisted of two major building blocks. First, we
determined which of those eight competing models is most accurate by conducting
a sequence of deterministic backtests (see, for instance, Vanella and Deschermeier,
2019). In doing so, we applied each model to each of the six available gender-age
groups11 by taking data for the years 1995–2014 as a baseline, while assuming no
knowledge of the migration trends after that period. We then created in-sample
forecasts for the years 2015–2019, and compared the corresponding ex-post errors.
Interested readers can find details on the models that were tested, the measure of
accuracy that was used (the symmetric mean absolute percentage error, see Chen
et al., 2017), and the results for all other models in Appendix A. Second, the best-
performing model was used to conduct a stochastic NUTS-3-level migration forecast
until 2040. By applying this two-step procedure, we addressed the discussions
outlined in the literature review about which target variables (net versus gross, flows
versus rates) and empirical strategies should be used (from naïve models to principal
components analysis), and how uncertainty should be incorporated.

3.1 Data: Sources and preparation

We used publicly available small-area data on migration from and to NUTS-3 regions
in Germany (Kreise/Districts) for the 1995–2019 period from the German federal
statistical office and the statistical offices of the federal states (Statistische Ämter
des Bundes und der Länder, 2022). As there were various changes in administrative
territories over the baseline period, we redistributed the past migration flows12 to
districts based on their boundaries as of December 31, 2019. For the data of districts
in which the boundaries changed13 over time, and for which obtaining consistent time
series was therefore not feasible, we created pseudo-districts. Appendix B gives an
overview of the territorial reforms since 1995, and of how we converted data with
incompatible boundaries into consistent time series.

11 0–17; 18–24; 25–29; 30–49; 50–64; 65+ years.
12 In contrast to the general definition of migration flows as presented in Section 1, our model refers to
the sum of either inflows or outflows during one-year periods from the perspective of a certain district.
For instance, we consider each out-migration from Berlin as an outflow and each in-migration to Berlin
as an inflow. Thus, our definition of flows is non-directional. For example, a person moving from Berlin
to Wolfsburg in the year 2020 will appear as an outflow in the data for Berlin and as an inflow in the
data for Wolfsburg.
13 For instance, after reunification, some districts in East Germany were dissolved and redistributed to
three or four new districts.
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Although it would have been preferable to do so, as we discussed above, the
available data did not allow us to distinguish between internal and international flows
or citizenships. Furthermore, in 15 of the 16 federal states, the district-level data did
not distinguish migrants by gender before 2002. We obtained gender-differenced
time series for those 15 federal states by performing a backcast of the rates for
males among all migrants across all age groups and districts. For this purpose, we
computed the age-specific shares of males among all migrants for 2002–2019, and
then performed PCA on the resulting 4,596 time series (in- and out-migration, six
age groups, 383 districts). The obtained PCs were backcasted until 1995, and were
then retransformed to male shares for all age groups and districts, and multiplied by
the total migration data to obtain gender-specific flows.14

3.2 Forecast model

The highest forecast accuracy was achieved by the PCA model for log-gross migration
flows. Using this model for our forecast, we first performed PCA on the covariance
matrix of annual age- (six groups), gender- (binary) and district-specific (396
districts and pseudo-districts) log-migration flow time series for 1995–2019, which
corresponds to a 25 (years) × 9,504 (variables) matrix. PCA performed singular value
decomposition on this matrix, thereby transforming the original and highly correlated
data into linear combinations of the original variables that were uncorrelated, so-
called principal components. This allowed us to efficiently cover cross-correlations
between the original variables in our forecast (Vanella, 2018). More technical details
on the PCA model used for the specific case in this paper are given in Appendix A.

The inversed loadings (coefficients) of the district-, age- and gender-specific log-
migration on Principal Component 1 (PC1)15 are illustrated in Figures 1–4, whereby
Figures 1 and 2 indicate loadings of age- and gender-specific in-migration and
Figures 3 and 4 indicate loadings of age- and gender-specific out-migration. Darker
colors are associated with higher correlations between PC1 and the respective log-
migrations. Shades of green indicate negative loadings of the respective flows on
PC1, while shades of purple indicate a positive connection.

For instance, the district of Göttingen (I) has a dark green color in Figure 1(a),
which means that a decrease in PC1’s inverse is, on average and ceteris paribus
(c.p.), associated with relatively large increases in in-migration to Göttingen among
males aged 0–17 years. Simultaneously, the dark purple of the district of Höxter (II)
indicates that for the same age-gender stratum, an increase in PC1’s inverse is, on
average and c.p., associated with rather large increases in in-migration to Höxter.
Moreover, the district of Göttingen (I) has a dark green color in Figure 4(f) as well.

14 We purposely keep the description of the backcast method rather short. For interested readers,
more details are offered in Appendix C.
15 For ease of interpretation, the sign of the PC1 time series (and, thereby, its loadings) was inverted
in Figures 1–5, such that an increase in PC1 is associated with c.p. increases in migration.
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Figure 5:
Time series of Principal Component 1 (with inversed sign) with forecast
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Source: Authors’ computation and illustration.

This implies that a decrease in PC1’s inverse is associated not only with increases
in in-migration to Göttingen among young people, but also with increases in out-
migration from Göttingen among females aged 65+ (c.p.). These selected examples
demonstrate that trends in PC1 cover migration dynamics that occur simultaneously
across districts, age groups and genders. Thus, as indicated by the literature review,
we found that results relying on estimation by PCA accounted for the correlations
and the interdependencies between regions and demographic groups reported in the
historical data, such as the displacement of age groups due to overburdened local
real estate markets.

Overall, PC1 explained more than 52% of the variance in the 9,504 variables
throughout the 25-year period. Figure 5 illustrates its inversed course over time,
alongside a forecast that was derived using an approach explained in Appendix A
(see description of Model 4), including 95% prediction intervals (PIs) for illustrative
purposes. Apart from the years 2015 and 2016, which were outliers due to the
significant international refugee inflows and internal migration flows that occurred
during that period (see Fuchs et al., 2021 and Vanella et al., 2022), PC1 followed
a mostly monotonous course: migration was increasing steadily, then slowed down
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in the late 2000s, and accelerated again in the wake of the so-called Arab Spring in
2011 (Vanella and Deschermeier, 2018). After the large inflow of refugees ended in
2016, a deceleration of the curve can be observed.

Therefore, the long-term trend of PC1 can be emulated quite well by fitting an
inverse logistic trend function to the time series. The model’s inflection point (the
year 2011) was chosen such that the fit maximized the model’s likelihood. Then,
the model coefficients were estimated by ordinary least squares (OLS). The model
generating the prediction in Figure 5 is given in (1).

𝐸 [𝑃1,𝑦 |𝑃1,2019] ≈ −345.675 − 45.998
exp

(
𝑦−2011
2.856

)
1 + exp

(
𝑦−2011
2.856

) + 𝑟2019 (1)

with

• 𝑃1,𝑦: value of PC1 in year 𝑦,
• 𝑦 taking the values 2020, 2021, . . . , 2040,
• 𝑟2019 ≈ 3.478: the residual between the observation for PC1 in 2019 and the

trend function’s prediction for 2019.

After visual inspection of the residuals’ time series and their autocorrelation
function (ACF) and partial autocorrelation function (PACF) (see, e.g., Shumway and
Stoffer, 2017), we concluded that they were appropriately modeled by a random walk
process.

3.3 Stochastic forecast of regional migration flows until 2040

Having estimated in-sample regional migration using the best-performing specifi-
cation, we attempted to forecast future regional migration among German regions
until 2040. However, as was outlined above, uncertainty about future migration was
a major concern. To account for this uncertainty, we set up a stochastic version of (1),
which is given in (2).

𝑃1,𝑦 ≈ −345.675 − 45.998
exp

(
𝑦−2011
2.856

)
1 + exp

(
𝑦−2011
2.856

) + 𝑟𝑦 , (2)

with 𝑟𝑦 being a random walk process that can be written as:

𝑟𝑦 = 𝑟𝑦−1 + 𝜀𝑦 = 𝑟𝑦−2 + 𝜀𝑦−1 + 𝜀𝑦 = · · · , (3)

with 𝜀𝑦 being a stochastic white noise process:

𝜀𝑦 ∼ NIID(0, 0.1492) ∀ 𝑦. (4)
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Table 1:
Explained share of variance by principal component

Principal Individual share of Cumulative share of
component explained variance [as %] explained variance [as %]
1 52.4 52.4
2 25.7 78.1
3 4.9 83.0
4 3.9 86.9
5 2.1 89.0
6 1.8 90.7
7 1.1 91.8
8 1.0 92.8
9–9,504 <1.0 100.0

By drawing 1,000 times for each year over the forecast horizon from (4), plugged
into (3), and thus also in (2), we computed 1,000 trajectories for PC1 until 2040. The
remaining PCs jointly explained less than half of the variance in all log-migration
time series (see Table 1 below). Since they did not show clear trending behavior,
we assumed that those PCs followed random walk processes as in (3) and simulated
1,000 trajectories for each, which allowed us to consider the associated risk and
to construct more realistic PIs, as suggested by Vanella and Deschermeier (2020).
Using this approach, we obtained annual simulation matrices for all PCs that could
be easily retransformed into annual simulation matrices of the log-migration, and by
exponentiation, of migration flows, as given in (5):

Γ𝑦 = exp(Π𝑦Λ
−1), (5)

with Π𝑦 (1,000 × 9,504) being the simulation matrix of the PCs for year 𝑦, Λ−1

being the inverse of the loadings matrix (9,5042), and Γ𝑦 being the simulation
matrix of the migration flows for year 𝑦 (1,000 × 9,504). Based on the quantiles of
the 1,000 simulated trajectories, we derived PIs for each district-, age-, gender- and
direction-specific time series.

Subsequently, we aggregated each individual trajectory over the forecast horizon,
resulting in cumulative migration flows until 2040:

Γ. =

2040∑︁
𝑦=2020

Γ𝑦 . (6)

Having obtained migration flows over the forecast horizon, we were able to derive
measures of migration-associated depopulation for each district, age and gender. To
this end, we subtracted, for each of the 1,000 trajectories, the forecasted outflows from
the respective forecasted inflows. This yielded cumulative district-, age- and gender-
specific net migration distributions through 2040. More formally, let 𝛾𝑑,𝑎,𝑔,𝑖,.,𝑡 be
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the cumulative inflows to district 𝑑 by individuals in age group 𝑎 and of gender 𝑔
in trajectory 𝑡 for 2020–2040 and 𝛾𝑑,𝑎,𝑔,𝑜,.,𝑡 be the corresponding outflow. Then, the
net cumulative flow for the said district, age group, gender and trajectory is

𝛾𝑑,𝑎,𝑔,𝑛,.,𝑡 = 𝛾𝑑,𝑎,𝑔,𝑖,.,𝑡 − 𝛾𝑑,𝑎,𝑔,𝑜,.,𝑡 . (7)

Thus, 𝛾𝑑,𝑎,𝑔,𝑛,.,𝑡 indicates whether a district faces an increase or a decrease in the
corresponding demographic stratum because of migration flows over the forecast
horizon – importantly, in absolute numbers.

However, German districts differ in population size, which alters the relevance
of flows as absolute numbers. For example, a population decline of 10,000 is more
severe in a district of 50,000 inhabitants than in a district of 1,000,000 inhabitants.
To obtain a more realistic picture of the significance for each district of population
decline due to negative net migration or population growth due to positive net
migration, we computed the quotient of the cumulative net migration and the official
population estimate as of December 31, 2019 (𝐵𝑑,𝑎,𝑔,2019) for each stratum:

𝛾𝑑,𝑎,𝑔,𝑛,.,𝑡

𝐵𝑑,𝑎,𝑔,2019
. (8)

Finally, we used our stochastic results to estimate the probability of migration-
induced depopulation for each stratum. For instance, let Δ𝑑,𝑎,𝑔,. be a binary variable
that takes the value of one if the cumulative net migration to 𝑑 among individuals
in age group 𝑎 and of gender 𝑔 during 2020–2040 is negative, and the value of zero
otherwise:

Δ𝑑,𝑎,𝑔,𝑡 : = 1(𝛾𝑑,𝑎,𝑔,𝑛,.,𝑡 < 0). (9)
Then, the estimated probability of migration-induced depopulation based on our

Monte Carlo simulation with 1,000 trajectories for the said district, age group and
gender, is

𝑃̂(𝐷) =
∑1,000

𝑡=1 Δ𝑑,𝑎,𝑔,𝑡

1,000
. (10)

We will present the results generated from (6), (8) and (10) by district and age
in Section 4. Gender-specific results can be found in Online Supplementary File 1
(available at https://doi.org/10.1553/p-5pn2-fmn8). We discuss the limitations of
our approach in Section 5.

4 Results

4.1 Future migration flows among German regions

As the initial output of the model, given by (6), delivers migration flows, we visualize
and compare the corresponding median of the forecasted flows in Figure 6. In this
context, four distinct future migration patterns become visible.

https://doi.org/10.1553/p-5pn2-fmn8
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First, there is strong evidence that for the 18–24 age group, migration-induced
depopulation will occur in the majority of German regions by 2040, as indicated
by the dark turquoise colors in Figure 6(b). Simultaneously, we observe scattered,
brown-colored districts on the map representing major cities, which indicates that
high levels of positive net migration to these cities among this age group will occur
over the forecast horizon. For instance, Berlin (III), Hamburg (IV), München (V),
Köln (VI) and Hannover region (VII) are easily distinguishable from their respective
neighboring regions. These results are very much in line with the observed internal
migration patterns in the recent past, which were characterized by educational
migration by young adults from rural areas to nearby cities with universities and
more occupational training opportunities (Siedentop et al., 2014 and the sources
cited in the literature review).

Second, as illustrated by Figure 6(c), the forecast indicates that for the 25–29 age
group, there will be positive net migration in most German regions, particularly in
large cities, and only slight decreases in others. A key explanatory factor in this
result is that overall positive net international migration is predicted for this age
group due to both labor migration and, as implicitly included in the data, refugee
migration (Vanella and Deschermeier, 2018; Vanella et al., 2022). The major cities
and some of their surrounding areas will experience larger inflows since international
migrants traditionally move to larger cities that are internationally known, and that
frequently offer migrants a better network of co-patriates (Henger and Oberst, 2019b;
Saa et al., 2020; Sharma and Das, 2018 and the sources cited in the literature review)
who can facilitate their orientation after they arrive in the destination country (Gans
and Ritzinger, 2014; Martén et al., 2019). However, by construction, Figure 6(c)
displays internal movements as well. Here, migration patterns may be explained
by the overall regional economic situation; that is, by labor market opportunities.
Wage differentials between West Germany and East Germany have persisted since
reunification (Smolny and Kirbach, 2011). Moreover, employment growth remains
higher in West Germany, and this trend is expected to continue (Heining et al., 2021).
For instance, the district of Göttingen shows positive net migration for the 18–24 age
group (Figure 6(b)), but negative net migration for the 25–29 age group. This can
be explained by Göttingen having a highly respected university that attracts students
from other regions, but also a relatively small labor market that does not offer enough
qualified jobs to keep graduates from leaving the city after they have finished their
studies (Buch et al., 2011).16

Third, Figures 6(a) (0–17 years) and 6(d) (30–49 years) show quite different
patterns of regional migration flows, apart from the overall positive net international

16 Readers should, however, keep in mind that Figure 6 visualizes absolute net migration. Therefore,
the color shades are naturally darker for larger districts. This somewhat explains the shades of the
pseudo-district 150018285868991, which is merged from multiple rather rural districts in the federal
state of Sachsen-Anhalt (see Appendix A for more details). Simultaneously, the 25–29 age group is
the smallest of the six included age groups; thus, by construction, it tends to yield smaller absolute
numbers.
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migration. According to the median forecast, there will be negative net migration
to major cities among the 30–49 age group. Figure 6(a) echoes these trends, as it
shows migration among children, who typically migrate with their parents, most of
whom are in the 30–49 age group. This echo in the migration age schedule has been
investigated for decades, and was already observed by Rogers and Castro (1981), as
was discussed above. The observed migration patterns can also be attributed to other
factors identified in the literature, such as increased personal preferences for living in
a quieter and more rural environment, and financial constraints that make it difficult
to afford to live in a city (Günther, 2013). Young families are especially likely to
search for housing on the outskirts of cities (Peter et al., 2022), as these areas tend
to offer more safety and quiet and more affordable housing (Voigtländer and Sagner,
2020). Notably, as was discussed earlier, young families who leave cities often
migrate to neighboring regions, as these areas typically offer good infrastructure and
allow them to reach the city center relatively quickly (Peter et al., 2022). Moreover,
the abovementioned gravity of major cities for internal and international migrants
results in additional pressure on real estate markets, which can, in turn, lead to high
levels of out-migration (e.g., Henger and Oberst, 2019a).

Fourth, Figures 6(e) and 6(f) illustrate that despite the large numbers of people in
both groups, migration intensities generally decrease with age, as indicated by the
lighter shades. A notable exception to these decreasing dynamics is the finding that
deurbanization trends accelerate with increasing age, and will continue to do so in the
future, according to the forecast. In Figures 6(e) and 6(f), the dark turquoise colors
in Berlin, Hamburg, Bremen (VIII) and München indicate that levels of net out-
migration among older people are high in these regions. Simultaneously, migration
gains among older age groups are expected to occur in some areas surrounding these
major cities, and in some northern regions of Germany, particularly those bordering
the North Sea and the Baltic Sea. Recalling the literature review, this finding can
be attributed to amenity migration. It is well known that retirement is associated
with local migration peaks (Rogers and Castro, 1981), as significant numbers of
individuals migrate to regions or countries they find more attractive (Vanella and
Deschermeier, 2018). In our forecast, the seaside regions are expected to experience
net inflows of older age groups in the future.

4.2 Migration flows along the urban-rural continuum

The analysis of migration flows across regions according to the median forecast has
shown that in-migration and out-migration exhibit distinct age-specific patterns that
can be linked to a series of explanatory factors discussed in the literature. Those
factors often result in migration along the urban-rural-continuum, as was outlined.
However, relying on district-level data may blur this finding, given that districts do
not have a uniform residential structure; that is, each district may contain both rural
and urban areas. To substantiate the finding that future migration will run along the
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Table 2:
Median cumulative net migration 2020–2040 by age group and type of region [in
thousands]

Age group
RegioStaR category 0–17 18–24 25–29 30–49 50–64 65+ Cumulative
71: metropolis in urban region −198 +1,814 +999 −400 −236 −271 +1,708
72: regiopolis and large city in

urban region
+58 +1,486 −36 −393 −52 −80 +981

73: medium-sized city, urban
area in urban region

+888 −221 +202 +1,304 −69 −48 +2,057

74: small town area, village
area in urban region

+369 −193 +63 +554 +57 +16 +865

75: central city in rural region +106 +131 −32 +104 +39 +18 +366
76: medium-sized city, urban

area in rural region
+520 −241 +40 +664 +170 +20 +1,172

77: small town area, village
area in rural region

+373 −259 +54 +535 +187 +48 +938

Source: Authors’ computation and illustration.

urban-rural continuum, we analyzed the forecasted migration figures with respect to
the residential structure of a district.

An established classification for German regions is the RegioStaR typology by the
Federal Ministry for Digital and Transport (BMVI). In a recent example, Heinsohn
et al. (2022) suggested using the RegioStaR 7 specification to characterize regions
in a study on regional COVID-19 infection dynamics in schools, as it provides a
reasonable trade-off between enabling a sufficient differentiation of regions (seven)
while still ensuring that the analysis is comprehensible. Since RegioStaR uses LAU
nomenclature, Heinsohn et al. (2022) calculated the median category among all
LAUs in each NUTS-3 region, with each LAU weighted by the corresponding
populations on December 31, 2019. The resulting figure is used as the representative
RegioStaR category of the NUTS-3 region (district). We borrowed their approach in
the present paper. The RegioStaR typology is provided online by the BMVI (2021),
alongside population estimates. Based on the outlined procedure, we derived net
migration forecasts by age group and type of region. The median values in thousand
individuals, cumulated over the forecast horizon, are given in Table 2. In the median,
the model forecasted no overall migration-induced depopulation for any RegioStaR
category due to positive international net migration. There was, however, support
for the finding of age-specific regional depopulation due to age-specific migration
patterns.

Heavily urban areas (71, 72) are expected to gain more than three million net
migrants in the young adult age group (aged 18–24). Conversely, more rural areas to



386 Parsimonious stochastic forecasting of international and internal migration

medium-sized cities (73, 74, 76, 77) are expected to face substantial declines in the
population aged 18–24. This confirms the finding that internal migration from more
rural to urban areas will occur among young people, most of whom are moving to
pursue educational opportunities.

Simultaneously, these urban areas will face migration-induced declines among
the 0–17 and 30–49 age groups. Again, more rural areas and medium-sized cities
will experience the opposite trend: i.e., strong inflows of these age groups. This
substantiates the finding that families are expected to migrate from heavily urban
areas to smaller-sized cities or the countryside.

Similarly, cities are expected to lose population in the age groups close to or
beyond retirement age, while more rural areas experience corresponding inflows.
Again, this underlines the finding that amenity migration from urban areas to more
rural regions will occur among people aged 50 and older.

4.3 Migration flows relative to district population size

All of the results presented up to this point rely on levels. On the one hand, this
allows us to compare the districts and to track migration patterns across region
types. On the other hand, absolute numbers may not capture the district-specific
significance of migration, as the population sizes of districts vary greatly. Therefore,
we computed the cumulative net migration over the forecast horizon relative to the
2019 end-of-year population, as given in (8). However, readers should keep in mind
that this is a synthetic measure that should not be confused with a rate or a share.
Again, Figure 7 illustrates the median results.

The displayed patterns demonstrate that focusing on levels of migration flows can
blur the significance of migration flows for particular regions. For instance, Berlin
and its neighboring regions are disproportionally affected by family migration, as
shown by these regions having darker color shades compared to other regions across
Germany in Figures 7(a) and 7(d). Moreover, as Figure 7(b) illustrates, the out-
migration by young adults from more rural areas to cities is, proportional to the
number of persons in this age group, even more pronounced than the results in
terms of levels suggest. Particularly in the eastern part of Germany, Berlin and other
university cities appear to attract significant shares of individuals aged 18–24 who are
migrating for educational reasons. However, our results also suggest that this trend
is at least partially offset by remigration after the completion of education. Finally,
Figures 7(e) and 7(f) demonstrate that migration patterns among people aged 50 and
older are less intense proportional to the age group size than the observed net flows
in Figures 6(e) and 6(f) indicate.

4.4 Probabilities of migration-induced regional depopulation

The results presented above have demonstrated that until 2040, distinct age-specific
migration patterns are likely to shape population dynamics across German regions.
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However, migration patterns, and thus our findings, are subject to substantial
uncertainty. To account for this uncertainty in our forecast, we present the probability
of migration-induced depopulation, as derived via (9) and (10) through our Monte
Carlo simulation, in Figure 8. Again, we cumulated the results over the forecast
horizon, and present total rather than gender-specific findings. The latter can be
found in Online Supplementary File 1.

First, among children, migration-induced depopulation17 is highly unlikely to occur
over the forecast horizon in the vast majority of German districts. We observe that
only some major cities face an increased probability of migration-driven decreases
in the youngest age group. This finding is substantiated by the model results for
the 30–49 age group, for whom the decline probabilities, as well as the forecasted
median flows, closely mirror those of the youngest age group.

Second, in most German districts, the probability that the population aged 18–24
will shrink due to net out-migration is high. At the same time, we see that large
cities, depicted by white dots surrounded by dark blue areas in Figure 8, have very
low probabilities of losing population in this age group. Thus, the forecasted median
migration flows indicate not only that substantial migration-induced declines of the
population aged 18–24 will take place in rural areas in both absolute and proportional
terms, but also that these declines are highly likely to actually occur.

Third, for the 25–29 age group, no clear patterns in terms of decline probabilities
can be derived. It is likely that the composite, mutually offsetting effects of different
migration flows, such as international migration, remigration after education or labor
market-related migration, and the accompanying uncertainty, cause wide prediction
intervals. Consequently, based upon the forecast presented in this paper, no clear
statement regarding the probability of a migration-induced decline in the population
aged 25–29, even in the regions exhibiting negative developments in the median
forecast in Figures 6 and 7, can be made.

Fourth, median population changes due to migration among the population aged
50 and older will be quantitatively rather small, but are highly likely to take place
in some districts. In other words, the model results shown in Figure 8 suggest that
large cities are likely face a decline in the population close to or beyond retirement
age due to net outflows of people in this age group.

5 Discussion and conclusion

This article presented a novel approach for joint stochastic forecasting of both
international and internal migration on the NUTS-3 level in Germany. Relying
on backtests, we found that a principal component-based approach to estimating log-
migration flows gave the best prediction. This approach simultaneously computed
future trajectories of in-migration and out-migration flows by age group and
gender, while accounting for correlations among in-migration and out-migration

17 Which does not rule out depopulation because of low fertility.

https://doi.org/10.1553/p-5pn2-fmn8
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across districts, age groups and genders. Moreover, time trends in migration and
autocorrelations were captured via time series analysis. Including stochasticity
by using Monte Carlo simulation, we derived both the regional depopulation
probabilities and the median net migration by age group and type of region for the
2020–2040 period. Thus, given the state of research in regional migration projections
and forecasts, our modeling effort adds a novel approach to the existing literature.

Our findings provide evidence of strong heterogeneity in migration-induced
regional depopulation patterns across German regions. This heterogeneity encom-
passes differences in both the quality and the quantity of migration by age group,
gender and region. The results indicate that among parents (aged 30–49) and their
children (aged 0–17), the probability of migrating and the migration flows are
increased only for migration from large cities to the countryside. By contrast, the
model results point to a high probability of migrating and large migration flows of
young adults (aged 18–24) migrating from more rural regions to cities, presumably
for reasons such as education. Similarly, the findings suggest that among people
of early working ages (aged 25–29), the probability of migrating to economically
stronger regions is high, which demonstrates the role labor market opportunities
play in migration decisions. In contrast to the patterns observed among younger age
groups, the results for people close to or beyond retirement age (aged 50 and older)
indicate that they are more likely to migrate from urban areas and industrial centers,
and that while these migration patterns are quantitatively less distinct, they are still
highly probable.

Compared to the official German regional population projection performed
by Maretzke et al. (2021), our median forecast has qualitative similarities but
quantitative differences. The latter stem from significant differences in the predicted
net international migration levels. Whereas Maretzke et al. (2021) assumed that net
migration to Germany will converge to a level of 200,000 by 2026 and will remain at
that level thereafter, our model predicts a cumulative net migration level of over eight
million between 2020 and 2040, i.e., an annual average of 385,000 over that period.
While this estimate is within the range of scenarios deemed realistic by Destatis
(2019), it is close to their high migration assumption. Notably, an advantage of our
approach is that it is fully stochastic and covers all scenarios described by Destatis
(2019), while quantifying their individual probabilities. However, our structural
results are remarkably similar to those of Maretzke et al. (2021). Whereas both
studies predicted positive net international migration for all types of regions, they
also predicted that cities and their neighboring regions will gain population in the
younger age groups, whereas the rural areas will lose population in these age groups
due to internal migration to urban centers. Thus, the migration-induced increases in
rural areas are attributable to in-migration by the older age groups, leading to the
aging of the overall regional population. Therefore, both studies predicted that the
increase in the heterogeneity of regional age structures, particularly between urban
and rural areas, will continue in the future.

Nonetheless, the approach presented in this paper is subject to several limitations.
First, due to data availability, the analysis was restricted to six pre-defined age
groups. This may be a drawback for future research, since the inclusion of our
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findings into annual population forecasts will likely require migration forecasts for
one-year age groups. We did not impose assumptions on the age structure of the
migrants to circumvent this limitation, but instead relied on the information available
in the raw data. Fitting age schedules to the data, which is a common practice in
migration modeling, would lead to smooth curves, and, when plugged into a forecast
model, narrower prediction intervals that underestimate the future risk (Vanella and
Deschermeier, 2020). Our model can, however, be seen as a building block that
may feed into hierarchical migration forecasts. For instance, we could use auxiliary
data, such as information on the age structure at a higher level of geographical
aggregation, such as federal states, to construct forecasts of within-age group
distributions of migrants, and multiply them by our age group-specific forecasts,
which would result in one-year age group trajectories. Similarly, the availability
of gender-specific migration data at this level of geographical disaggregation was
restricted to the period from 2002 onward. Therefore, we needed to approximate
the gender-specific time series before that point in time by predicting the gender
shares through backcasting. Thus, having sufficiently detailed demographic input
data would lead to more accurate age- and gender-specific migration forecasts.

Second, closely connected to the preceding limitation, the best-performing model
in the backtests, which was used to perform the forecasting exercise, relied on
migration flows. As was outlined in Section 2, several authors (Bĳak, 2011; Fuchs
et al., 2021) noted the advantages of using migration rates rather than flows. However,
as was also discussed in Section 2, calculating in-migration rates at the regional level
is not straightforward. Thus, the reliance on pseudo-in-migration rates, with their
accompanying disadvantages, in the model comparison procedure likely explains
the underperformance of the models using migration rates compared to those using
flows.

Third, given the volatile nature of migration dynamics in general, migration data
are associated with high levels of uncertainty. In particular, international refugee
migration is hardly predictable, since it is sensitive to unforeseeable shocks (Vanella
et al., 2022). For prediction purposes, it is important to have a sound estimation of
future international flows, including of refugee migration, as these processes also
shape internal migration. This is a point that should be addressed in future research.

Fourth, the forecast can only be as good as the input data. Thus, trends not included
in the historical data also cannot be predicted over the long term by an adequate
stochastic approach.18 Fifth, closely connected to the preceding point, migration

18 For example, the model is restricted to real estate market developments, as reflected in the past
data. Regions, and especially cities, can only increase to the extent that the supply of housing and
infrastructure (e.g., childcare, schools or mobility infrastructure) allows them to do so. Similarly,
migration is only possible if the receiving region’s real estate market offers the migrants room to live.
A city that has received a large number of migrants in the past, but does not have living space available
and is not building new housing projects, will not be able to generate further positive net migration in
the future. However, this limitation appears to be mitigated by our model, as many of those trends – for
instance, the trends for Berlin – are already included in the data for past periods, and are, therefore,
implicitly included in the model.
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is influenced by a variety of factors, which, for illustrative purposes, and while
acknowledging the vast diversity among underlying reasons for migration decisions
across individuals and households, may be identified as either push or pull factors,
with the first being those that induce out-migration from some region, and the latter
being those that draw in-migration to some region (Lee, 1966). Both push and pull
factors can be of an economic,19 a political,20 a social21 or an environmental nature.22
A truly holistic approach would forecast migration based on the future development
of those predictors. Importantly, the latter would need to be predicted themselves,
which would be far from straightforward, and would greatly exceed the scope of this
paper.

To conclude, our model addresses a significant shortcoming in the regional
migration projection literature by comparing the performance of different modeling
approaches and suggesting a stochastic strategy, thereby stimulating the improvement
of the projection approaches commonly used by both researchers and statistical
offices. In the bigger picture, by contributing to the accuracy of regional population
projections in general, this paper also enhances the quality of the demographic base
upon which decisions and actions in local and regional planning are taken.
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Models 2A and 2B: Gross migration flows, observed mean and
median values

As was discussed, several of the contemporaneous approaches in migration
forecasting assume the convergence of migration flows to a prespecified level.
Therefore, we tested two variants of models with target levels. Model 2A was inspired
by the international migration assumption in Destatis (2019). Thus, we assumed that
the migration flows for all strata will equal their respective historical means over the
whole baseline period, i.e.,

𝐸 [𝑀𝑑,𝑎,𝑔,𝑦] = 𝑀̄𝑑,𝑎,𝑔, 𝑦 = 2015, 2016, . . . , 2019, (A.2)

with 𝑀̄𝑑,𝑎,𝑔 being the annual mean of migration to or from district 𝑑 for age group 𝑎

and gender 𝑔 for 1995–2014. As a second variant, Model 2B imposed the expected
median, since Vanella and Deschermeier (2020) suggested assuming that crisis-
induced migration converges toward its long-term median rather than the mean, as
the mean is more sensitive to extreme migration, which may, for example, be caused
by extraordinary refugee flows. Then, the expected annual migration flow from or to
some district by some age group of a certain gender is

𝐸 [𝑀𝑑,𝑎,𝑔,𝑦] = 𝑀̃𝑑,𝑎,𝑔, 𝑦 = 2015, 2016, . . . , 2019, (A.3)

with 𝑀̃𝑑,𝑎,𝑔 being the median migration flow from or to district 𝑑 for age group 𝑎

and gender 𝑔 for 1995–2014.

Model 3: Net migration flows, principal component analysis

Model 3 is based on Vanella and Deschermeier (2018), applying PCA to the
time series matrix of district-, age- and gender-specific net migration flows, a
20 × 4,752 matrix.23 As was outlined, PCA transforms the original variables into
linear combinations that are correlated to all original variables, yet are uncorrelated
among themselves. For the case of net migration flows, for instance, the value of the
𝑗 th PC in year 𝑦 can be written as:

𝑃 𝑗,𝑦 =

396∑︁
𝑑=1

6∑︁
𝑎=1

2∑︁
𝑔=1

𝜆 𝑗,𝑑,𝑎,𝑔𝑁𝑑,𝑎,𝑔,𝑦 , (A.4)

with 𝜆 𝑗,𝑑,𝑎,𝑔 being called the loading (or coefficient) of net migration in district 𝑑, in
age group 𝑎, and of gender 𝑔 on PC 𝑗 , and 𝑁𝑑,𝑎,𝑔,𝑦 being the observed net migration
in the said district of the said age group and gender in the said year. The loadings

23 20 years of observations (1995–2014) in the rows, 2 genders × 6 age groups (≤17; 18–24; 25–29;
30–49; 50–64; ≥65) × 396 (pseudo) districts in the columns.
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Figure A.1:
Time series (with inversed sign) of Principal Component 1 of net migration model
with forecast
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Source: Authors’ computation and illustration.

are computed by singular value decomposition.24 Based on graphical analysis of
the time series, the ACF, the PACF and maximum likelihood estimation, we fit a
trend function with a linear and cosine trend to the time series of the first PC (which
explained close to 55% of the variance in the 4,752 time series). The nuisance
parameter was emulated by a random walk process:

𝐸 [𝑃3
1,𝑦 |𝑃

3
1,2014] ≈ 3,588 − 1,393(𝑦 − 1997) + 4,276 cos

(
(𝑦 − 1997)𝜋

3

)
+ 𝑟3

2014,

𝑦 = 2015, 2016, . . . , 2019, (A.5)

with 𝑟2014 being the residual between the value of the first PC and the predicted value
by the trend function in 2014. The cosine had a periodicity of six years and was fit
as suggested by Vanella et al. (2021) for forecasting weekly mortality rates. The past
values are illustrated with the predictions for 2015–2019 in Figure A.1, again with
an inversed sign as in the main text to facilitate interpretation.

24 See, e.g., Vanella (2018) for more details on applied PCA in demographic forecasting.
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The remaining 4,751 PCs were assumed to be constant for 2015–2019, similarly
to (A.1). The matrix of predicted PCs was then transformed back into predictions
of net migrations for each district, age group and gender by inverting (A.4) over
the set of PC predictions. In matrix notation, the predicted annual net migrations
2015–2019 are

𝑁̂ = 𝑃̂ × Λ−1, (A.6)

with 𝑃̂ (5 × 4,752) being the predicted PCs for 2015–2019 andΛ−1 being the inverted
loading matrix (4,7522).

Model 4: Log-gross migration flows, principal component analysis

For Model 4, the best-performing model used for the stochastic forecast in the main
text, we pursued an estimation approach similar to that for Model 3. However, instead
of using net migration flows, we applied PCA to a 20 × 9,504 matrix of the district-,
age- and gender-specific migration log-inflows and log-outflows:

𝑄 𝑗,𝑦 =

396∑︁
𝑑=1

6∑︁
𝑎=1

2∑︁
𝑔=1

2∑︁
𝑧=1

𝜆 𝑗,𝑑,𝑎,𝑔,𝑧𝐿𝑑,𝑎,𝑔,𝑧,𝑦 , (A.7)

with 𝐿𝑑,𝑎,𝑔,𝑧,𝑦 being the log-migration in or from district 𝑑, among age group 𝑎, of
gender 𝑔, and of type 𝑧 (𝑧 = 1: inflows; 𝑧 = 2: outflows) in year 𝑦.

In doing so, we were able to cover trends of both in-migration and out-
migration while simultaneously accounting for interdependencies between the two;
a phenomenon that was also observed by, for example, Fuchs et al. (2021). By
construction, migration flows cannot take negative values. Thus, we included the
natural logarithms of migration flows in the PCA. Here again, the first PC (which
covered almost 57% of the variance in the 9,504 variables) was predicted in detail
by fitting a trend function (in this case, an inverse logistic trend) to the data and
modeling the nuisance as a random walk. The resulting forecast function was:

𝐸 [𝑃4
1,𝑦 |𝑃

4
1,2014] ≈ 3.646 − 41,803

exp
(
𝑦−2003
2.908

)
1 + exp

(
𝑦−2003
2.908

) + 𝑟4
2014,

𝑦 = 2015, 2016, . . . , 2019. (A.8)

Figure A.2 shows the inversed course of the first PC with its prediction for 2015–
2019.

The remaining 9,503 PCs were assumed constant, as they did not exhibit clear
trending behavior. Thus, the prediction of the PC matrix can be easily performed in
a similar fashion as given in (A.6).
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Figure A.2:
Time series (with inversed sign) of Principal Component 1 of the log-migration model
with forecast
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Source: Authors’ computation and illustration.

Model 5: Gross migration rates, naïve model

Many authors have suggested forecasting migration rates instead of migration flows,
as was discussed in the literature review. Fuchs et al. (2021), for instance, showed
for international migration in Germany that emigration rates are less volatile than
emigration flows. Therefore, we tested models that were, in essence, similar to those
already tested, but used migration rates instead of flows.

For instance, the out-migration rate of age group 𝑎 of gender 𝑔 from district 𝑑 in
year 𝑦 is defined as the quotient of out-migration flows from that stratum divided
by the end-of-year population estimate of the said stratum at the end of the previous
year:

𝑒𝑑,𝑎,𝑔,𝑦 :=
𝐸𝑑,𝑎,𝑔,𝑦

𝐵𝑑,𝑎,𝑔,𝑦−1
. (A.9)

Since it is not possible to derive immigration rates due to data restrictions (see
Fuchs et al., 2021 and the discussion in Section 2), we defined the notion of pseudo-
in-migration rates, which relates the inflow to some districts to the population of the
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target region instead of the origin region:

𝑖𝑑,𝑎,𝑔,𝑦 :=
𝐼𝑑,𝑎,𝑔,𝑦

𝐵𝑑,𝑎,𝑔,𝑦−1
. (A.10)

Although this is a highly hypothetical measure, it allowed for a standardization of
in-migration according to out-migration that enabled us to consider the previously
discussed correlations between in-migration and out-migration flows in our statistical
analysis. Moreover, we indirectly included a higher gravity of migration by larger
districts, and thus implicitly accounted for spatial dependence. Model 5 took a naïve
prediction approach similar to that in Model 1, but with migration rates, which were
held constant at their 2014 level:

𝐸 [𝑚𝑑,𝑎,𝑔,𝑦] = 𝑚𝑑,𝑎,𝑔,2014, 𝑦 = 2015, 2016, . . . , 2019. (A.11)

Models 6A and 6B: Gross migration rates, observed mean and
median values

Like in Models 2A and 2B, in these models we tested two scenarios for the migration
rates, with Model 6A assuming the long-term means and Model 6B taking the long-
term medians as asymptotes. Accordingly, Model 6A assumed

𝐸 [𝑚𝑑,𝑎,𝑔,𝑦] = 𝑚̄𝑑,𝑎,𝑔, 𝑦 = 2015, 2016, . . . , 2019, (A.12)

with 𝑚̄𝑑,𝑎,𝑔 being the mean of the district-, age- and gender-specific migration rate
over the 1996–2019 period.25 Accordingly, Model 6B assumed

𝐸 [𝑚𝑑,𝑎,𝑔,𝑦] = 𝑚̃𝑑,𝑎,𝑔, 𝑦 = 2015, 2016, . . . , 2019, (A.13)

with 𝑚̃𝑑,𝑎,𝑔 being the median of the district-, age- and gender-specific migration rate
over the 1996–2019 period.

Model 7: Net migration rates, principal component analysis

Corresponding to Model 3, we performed PCA on pseudo net migration rates for all
strata. We defined the pseudo net migration rate in district 𝑑 for age group 𝑎, and
gender 𝑔 in year 𝑦 as the difference between (A.10) and (A.9), given that migration
projections based on net growth rates are the current standard in regional population
projections in Germany (see Maretzke et al., 2021):

𝑛𝑑,𝑎,𝑔,𝑦 := 𝑖𝑑,𝑎,𝑔,𝑦 − 𝑒𝑑,𝑎,𝑔,𝑦 . (A.14)

25 Note that there is no observation for 1995 because the population data are not available in the
needed format before December 31, 1995.
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Figure A.3:
Time series (with inversed sign) of Principal Component 1 of the log-migration rate
model with forecast
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Source: Authors’ computation and illustration

However, in this case, PCA did not produce trending functions, and thus did not
give insights useful for forecasting. As a result, the prediction of the PCs led to the
same problem that arose when using the raw data: i.e., determining which target
values should be pre-defined. Therefore, Model 7 was discarded.

Model 8: Log-gross migration rates, principal component analysis

Finally, we performed PCA on the compilation matrix of all log-pseudo in-migration
and out-migration rate time series.26 Like for the approaches explained earlier, a
forecast model was fit to the time series of the first PC (which explained over 54%
of the variance in the 9,504 variables over the 1996–2014 period). The past course
and forecast are illustrated in Figure A.3.

26 Again, we ensured non-negativity among eventual simulations in this way.
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The prediction was computed by the following forecast function:

𝐸 [𝑃8
1,𝑦 |𝑃

8
1,2014] ≈ 70.554 − 61.548

exp
(
𝑦−2000
4.854

)
1 + exp

(
𝑦−2000
4.854

) + 𝑟8
2014,

𝑦 = 2015, 2016, . . . , 2019. (A.15)

The parameters are similar to the previously presented PC-based approaches. Here
again, the remaining PCs do not exhibit clear trending behavior, and are therefore
expected to remain constant at their 2014 levels over the forecast horizon.

Comparison of the forecast performance of the candidate models

Since units and dimensions of the predictions depend on the underlying model
(net versus gross migration or flows versus rates), we applied a relative measure of
forecast accuracy. Additionally, the dataset covered zero values of gross migration.
To account for these specifics of the data, we compared the models via their ex-post
symmetric mean absolute percentage error (SMAPE). Chen et al. (2017) defined the
SMAPE as

SMAPE :=
1
𝑛

∑︁
𝑡

2|𝑒𝑡 |
|𝑌𝑡 | + |𝐹𝑡 |

, (A.16)

with 𝑌𝑡 being the observation for some variable 𝑌 at time 𝑡, 𝐹𝑡 being its forecast
based on some model for the same period, and 𝑒𝑡 being the difference between 𝑌𝑡
and 𝐹𝑡 . Using the SMAPE not only provides the desired properties, i.e., a relative
measure that allows for zero values; it also avoids a high level of asymmetry among
the forecast errors, which could appear for denominators close to zero (Chen et al.,
2017).

Table A.1 gives a short presentation of the model approaches with their respective
SMAPEs. The results of our backtests indicated a poor predictive performance of
Model 3, which extrapolated past trends in net migration flows. PCA of pseudo
net migration rates did not give additional insights compared to the rather simple
models (1, 2A, 2B, 5, 6A, 6B) that were based on pre-stated assumptions about
the development of migration. Notably, Models 2A, 2B, 6A and 6B performed
significantly worse than the naïve Models 1 and 5, with the rate model having a
slightly lower SMAPE than the flow model. According to our measure, the PC-
based models that distinguished between in- and out-migration were superior, with
Model 4 having the best forecast performance overall. Thus, Model 4 was used for
the following forecast in the present study.
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Approaches to boundary change incorporation

The table above gives a comprehensive overview of the boundary changes underlying
the dataset used for the empirical analysis. We applied a rather simple method that
sought to obtain consistent time series throughout the period under consideration
(1995–2019) by either relying on outdated boundaries or merging districts. We
acknowledge that there is an established literature offering a variety of approaches
to obtaining missing year-district (or another level of geographical disaggregation)
observations, which strongly depends on the corresponding use case. Interested
readers may start with examples such as Martin et al. (2002), Norman et al. (2003)
or Logan et al. (2021).

Appendix C. Estimation of age- and sex-specific migration
before 2002

As indicated in Section 3, for districts in 15 of the 16 federal states, age-specific but
no gender-specific migration data are available in the pre-2002 data. To address this
gap, we took annual age- and gender-specific data on district-level gross migration
flows (Statistische Ämter des Bundes und der Länder, 2022) for 2002–2019. Based
on these data, we constructed time series for migration flows by age group and
gender for each district for in- and out-migration. To account for differences in the
migration patterns between the genders and to retrieve the maximum of information
from the data, we computed the annual shares of males among all migrants for each
age-district stratum for 2002–2019:

𝑠𝑑,𝑎,𝑧,𝑦 :=
𝑀𝑑,𝑎,𝑚,𝑧,𝑦

𝑀𝑑,𝑎,𝑧,𝑦
, (A.17)

With 𝑀𝑑,𝑎,𝑚,𝑧,𝑦 being the number of male migrations from or to district 𝑑 in age
group 𝑎 for migration type 𝑧 in year 𝑦, and 𝑀𝑑,𝑎,𝑧,𝑦 being the corresponding total
migration number for both genders.

The data were highly dimensional (4,596 time series), and the time series were
highly correlated. Again, we applied PCA to deal with both problems. Figures C.1
and C.2 show the time series of the first two PCs. Those time series explained 55.7%
of the total variance in the male share time series.

The red lines show the backcasts derived from time series models that were
constructed as linear combinations of a mathematical trend function (exponential
trend between 2002 and 2015 for the first principal component and the logistic
trend between 2002 and 2010 for the second principal component) and a random
walk model each. The remaining PCs did not show clear trending behavior, and
were therefore assumed to be random walks. The backcasts of the PCs were then
retransformed into backcasts of the male migration shares for each age group and
district. We derived the shares of men and women among all migrants per age-district
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Figure C.1:
Time series of Principal Component 1 of male shares in district migration with
backcast
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Source: Authors’ computation and illustration.

stratum and year by multiplying the corresponding backcast of the male share, and
its inverse, by the total migration for the given age-district stratum.

Supplementary Files S2 and S3 (available at https://doi.org/10.1553/p-5pn2-fmn8)
offer the annual migration flows for the years 1995–2019 and the corresponding
(pseudo) migration rates through 1996–2019, by age, gender, direction and district,
respectively, in matrix form for further use. The data before 2002 are our backcast
estimates as described above.

https://doi.org/10.1553/p-5pn2-fmn8
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Figure C.2:
Time series of Principal Component 2 of male shares in district migration with
backcast
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Source: Authors’ computation and illustration.
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