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Inequality, heterogeneity, and chance: Multiple factors
and their interactions

Hal Caswell1,2 and Silke F. van Daalen2,3

ABSTRACT A heterogeneous population is a mixture of groups differing in vital rates. In
such a population, some of the variance in demographic outcomes (e.g., longevity, lifetime
reproduction) is due to heterogeneity and some is the result of stochastic demographic pro-
cesses. Many studies have partitioned variance into its between-group and within-group
components, but have focused on single factors. Especially for longevity, variance due
to stochasticity is far greater than variance due to heterogeneity. Here we extend such anal-
yses to multiple-factor studies, making it possible to calculate the contributions to variance
of each factor and each of the interactions among factors. We treat the population as a mix-
ture and use the marginal mixing distributions to compute variance components. Examples
are presented: longevity as a function of sex, race and U.S. state of residence; and lifetime
reproduction among a set of developed countries and as a result of resource availability and
pesticide exposure.

KEYWORDS Heterogeneity • Stochasticity • Variance partitioning • Longevity • Lifetime
reproductive output • Markov chains with rewards

Introduction

A heterogeneous population is a mixture made up of groups of individuals that differ in the
demographic rates to which they are subject (Figure 1). Each group is characterised by a
mean and a variance of some demographic outcome. That heterogeneity among individuals
contributes to the variance, also among individuals, at the population level. Longevity is one
example of a demographic outcome. Variance in longevity is of interest to demographers
as a form of inequality (e.g., Vaupel, 1988; Edwards and Tuljapurkar, 2005; Vaupel et al.,
2011; van Raalte et al., 2018; Permanyer and Scholl, 2019; Permanyer et al., 2023).
Longevity can be generalised to include healthy longevity (with health defined in many
ways) or occupancy of medical, infection, or other kinds of states (Caswell and Zarulli,
2018; Caswell and van Daalen, 2021). Variance in longevity has implications for health
systems, pensions, estate planning, etc.

Lifetime reproduction, the number of offspring produced by a female over her lifetime, is
an outcome of interest to evolutionary and anthropological demographers as a measure of

✉ Hal Caswell, hcaswell@whoi.edu
1 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
2 Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
3 Wageningen Marine Research, IJmuiden, The Netherlands

© The Author(s) 2025
Open Access This article is published under the terms of the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/) that allows the sharing, use and adaptation in any medium, provided that the user
gives appropriate credit, provides a link to the license, and indicates if changes were made.

https://orcid.org/0000-0003-4394-6894
https://orcid.org/0000-0002-2034-8763
mailto:hcaswell@whoi.edu
https://creativecommons.org/licenses/by/4.0/


the opportunity for selection (Crow, 1958; van Daalen and Caswell, 2024). It is often repor-
ted for hunter-gatherer populations (Hill and Hurtado, 1996; Blurton-Jones, 2016; Brown
et al., 2009) or historical populations (Moorad et al., 2011; Courtiol et al., 2012).

It is convenient to think of a finite number of groups, but the concepts and theory
are essentially the same for continuous heterogeneity. A familiar example is the gamma-
Gompertz distribution of mortality, which can be discretised to allow variances to be
calculated (Caswell, 2014).

Variance and its sources

Because demographic rates contain probabilities, demographic outcomes are random
variables. Because a heterogeneous population is a mixture, the distribution of the outcome
is a mixture of the distributions within each group. This mixture is characterised by the
moments of each group and the distribution of individuals among the groups. The latter
distribution is called the mixing distribution.

The variance in outcome in a heterogeneous population reflects both stochasticity within
each group and heterogeneity among groups (remember that the groups are homogeneous,
and thus differences in outcome within a group are due to are strictly due to chance). In any
outcome calculated from a life table, a Markov chain, or some equivalent machinery, indi-
vidual stochasticity is the only source of within-group variance, because the calculation
explicitly applies the same probabilities to every individual at every age. See Caswell
(2023) and references therein for a discussion of the roles of heterogeneity and stochasticity
and the issues of interpretation that arise from them.

Variances in outcomes are often called “inequalities,” although that identification is more
subtle than is usually appreciated (Caswell, 2023). Not all differences are inequalities.1

In economic terms (e.g., Atkinson, 2015), variance due to heterogeneity corresponds to

Figure  The structure of a heterogeneous population as a mixture of groups, each present in some proportion.
Each group has a group-specific mean and variance for some demographic outcome, denoted here by ξ.

1 Economists do not, as a rule, spend much time discussing what kinds of differences should be called inequalities. However,
Therborn (2012, 2014) proposed three criteria that distinguish inequality from mere differences: (1) inequalities must admit at
least ordinal classification so that items may be ranked as greater or lesser; (2) inequalities are not just categories, but violate
some “moral norm of equality among human beings;” and (3) inequalities are potentially abolishable.
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inequality of opportunity. Individuals in, e.g., different income groups have different oppor-
tunities to live a long life. Variance due to stochasticity corresponds to inequality of out-
come. Individuals in the same income group may differ in longevity because of the random
outcomes of mortality risks, even though they all experience the same group-specific risks.

The relative magnitude of the contributions of stochasticity and heterogeneity depend on
many factors, including the type and magnitude of the heterogeneity. Thus it is essential to
partition the variance into within-group and between-group components.

Our intent is not to review the concepts of heterogeneity, stochasticity, and inequality,
as a previous paper has explored these issues in some detail (Caswell, 2023). That paper
surveyed the contributions of heterogeneity (among groups) and individual stochasticity
(with groups) to: (1) variance in human longevity among latent frailty classes, income
groups, education groups, and neighbourhood deprivation groups; (2) variance in adult lon-
gevity among insects differing in early life nutrition; (3) variance in longevity and lifetime
reproduction in a wild seabird population; (4) variance in longevity and lifetime reproduc-
tion in laboratory populations of a rotifer, with groups defined by maternal age; (5) variance
in healthy longevity with groups defined by European countries; and (6) variance in lon-
gevity and lifetime reproduction with groups defined by species and/or populations of
plants and animals.

Instead, our goal is to provide the calculations necessary to extend variance partitioning
from single factors to multiple interacting factors. Studies of the variance in longevity and in
lifetime reproduction typically define heterogeneity in terms of a single factor. When stud-
ies examinemultiple factors, they are usually treated one at a time. However, individuals are
heterogeneous in multiple factors operating simultaneously, and the resulting variance is
affected by all of those factors and their interactions. The inability to evaluate the contri-
butions of interactions is a major limitation to the study of heterogeneity, and our goal here
is to show how to analyse multi-factor studies, in which individuals are heterogeneous
in two or more factors. We will present some two-factor and three-factor examples of the
calculation. There is no limitation to the number of factors.

Variance partitioning

The variance in outcome among a heterogeneous set of individuals can be partitioned into
between-group and within-group components using classical results from conditional
probability. Consider a heterogeneous population that is a mixture of groups, the relative
abundances of which are given by a mixing distribution π. Let ξ denote some outcome.
The variance in ξ is

V�ξ� = Eπ

h
V�ξjgroup�

i
� Vπ

h
E�ξjgroup�

i
(1)

= Vwithin�ξ� � Vbetween�ξ�: (2)

The within-group variance Vwithin is the expectation of the variance within each group,
weighted by the distribution π. The between-group variance Vbetween is the variance among
the group means, again weighted by the distribution π. This variance decomposition is a
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standard result in conditional probability (e.g., Rényi, 1970; Frühwirth-Schnatter, 2006)
and in analysis of variance (ANOVA) (e.g., Kempthorne, 1957). Indeed, the decomposition
was introduced, along with the term “variance” itself, by Fisher (1918). This analysis has
now been used repeatedly to examine demographic inequality among groups defined by a
single factor (a “one-way” design).

Demographic outcomes: Longevity and lifetime reproductive output

We will show results in this paper for variance decomposition for longevity and lifetime
reproductive output (LRO). The means and variances (and other moments) of longevity
are readily calculated by expressing the demographic rates in terms of absorbing Markov
chains (pioneered by Feichtinger, 1971; see Caswell, 2001, 2006, 2009). It is now known
that, as a general rule, even extreme differences among groups, including those created
by important socioeconomic variables, account for only a small fraction of the variance
in longevity (see the overview in Caswell, 2023).

The means and variances (and other moments) of LRO can be calculated using Markov
chains with rewards (Caswell, 2011; van Daalen and Caswell, 2017). Stochasticity in LRO
reflects both survival (which determines how long a woman has to reproduce) and fertility
(which determines whether or not she reproduces at each age). These two components can
be separated, and in developed, low-mortality countries the variance in LRO is increas-
ingly accounted for by stochasticity in fertility (van Daalen and Caswell, 2015). However,
the contributions of heterogeneity and stochasticity to the variance in LRO are not yet well
understood. In one case, in which the groups are defined by maternal age in a laboratory
population, the variance components depend strongly on the environmental conditions
(van Daalen et al., 2022). We will provide some examples below, in Section Lifetime
reproductive output.

Variance components

Notation

The following notation is used throughout this paper. Matrices are denoted by upper-case
bold characters (e.g., U) and vectors are denoted by lower-case bold characters (e.g., a).
Vectors are column vectors by default; xT is the transpose of x. The vector 1 is a vector
of ones, and the matrix I is the identity matrix. When necessary, subscripts are used to
denote the size of a vector or matrix; e.g., Iω is an identity matrix of size ω × ω. Matrices
and vectors with a tilde (e.g., Ũ or ã) are block-structured; in this paper, blocks correspond
to different factors. The notation kxk denotes the 1-norm of x (i.e., the sum of the absolute
values of the entries). The symbol ⊗ denotes the Kronecker product. The vec operator
stacks the columns of am × nmatrix into amn × 1 column vector. When applied to an array
with more than two dimensions, it stacks columns from all dimensions.Wewill make use of
a reshape operator that is the inverse of the vec operator, changing the vector back into the
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array; see equation (17). On occasion, MATLAB notation will be used to refer to
the entries, rows, and columns of matrices. For example, F�i, j� is the �i, j� entry of F, while
F�i, :� and F�∶, j� refer to the ith row and jth column of the matrix.

Element-by-element operations apply to arrays of any dimension. The symbol  ○  denotes
the Hadamard, or element-by-element product (implemented by .* in MATLAB and by * in R).
The symbol⊘ is used to denote the Hadamard, or element-by-element quotient. Thus, for two
matrices A and B,

A  ○ B = �aijbij� A⊘ B =
�
aij
bij

�
(3)

with the obvious restrictions that the objects must be of the same size and, that for the quotient,
none of the entries of B can be zero.

Weighted means and variances

Let x be a vector of numbers and π a probability vector of the same length. The mean and
variance of the entries of x, over the mixing distribution π are, in matrix notation,

Eπ�x� = πTx (4)

Vπ�x� = πT�x  ○  x� − �πTx�2: (5)

The second of these terms, the variance of X over a mixing distribution, will appear so com-
monly that we define it as a function V�x, π� that returns the variance, over the distribution
π, of the vector x:

V�x, π� ≡ πT�x  ○  x� − �πTx�2: (6)

One-factor designs

Let us review the simplest case: a one-factor design in which a population (or some other set
of individuals) is divided into groups based on a single factor that we call A (e.g., income),
with levels a = a1, a2, : : : , anA . The population is a mixture with a mixing distribution π.
Let ξ be the demographic outcome of interest. The vectors containing the means and varian-
ces of ξ are

m =

0
BB@

E�ξja1�
..
.

E�ξjanA�

1
CCA =

0
BB@

m1

..

.

mnA

1
CCA (7)

v =

0
BB@

V�ξja1�
..
.

V�ξjanA�

1
CCA =

0
BB@

v1

..

.

vnA

1
CCA (8)
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In terms of these vectors, the variance decomposition in equation (2) becomes

Vwithin = πTv (9)

Vbetween = πT�m  ○ m� − �πTm�2 (10)

=V�m, π�: (11)

The relative contribution of the within- and between-group components to the variance V�ξ�
is measured by

K =
Vbetween

Vwithin � Vbetween
(12)

which measures the fraction of the total variance due to heterogeneity among groups. The
ratio is referred to as the intraclass correlation coefficient in quantitative genetics (Falconer,
1960). Its square root is called the correlation ratio in probability theory (Rényi, 1970).

Factorial designs: Two factors

The multi-factor analysis is based on multi-way tables of the means, variances, and mixing
distribution. The calculation of variance components uses marginal distributions calculated
from those tables. Consider two factors, labelled A and B (e.g., sex and race) with nA and
nB levels, respectively. For example, for sex nA might be two, and for race nB could be two,
or five, or some other number depending on the information collected in vital statistics reg-
istries. The means, variances, and mixing distributions are defined in the two-dimensional
arrays

M =

0
B@

m1;1 · · · m1, nB

..

. ..
.

mnA, 1 · · · mnA, nB

1
CA (13)

V =

0
B@

v1;1 · · · v1, nB
..
. ..

.

vnA, 1 · · · vnA, nB

1
CA (14)

Π =

0
B@

π1;1 · · · π1, nB
..
. ..

.

πnA, 1 · · · πnA, nB

1
CA: (15)

Each of these arrays is of dimension nA × nB. The mixing distribution array satisfiesX
i, j

Π�i, j� = 1: (16)

The vec operator applied to any of these arrays produces a vector, of dimension
nAnB × 1, by stacking the columns of the array. The inverse of the vec operator is the reshape
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operator, which takes as its arguments a vector and a pair of dimensions, and produces an
array of those dimensions; thus

reshape�vecM, nA, nB� =M: (17)

Within-group and between-group variances

Treating each of the nAnB combination of factors A and B as a group, the within- and
between-group variance components are calculated from the entries of M, V, and Π.
The within-group variance is the mean, over the mixing distribution, of the variances in
each group,

Vwithin = �vecΠ�TvecV: (18)

The between-group variance is given by applying equation (6) to the means of all the factor
combinations:

Vbetween = V�vecM, vecΠ�: (19)

This between-group variance measures the overall contribution of heterogeneity, over all
the groups, of all the factors, with individuals distributed according to Π. It makes no
distinction between the contributions of A, B, and the AB interaction, but if the goal is a
measure of how heterogeneity in factors contributes to inequality of outcomes,Vbetween is the
answer.

Partitioning the between-group variance into factor effects

In the two-factor case, Vbetween is due to contributions from each factor (VA,VB) and their
interaction (VAB). These components are calculated from the marginal means and marginal
mixing distributions corresponding to each factor and the interaction. Use subscripts to
identify the marginal means (e.g., mA as the vector of means for each level of A, margi-
nalising over levels of B), and let a, b denote the levels of A and B, respectively. The array
of marginal means for factor A is obtained by calculating the average, weighted by the
mixing distribution, over the levels of factor B. Recalling the definitions of the Hadamard
product and the Hadamard quotient in Section Notation, we have

mA =
�X

b

�M  ○ Π�
�
⊘

�X
b

Π
�

nA × 1: (20)

The same pattern holds for the marginal mean for B:

mB =
�X

a

�M  ○ Π�
�
⊘

�X
a

Π
�

nB × 1 (21)

and for the marginal mean for AB

mAB = �M  ○ Π�⊘Π nA × nB: (22)
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The marginal mean for factor A is obtained by summing over levels of B; the marginal
mean for factor B is obtained by summing over levels of A. The marginal mean for
the combination AB is not really marginal, because there are no other factors over which
to sum. The marginal means for factors A and B are one-dimensional vectors. The
marginal mean for the AB interaction is a two-dimensional array (it is, in fact, just the
array M).

The marginal mixing distributions are obtained from the array Π,

πA =
X
b

Π nA × 1 (23)

πB =
X
a

Π nB × 1 (24)

πAB =Π nA × nB: (25)

MATLAB makes these calculations easy to implement; the command corresponding to
equation (20), for example, is

mA = sum�M :*Pi, �2�� :=sum�Pi, �2��: (26)

Finally, the variance components due to factors A and B and the interaction AB are cal-
culated by applying the function V�·, ·� defined in equation (6) to the marginal means and
marginal mixing distributions:

VA = V�mA, πA� (27)

VB = V�mB, πB� (28)

VAB = V�vecmAB, vec πAB� − VA − VB: (29)

Themarginal mean arraymAB contains the effects of A and B as well as the interaction; thus
the interaction variance VAB is obtained by subtracting VA and VB from the variance among
all factor combinations.

Requirements for the factorial mixing distribution

The calculation of Vbetween treats vecM and vecV as vectors containing values for each of
the groups. There is no restriction on the mixing distribution Π except, of course, that its
entries sum to one.

Here, however, we want to partition Vbetween into its components, and to do this the
mixing distribution Π requires some careful attention. Statistics texts are unanimous in
stressing the importance of equal sample sizes in all treatment combinations in the analysis
of variance (ANOVA) in a factorial experiment. The sample sizes play the role of the
mixing distribution in our probability calculations. It has long been known (Yates, 1934)
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that unequal sample sizes make it impossible to calculate variance components. A recent
text explains

“When the sample sizes for each cell are unequal, the two-way analysis of variance
for factor effects becomes complex. The component sums of squares in the anal-
ysis of variance are no longer orthogonal; that is, they do not sum to the total sum
of squares. The least squares method for obtaining the best estimates of the para-
meters is rather complicated in the fixed effects model and the best analysis has not
been and probably will not be found for the random effects models” (Sahai and
Ageel, 2012).

There exist two classes of mixing distributions that permit the calculation of variance
components. One is the flat, or balanced distribution, which corresponds to equal sample
sizes and assigns equal weight to all factor combinations. The other is the class of rank-
one, or proportional mixing distributions (Yates, 1934; Kirk, 1982, and many others).
Such a mixing distribution, when written as an array as in equation (15), has proportional
rows and proportional columns. The flat distribution is a special case of the rank-one
distribution.

A rank-onemixing distribution array can be assembled from its marginals. Let πA and πB

be the marginal distributions among the levels of factors A, B. The mixing distribution
array is

Π = reshape�πB ⊗ πA, nA, nB�: (30)

Every column is proportional to πA and every row is proportional to πB. Note the order
of the subscripts.

The mixing distribution is a useful tool

Our goal is to understand the sources of variance in some outcome within some population.
But what population? The mixing distribution describes the structure of the population that
we are interested in, and over which the variance is to be calculated, in terms of the pro-
portions of the population in each of the heterogeneity groups. The proper question is not
what the correct mixing distribution is, but rather what mixing distribution answers the
question we are interested in.

A flat mixing distribution gives every group equal representation when studying the
effects of heterogeneity. It is a particularly powerful tool, not because many populations
are comprised of equal numbers in every group2 but for the same reason that equal sample
sizes are desirable in designed experiments. If youwant to quantify the effects of some set of
factors, it is wise to design your experiment with equal sample sizes in each treatment com-
bination, because doing so maximises the ability to extract information obtained from the
ranges of both variables. Thus, a variance component calculation can be thought of as a kind
of numerical experiment to evaluate the effects of factors and their interactions.

2 An exception is studies in which groups are defined as quantiles of the distribution of some variable (e.g., income). By
definition, every quantile contains the same fraction of the population.
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Alternatively, the mixing distribution may reflect the relative population sizes of groups
(subject to the proportional restriction). If some groups are much larger than others, the
population variance will reflect the variance within those groups to a much greater extent
than the variance within the much smaller groups, as an example presented below shows.

Factorial designs: Three factors

Variance partitioning for three factors follows the same pattern as that for two factors. We
briefly present the formulas here; the extension to an arbitrary number of factors should
be clear.

Consider three factors that are labelled A, B, and C (e.g., sex, race, and state of resi-
dence), with levels nA, nB, and nC . The arraysM of means,V of variances, andΠ of mixing
probabilities are now three-dimensional. Again, the mixing distribution array satisfiesX

a, b, c

Π�a, b, c� = 1: (31)

The vec operator produces a vector of dimension nAnBnC × 1 by stacking the columns
of the array in the order A, then B, and then C.

The mixing distribution array must be assembled from its marginals. Let πA, πB, πC be
the marginal mixing distributions among the levels of factors A, B, and C, respectively.
Then the rank-one mixing distribution array, generalising that for two factors in (25) is

Π = reshape�πC ⊗ πB ⊗ πA, nA, nB, nC�: (32)

The extension to more than three factors follows the same logic.

Within- and between-group variances

As in Section Factorial designs: Two factors, the within-group and between-group varian-
ces are calculated by treating all nAnBnC factor combinations as groups. Then, just as in the
two-factor case,

Vwithin = �vecΠ�TvecV (33)

Vbetween = V�vecM, vecΠ�: (34)

As in the two-factor case, Vbetween gives the contribution to variance of all the heterogeneity
among groups, but no information on the contributions of the factors and their interactions.

Components of the between-group variance

The between-group variance Vbetween is partitioned into components due to the main effects
of each factor (VA,VB,VC), the two-way interactions (VAB,VAC,VBC) between pairs of
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factors, and the three-way interaction (VABC). These components are calculated from the
marginal means and marginal mixing distributions corresponding to each factor and each
interaction.

The array of marginal means for factor A is obtained by averaging over the dimensions
other than those for factor A:

mA =
�X

b

X
c

�M  ○ Π�
�
⊘

�X
b

X
c

Π
�

nA × 1: (35)

The same pattern holds for the other marginal means:

mB =
�X

a

X
c

�M  ○ Π�
�
⊘

�X
a

X
c

Π
�

nB × 1 (36)

mC =
�X

a

X
b

�M  ○ Π�
�
⊘

�X
a

X
b

Π
�

nC × 1 (37)

mAB =
�X

c

�M  ○ Π�
�
⊘

�X
c

Π
�

nA × nB (38)

mAC =
�X

b

�M  ○ Π�
�
⊘

�X
b

Π
�

nA × nC (39)

mBC =
�X

a

�M  ○ Π�
�
⊘

�X
a

Π
�

nB × nC (40)

mABC = ��M  ○ Π��⊘Π nA × nB × nC: (41)

The marginal mixing distributions are obtained from the array Π,

πA =
X
b

X
c

Π nA × 1 (42)

πB =
X
a

X
c

Π nB × 1 (43)

πC =
X
a

X
b

Π nC × 1 (44)

πAB =
X
c

Π nA × nB (45)

πAC =
X
b

Π nA × nC (46)

πBC =
X
a

Π nB × nC (47)

πABC =Π nA × nB × nC: (48)
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The calculations are readily expressed as MATLAB commands; for example, the com-
mand corresponding to equation (35) is

mA = sum�M :*Pi, �2,3�� :=sum�Pi, �2,3��: (49)

The second argument ([2, 3]) in the sum command indicates the dimensions over which
summation takes place.

The variance components due to each of the factors and interactions are calculated by
applying the function V�·, ·� in equation (6) to the vectors obtained by applying the vec
operator to the marginal mean arrays

VA = V�mA,πA� (50)

VB = V�mB, πB� (51)

VC = V�mA, πA� (52)

VAB = V�vecmAB, vec πAB� − VA − VB (53)

VAC = V�vecmAC, vec πAC� − VA − VC (54)

VBC = V�vecmBC, vec πBC� − VB − VC (55)

VABC = V�vecmABC, vec πABC� − VA − VB − VC − VAB − VAC − VBC: (56)

The arrays for the two-way interactions also include the one-factor effects, so the one-factor
variances are subtracted to obtain the two-factor variances. The variance due to the three-
factor interaction has the one-factor and two-factor variances subtracted.

The interpretation of interactions

The interpretation of interactions in factorial experiments has always been a challenge
(e.g. Steel and Torrie, 1960; Sahai and Ageel, 2012). A large component of the variance
due to an AB interaction makes it difficult to say what the effects of A and B are because
the effect of A depends on the level of B, and vice versa. The situation becomes even
more difficult, of course, for three-way or higher interactions. If the contributions of inte-
ractions to variance are small, they can be ignored. Note that we have no operational
definition of “small” such as is provided in ANOVA by tests of the statistical significance
of the interactions. However, the difficulty of interpreting interactions does not change
the fact that they are substantively interesting. Knowing that two factors interact is an
important substantive finding and invites further study to understand how that interaction
works.

Note that if the factors have additive effects on ξ, the interaction variances are all zero
(Caswell, unpublished results).
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Examples

Here, we present several examples of multi-factor variance decompositions: two studies of
longevity and two studies of lifetime reproductive output. At this point, the results are inten-
ded to serve only as examples of choices of mixing distributions and of the kinds of results
obtained. As is always the case when a new analytical method is deployed, the interpretation
of the results is still developing.

Longevity and lifespan

Variance in longevity, often referred to as inequality or disparity in lifespan, has been ana-
lysed across a variety of social, economic, and biological variables. Partitioning of the var-
iance into components has revealed that, even when group differences are very large, they
contribute only a small fraction of the total variance (see an overview in Caswell, 2023).
Because longevity is the outcome of a lifetime of repeated probabilistic survival events, it is
subject to a large degree of individual stochasticity.

However, these analyses have been limited to single factors. Here, we report two examp-
les of multi-factor studies: one examining variance due to sex and race, and the other exam-
ining sex, race, and state of residence. In these examples, we calculated the mean and
variance of longevity using Markov chain methods (Feichtinger, 1971; Caswell, 2001,
2006), but they could equally have been calculated from a set of life tables.

Variance in longevity: Sex and race

Differences in longevity between males and females are well known; in almost every
case, women live longer on average than men. Differences among racial and ethnic
groups are also well known. Here we explore the variance in longevity among males and
females across racial and ethnic categories in the United States. The 2020 life tables for the
United States (Arias andXu, 2022) classify individuals as male or female and into five racial
and ethnic categories: Hispanic (H), Non-Hispanic American Indian and Alaska Native
(NHAIAN), Non-Hispanic Asian (NHA), Non-Hispanic Black (NHB), and Non-Hispanic
White (NHW). The arrays of mean longevity (life expectancy) and variance in longevity are

M =
�
74.6 63.8 81.1 67.8 74.8
81.3 70.7 85.9 75.3 80.1

�
T

(57)

V =
�
289 408 217 371 294
220 391 163 315 235

�
T

(58)

with males in the first row and females in the second row. These differences in life expec-
tancy among ethnic groups and between the sexes are typical for those variables.

Two mixing distributions suggest themselves, asking different questions. A flat mixing
distribution treats each sex–race combination equally in calculating its contribution to the
variance. It provides information on how the differences in the conditions experienced by
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these groups contribute to the variance among individuals in length of life, and thus tells
us something about the sex–race groups per se. However, the groups have quite different
levels of representation in the U.S. population. A mixing distribution proportional to the
population sizes of each racial group, with sexes treated as equal, provides a decomposition
of the variance in longevity among a hypothetical set of individuals who are, at birth, dis-
tributed over races proportional to the racial population sizes. (A mixing distribution with
racial groups proportional to the number of births for each race would be similar, but not
identical.) It tells us something about how the different conditions experienced by the groups
and the population structure of those groups contribute to the variance in length of life.

Using population figures from 2020 (U.S. Census Bureau, Population Division, 2022),
and setting the abundance of the sexes as equal, themarginal distributions for the flat mixing
distribution are

πrace =

0
BBBBB@

0.2
0.2
0.2
0.2
0.2

1
CCCCCA

πsex =
�
0.5
0.5

�
: (59)

The marginal distributions for the population-weighted mixing distribution are

πrace =

0
BBBBB@

0.1859
0.0076
0.0607
0.1300
0.6158

1
CCCCCA

πsex =
�
0.5
0.5

�
: (60)

In the rank-one mixing distribution, the Hispanic and NHWhite groups account for 80% of
the mixture, giving much less weight to the other racial categories. The rank-one mixing
distribution is given by

Π = reshape�πsex ⊗ πrace, 5, 2� (61)

=

0
BBBBB@

0.0930 0.0930
0.0038 0.0038
0.0304 0.0304
0.0650 0.0650
0.3079 0.3079

1
CCCCCA
: (62)

The variance decompositions obtained from the flat and the population-weighted mixing
distributions are given in Table 1. Under the flat mixing distribution, the between-group
variance accounts for 12.5% of the total variance. Racial differences contribute about three
times the variance of sex differences, and the interaction contributes only a small fraction.
When we shift our attention to the population-weighted mixing distribution, we see that the
contribution of racial-ethnic heterogeneity shrinks from 31.5 to 7.4, as a result of the
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dominance of the population by the Hispanic and Non-Hispanic White groups. When the
two factors are combined, heterogeneity accounts for only 5.6% of the variance.

Variance in longevity: Sex, race, and state of residence

In a country as large and diverse as the United States, there can be appreciable regional
differences in mortality. The U.S. Census Bureau provides male and female life tables
for each of the 50 states and the District of Columbia (Arias et al., 2022). The differences
in life expectancy among states are large, and are partly a reflection of the political affilia-
tions and policies of the states, with occupants of more liberal states experiencing longer life
expectancies (Montez and Farina, 2021;Montez et al., 2020). An earlier study, conducted at
the level of U.S. counties, found such large differences that the authors suggested the exis-
tence of “eight Americas” (Murray et al., 2006).

As an example of a three-factor analysis, we consider United States life tables by sex,
race, and state of residence as given in (Wei et al., 2012). Unfortunately, the results are not
directly comparable with the race×sex results in Table 1 because only two racial groups,
White and Black, were reported in these data. Moreover, in Wei et al. (2012), only 41 states

Table  The components of variance in longevity due to race, sex, and their interaction, for the population of the
United States, 2020, The population-weighted mixing distribution is constructed by setting the marginal distribution
of races proportional to their representation in the U.S. population in 2020.

Flat mixing

Component Variance

A = Race 31.5

B = Sex 9.7

AB = Race × sex 0.3

(between-group) 41.5

Stochasticity 290.3

Total 331.8

K 0.125

Population-weighted mixing

Component Variance

A = Race 7.4

B = Sex 8.5

AB = Race × sex 0.2

(between-group) 16.1

Stochasticity 269.3

Total 285.4

K 0.056
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were included because the sample sizes for the Black population in the other states were
considered too small to provide reliable estimates of mortality. However, we present an
analysis as an example of the potential for a three-factor interaction.

Table 2 shows the variance decomposition with a flat mixing distribution. The largest
main effect variance component is due to sex, followed by race and then state of residence.
The two-way interactions are small, as is the three-way interaction. Taken together, the inte-
ractions account for just over 5% of the between-group variance.Within-group stochasticity
again accounts for most of the variance, and the variance ratioK = 0.059. That is, the com-
bined effects of the three factors and their interactions account for only 5.9% of the variance
in longevity.

Lifetime reproductive output

Lifetime reproductive output (LRO), sometimes called lifetime reproductive success (LRS),
is the number of offspring produced by a female over her lifetime. When offspring are mea-
sured as female children and are subject to mortality, the mean of LRO is the net reproduc-
tive rate R0 (or NRR). When offspring are measured as children of either sex and mortality
is excluded, the mean of LRO is the total fertility rate (TFR). See Keilman et al. (2014) for a
discussion of measures of lifetime reproduction including different combinations of sexes,
and Caswell (2009, p. 1771) for the criteria that must be met for the net reproductive rate.

Lifetime reproductive “output” is a purposely flexible term. Output could be defined as
children of either sex, or of both sexes, or of any other categories. Thus, it is important
to specify how output is defined. Other categories can be analysed the same way. If, for
example, we were interested in left-handed blue-eyed children and had age-specific

Table  Components of variance in longevity due to sex, race, and U.S. state of residence.

Flat mixing

Component Variance

A = sex 9.23

B = race 7.50

C = state 1.37

AB = sex × race 0.061

AC = sex × state 0.209

BC = race × state 0.567

ABC = sex × race × state 0.170

(between-groups) 19.11

Stochasticity 303.04

Total 322.14

K 0.059
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numbers of such births per female, the lifetime output of such children could be calculated.
Lifetime production of left-handed blue-eyed children is purposely frivolous, but the same
logic applies to, for example, children born with trisomy-21 (the chromosome duplication
that causes Down syndrome). The statistics of the lifetime production of children with
trisomy-21 could be very interesting indeed.

Because survival and reproduction include stochastic processes, LRO is a random vari-
able, with a variance, skewness and higher moments. This variance could be considered a
“reproductive inequality” just as variance in longevity is considered “lifespan inequality.”
However, this type of inequality of outcome seems to have drawn little interest (but see early
work on the concentration of reproduction by Vaupel and Goodwin, 1987 and Shkolnikov
et al., 2007). Variation in outcomes such as childlessness and completed parity has attracted
attention, and integrating these outcomes into a variance partitioning framework is an inter-
esting research challenge.

The variance among individuals in lifetime reproduction has been approached by popu-
lation biologists in several ways (e.g., Caswell, 2011; Steiner and Tuljapurkar, 2012; van
Daalen and Caswell, 2017; Snyder and Ellner, 2018; Tuljapurkar et al., 2020). Here we use
Markov chains with rewards (MCWR), which provide the mean and variance (indeed, all
the moments) of lifetime reproduction. See Caswell (2011); van Daalen and Caswell (2017,
2020) for details of the calculation. Briefly, individual development, survival and transi-
tions among the possible life history states are described by an absorbing Markov chain.
Rewards, in the form of offspring produced along the life history trajectory, are accumulated
until death. The model provides the mean and variance of lifetime fertility as a function of
the demographic rates, depending on the fate of the individual and on the outcomes of its
chances of reproduction at each point in its lifetime.

While some comparisons of the variance, skewness and other statistics of LRO for
humans and other species, have been reported (Caswell, 2011; van Daalen and Caswell,
2015; van Daalen and Caswell, 2017; van Daalen and Caswell, 2024; Varas Enríquez et al.,
2022), only a few studies have partitioned variance in LRO into contributions from hetero-
geneity and stochasticity. One example is the study by van Daalen et al. (2022) of the con-
tribution of heterogeneity in maternal age to variance in LRO in a rotifer.

As with longevity, our goal here is to extend one-factor analyses to multi-factor studies in
which the variance in lifetime reproduction can be partitioned into contributions from het-
erogeneity and stochasticity. We show two examples. One is a comparison of lifetime fer-
tility among human females in 31 developed countries over a 40-year time interval, treating
country and time as factors. The other is a laboratory study of the effects of food limitation
and pesticide exposure on a rotifer.

Variance in reproduction over time and among countries

van Daalen and Caswell (2015) usedMarkov chains with rewards to explore the statistics of
lifetime reproduction (mean, variance, skewness, standardised variance) in a set of devel-
oped countries during the second demographic transition, using data from the Human
Mortality Database and the Human Fertility Database.
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Strictly as an example of the calculations, we present an analysis of a two-factor variance
decomposition, choosing as factors years (the two years 1960 and 2000) and countries
(the 31 countries for which data were available for both years).3 We computed the within-
group and between-group components of variance, comparing two mixing distributions.
One is flat, treating each country-year combination as equally important. The other creates
marginal mixing distributions proportional to population size measured at age zero. This
accounts for the distribution of population sizes of individuals beginning their “lifetime
reproduction” that would result from randomly selecting newborn females in proportion
to their abundance.

Table 3 shows the components of variance due to years, countries, and the interaction of
countries and years. It also shows the within-factor variance due to stochasticity.

With a flat mixing distribution, the variance due to years is more than twice the variance
due to countries. The interaction of years and countries is very small. The within-factor
variance due to stochasticity is large, and the variance ratio K = 0.21. That is, only 21%

Table  Components of variance in lifetime reproduction as affected by the factors year (1960 compared with
2000) and country. Based on data from van Daalen and Caswell (2015).

Flat mixing

Component Variance

A = year 0.330

B = country 0.135

AB = year × country 0.046

(between-groups) 0.513

Stochasticity 1.976

Total 2.487

K 0.206

Population-weighted

Component Variance

A = year 0.348

B = country 0.229

AB = year × country 0.035

(between-groups) 0.612

Stochasticity 2.170

Total 2.782

K 0.220

3 The countries are Austria, Bulgaria, Canada, Switzerland, Czech Republic, East Germany, West Germany, Estonia, Finland,
France, Scotland, England and Wales, Hungary, Japan, Lithuania, Netherlands, Portugal, Russia, Slovakia, Sweden, Ukraine,
United States, Australia, Belgium, Belarus, Denmark, Spain, Ireland, Italy, New Zealand, and Poland.
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of the variance in lifetime reproduction is due to the historical changes over this 40-year
period and the political and social differences among countries over these two years. Almost
80% of the variance is due to stochasticity from the random outcome of survival and fertil-
ity. Within that 21% of the variance due to heterogeneity, 91% is due to main effects.

Using the population-weighted rank-one mixing distribution makes only small changes
in the variance components. The component due to years is similar to that with a flat mixing
distribution. The component due to countries is larger with the population-weighted mixing
distribution than with the flat mixing distribution. This contrasts with the results for lon-
gevity in Table 1, in which weighting the races by population size reduced, rather than
increased, the variance due to race. The interaction is again very small, and the variance
ratio K = 0.22 is very similar to that with the flat mixing distribution.

Variance in reproduction due to diet and pesticide exposure

There is a rich biodemographic literature that applies demographic methods to laboratory
populations of animals in order to evaluate the population effects of exposure to toxic sub-
stances. We present one such example here to demonstrate how exposure to conditions that
are known to affect human fertility can be analysed in a case where experimentation is real,
not imaginary.

Rotifers are microscopic invertebrate animals commonly used as bioindicator species for
water quality, and are increasingly used as model organisms for the study of ageing, mater-
nal effects, and maternal investment (Bock et al., 2019). They have a relatively short lifes-
pan (≈ 2 weeks), but high maternal investment into a small number of offspring.

In a classic experiment by Rao and Sarma (1986), the rotifer Brachionus patulus was
exposed to five different concentrations of the pesticide DDT under low and high food
resource levels. Age-specific survival and fertility schedules were reported for all combi-
nations of DDT treatment and food levels. The resulting arrays of means and variances of
LRO are

M =
�

4.59 4.87 0.79 0.04 0.01
12.64 11.38 9.50 3.79 1.49

�
(63)

V =
�
12.95 12.45 1.69 0.08 0.01
34.93 39.89 28.10 16.11 5.48

�
: (64)

The two rows represent low and high food levels, respectively. The columns represent
the five increasing levels of DDT exposure (0, 15, 30, 45, 60 μg=l of DDT).

In this experiment, both DDT exposure and low food levels reduce mean lifetime repro-
duction. The effect of the pesticide exposure is greater at low food levels than at high food
levels. The variance in LRO decreases with increasing DDT exposure and at low food
levels. The variance is much larger than the mean, implying that the distribution of
LRO is overdispersed relative to the Poisson distribution. This is a frequent pattern in anal-
yses of LRO; it often results from some portion of the population failing to reproduce at all
(e.g., Tuljapurkar et al., 2020; van Daalen and Caswell, 2017).
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The uniformmixing distribution is appropriate to a designed experiment like this. The resul-
ting variance decomposition is shown in Table 4. The biggest component is that due to pes-
ticide exposure, while the food level contribution is slightly smaller. The between-group
variance, including the two main effects and their interaction, accounts for 57% of the
variance in the experiment, which is higher than any of the percentages found to date
for variance in longevity. The contribution of the food×DDT interaction is small, making
up 9% of the total between-group variance.

Discussion

Despite the obvious importance of variation, demography has often focused on expected
values. Life expectancy is the expected value of longevity, the net reproductive rate R0

is the expected value of lifetime reproduction, and the total fertility rate TFR is the expected
value of lifetime reproduction conditional on survival to the end of reproduction.
The focus is expanding as questions of inequality becomemore important. Addressing these
questions naturally leads to partitioning variation into components due to differences
among individuals in the rates to which they are subject (heterogeneity) and components
due to the stochastic outcomes of those rates among individuals subject to the same rates.

The current state of the art focuses on contributions of factors treated one at a time
(sex, education, income, nutrition, etc.). Many studies of variance in longevity have found
that the contribution of heterogeneity, even in factors known to have important effects on
individuals, is dwarfed by the contribution of stochasticity.While variance in lifetime repro-
duction has been studied less, it appears that heterogeneity maymake larger contributions to
this demographic outcome.

Variance decomposition requires the means and variances of the outcome for all
combinations of the factors. Although the means and variances can be obtained in
many different ways, Markov chains with rewards are a particularly powerful method.

Table  Components of variance in lifetime reproduction as affected by food level and DDT exposure. Data from
the experimental study of Rao and Sarma (1986).

Flat mixing

Component Variance

A = food level 8.12

B = DDT exposure 10.09

AB = food × DDT 1.84

(between-groups) 20.06

Stochasticity 15.17

Total 35.22

K 0.57
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They can be applied to lifetime reproduction, to longevity in single- or multi-state models,
and to healthy longevity in both prevalence-based (e.g., Caswell and Zarulli, 2018 and
Zarulli and Caswell, 2022 for disability, Owoeye et al., 2020 for malnutrition) and
incidence-based (Caswell and van Daalen, 2021 for stages of cancer) models.

In this paper we have provided the results needed to apply these means and variances in
studies of multiple factors operating simultaneously. The protocol for the variance decom-
position follows a simple series of steps, independent of the number of factors considered.

A protocol for factorial variance decomposition

1. Define the factors that characterise the heterogeneity among individuals (e.g., sex, race,
income, education, resource levels) and the levels of each factor.

2. Choose a demographic outcome of interest (e.g., longevity, lifetime reproductive output).
3. Compute the means and variances of this demographic outcome for all combinations of

the factors, using Markov chains, Markov chains with rewards, or life tables as deemed
appropriate.

4. Create the arrays M and V containing the means and variances, as in equations (13)
and (14). The dimension of these arrays is the number of factors in the study
(i.e., for n factors, M and V are n-dimensional).

5. Think about the question of interest and specify a set of individuals over which the
variances are to be computed:
(a) a set consisting of equal representation of all factor combinations (the flat mixing

distribution); or
(b) a set defined by a rank-one combination of marginal distributions.

6. Create the array Π, containing the n-dimensional mixing distribution, as in (15).
7. Treating all the factor combinations as groups, calculate the overall within- and

between-factor variance components Vwithin and Vbetween using equations (9) and (10).
8. Partition the between-group variance into components:

(a) compute marginal mean arrays for each factor and each factor interaction, as in
equations (20)–(22);

(b) create the corresponding marginal mixing distributions, as in equations (23)–(25);
and

(c) compute the variance components for each factor and each interaction, as in
equations (27)–(29).

Variance as a measure of inequality

There are many ways to measure the variation (“inequality” in a broad sense) of some
quantity. Economists have developed many indices to address specifically economic
issues related to income, transfers, and so on (e.g., Sen, 1997; Jenkins and van Kerm, 2009;
Atkinson, 2015). In demographic contexts, these measures are highly correlated
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(Van Raalte and Caswell, 2013). Thus if the aim is to focus only on the value of the index,
there is little basis onwhich to choose among them. But if the aim is to go beyond the values,
there are properties of the variance that make it an attractive choice.

As is well known, the variance is decomposable into within- and between-group com-
ponents (as are indices based on entropy). Additive decomposability is more than a math-
ematical nicety; it is fundamental to our attempts to understand how heterogeneity
contributes to inequality of outcomes. It was for this purpose that Fisher introduced it as
the basis for the analysis of experimental data (Fisher, 1936). Statistical ANOVA has devel-
oped into an enormous variety of study designs, referred to as “experimental designs” in the
experimental sciences. In our context, these designs correspond to arrangements of factors
within and across populations. The factorial study design we explore here only scratches the
surface of the possibilities.

The most popular alternative to the variance is the Gini coefficient. The Gini coefficient
is based on the mean of the absolute values of the deviations between pairs of variates
(e.g., individuals) selected from the distribution. Because of this, Permanyer et al.
(2023) call the Gini coefficient an individual measure. They contrast it with the variance,
which they call a group measure because the variance is usually written as the mean of the
squared deviations from the mean, rather than as a difference among individual values.
However, the variance and the Gini coefficient are both individual measures in this sense.
The mean difference between two individuals from the distribution f �·� is

Δ1 =
Z

∞

−∞

Z
∞

−∞
jx − yj f�x� f�y�dxdy: (65)

The Gini coefficient is a standardised, dimensionless version of the mean difference

G =
Δ1

2μ1
(66)

where μ1 is the mean.
The variance can also be written as a difference among individuals, “without reference to

deviations from a central value, the mean” (Kendall and Stuart, 1969, p. 47) as

V=
1
2

Z
∞

−∞

Z
∞

−∞
�x − y�2 f�x� f�y�dxdy: (67)

The similarity between the mean difference and the variance is clear; the former uses
absolute values of the differences between individuals, while the latter uses the squares
of the differences. Just as the Gini coefficient is a standardised mean difference, the variance
can be standardised as the familiar coefficient of variation

CV =

����
V

p

μ1
(68)

or the standardised variance

Vs =
V
μ21

: (69)
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The standardised variance is known in evolution and anthropology as Crow’s index of
the opportunity for selection (Crow, 1958; Courtiol et al., 2012; van Daalen and Caswell,
2024). Like the variance, it is additively decomposable into between-group and within-
group components as a measure of inequality (Rosenbluth, 1951).

The variance also has the advantage of being a central moment of the distribution, invit-
ing connections to other moments. These moments highlight other aspects of the distribu-
tion (e.g., skewness), and at least some of them can also be decomposed into within- and
between-group components. There seems to be no comparable linkage of absolute devia-
tions to such other properties of the distribution.

Remarks

The variance partitioning presented here is related to, but is not the same as, statistical anal-
ysis of variance (ANOVA). Our results do not provide hypothesis tests, because they lack
an underlying sampling theory to obtain distributions of the variance components under a
null hypothesis. If they did, most of the between-group components would be statistically
insignificant. However, the factors investigated in demographic studies are usually known a
priori to be of social or biological importance. The observation that the contribution of het-
erogeneity to variance is small does not imply that the factors are not worthy of attention;
rather, it merely implies that stochasticity is itself an important factor and is worthy of study
(see Caswell 2023, Section 8.5).

The mixing distribution plays a central role in variance partitioning. It is tempting to
wonder if the results are somehow an artefact of that distribution. Insight into the potential
effect of the mixing distribution can be obtained by generating marginal distributions at
random, combining them to form a rank-one distribution, and then computing the variance
ratio. Figure 2 shows the distribution of the variance ratio K obtained from a sample of
10,000 mixing distributions distributed uniformly over the simplex, for the case of
the U.S. sex, race, and states (Table 2). This is a sample from the set of all possible
rank-one mixing distributions (including many that are demographically absurd). Even so,
the largest variance ratio in this sample is only 0.075. Since the variance ratio with a flat
mixing distribution, is K = 0.059, it seems unlikely from Figure 2 that this ratio could be
increased very much by any other choice of mixing distribution.

A rank-one mixing distribution is required in order to partition the between-group vari-
ance into contributions from main effects and interactions. However, the calculation of the
between-group variance itself, as in equation (19), places no restriction on the mixing dis-
tribution. It simply treats all the treatment combinations as levels of a single factor, reducing
that portion of the calculation to a one-way design.

A recent survey of single-factor studies found that heterogeneity usually explained only
5%–10% of the variance in longevity (Caswell, 2023). The results of the present paper sug-
gest that including multiple factors and their interactions may not increase K very much.
Further comparative research is needed. The variance ratio for lifetime reproduction appears
to be larger than that for longevity, and the variance components for LRO appear to be
strongly influenced by conditions. van Daalen et al. (2022) found that heterogeneity in
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maternal age in a rotifer explained about 26% of the variance in LRO under laboratory con-
ditions, but as little as 2% under most conditions that would lead to a stationary population.
The sensitivity analysis of variance components (van Daalen and Caswell, 2020) may be
helpful for exploring these relationships.

We encourage the use of the methods we present here to explore the contributions of
multiple factors and their interactions to variance in demographic outcomes. Patterns await
discovery.
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