Nearly 700 individual amber objects were unearthed during the British and Austrian excavations in the Artemision of Ephesos, the majority of which were found in the centre of the sanctuary. During the reconstruction of the first temple for Artemis (Naos 1), a hoard consecrated around 650 to 640 BC was deposited there as a building sacrifice and contained gold jewellery and amber along with other valuable objects. The amber from the Artemision represents the largest find complex of this material in the entire Eastern Mediterranean region. It includes carved figures, beads, pendants, inlays and pinheads, but also unworked amber. The forms and types of the individual objects find their closest parallels above all in Italy, where amber from the Baltic was traded since the Bronze Age. Archaeometric investigations prove that the Ephesian finds were also made from Baltic raw material. A large number of similar individual parts contained in the hoard indicate that a magnificent piece of jewellery had also been laid down there. It seems that this elaborate piece of jewellery, made of small pieces, was a wide girdle offered to the goddess Artemis as the protector of women in labour. This girdle can be used to establish a connection with Southern Italy, where the colony of Siris offered itself as a mediator of amber jewellery of the Oinotrian type. All forms considered together prove the existence of a workshop in the Artemision in the 7th century BC that produced also amber jewellery.

Alessandro Naso, scholar of the Etruscans and other pre-Roman cultures of Italy, is a Former Full Professor for Ur- und Frühgeschichte at the Leopold-Franzens-University Innsbruck, Visiting Professor at the Sorbonne University Paris and Director of the Institute of Studies on the Ancient Mediterranean of the National Research Council of Italy (CNR-ISMA). He is now Full Professor of Etruscology and Ital Antiquities and Director of the Scuola di Specializzazione in Beni Archeologici at the University of Naples Federico II. He published intensively about pre-Roman Italy and is currently working on the Etruscan and Italic finds of the Aegean and the Eastern Mediterranean.
ALESSANDRO NASO (ED.)

AMBER FOR ARTEMIS
Amber Finds from the Artemision at Ephesos
ALESSANDRO NASO (ED.)

Amber for Artemis

AMBER FINDS FROM THE ARTEMISION AT EPHESOS

WITH CONTRIBUTIONS BY

SILVIA ALAURA, LAURA AMBROSINI, MARCO BONECHI, VANORA ESTRIDGE, SARJIT KAUR, TRIPTA KAUR, MICHAEL KERSCHNER, ALESSANDRO NASO, MARTINA OTT, CAROLINE POSCH, SERENA PRIVITERA, ANDREA M. PÜLZ, NUNZIA LAURA SALDALAMACCHIA, EDITH STOUT
TABLE OF CONTENTS

Preface of the excavation management ... 7
Preface of the editor and acknowledgements ... 9

1 Stratigraphy and Context of the Amber Finds (M. Kerschner, A. M. Pülz) 11
 1.1 Methods of excavation and processing: excavation and reconstruction of the stratigraphy .. 11
 1.2 Construction phases of the Archaic sanctuary and contexts of the amber finds .. 13
Appendix 1: Glossary of the names used for the Archaic and Classical temples, structures and layers in the Artemision of Ephesos ... 41
Appendix 2: Locations of the amber objects ... 50

2 Typology of the Amber Finds from the Artemision (L. Ambrosini, A. Naso, M. Ott, C. Posch, N. L. Saldalamacchia) ... 53
 2.1 Figured finds (cat. 1–5. 540) .. 53
 2.2 Beads (cat. 6–296. 541–591) .. 61
 2.3 Pendants (cat. 297–349. 592–630) ... 80
 2.4 Spacers (cat. 350–488. 631–634) ... 93
 2.5 Fibulae (cat. 489–523. 635–652) ... 102
 2.6 Inlays (cat. 524–533. 653–655) .. 110
 2.7 Pinheads (cat. 234. 656–658) .. 119
 2.8 Raw amber and unfinished pieces (cat. 535. 651) 120

3 Infrared Spectroscopy of Amber Samples from Ephesos (V. Estridge, S. Kaur, T. Kaur, E. Stout) .. 123
 3.1 Introduction .. 123
 3.2 Method of analysis .. 123
 3.3 Physical description of the amber samples from Ephesos 123
 3.4 Results and discussion ... 124

4 Ancient Near Eastern Amber: An Overview of the Cuneiform Sources (S. Alaura, M. Bonechi) .. 127
 4.1 Introduction .. 127
 4.2 The written documentation: Anatolia ... 129
 4.3 The written documentation: Mesopotamia ... 136
 4.4 Concluding remarks ... 153
 4.5 Addendum ... 154

5 Amber Finds from the Artemision at Ephesos: Concluding Remarks (A. Naso) 157
 5.1 Amber in ancient Greek literary sources .. 157
 5.2 Modern studies on amber .. 157
 5.3 The role of the Italian peninsula in amber manufacturing in pre-Roman times .. 158
 5.4 Amber finds in the Aegean in the Early Iron Age 161
5.5 Amber finds in the Artemision ... 163
5.6 A girdle for Artemis ... 169
5.7 Relationships between Ionia and the main Italian amber-working districts 172
5.8 The Artemision as an amber-working centre ... 176

6 Catalogue of the Amber Finds from the Artemision (A. Naso, M. Ott, C. Posch, S. Privitera, N. L. Saldalamacchia) .. 179
6.1 Ephesos Archaeological Museum in Selçuk (cat. 1–539) 179
6.2 Archaeological Museum Istanbul – British Museum London (cat. 540–659) 214

7 Summary/Özet .. 225

8 References and Indexes
Concordance lists .. 231
Bibliography .. 234
Editions and abbreviations of cuneiform documents 271
Illustration credits ... 272
Contributors .. 273

Plates 1–64 .. 275
Plans 1–10 .. 341
PREFACE OF THE EXCAVATION MANAGEMENT

It is a central goal of the Ephesos excavation to systematically review projects that, for various reasons, have not yet been fully presented. On the one hand this is rewarding, on the other hand it is a great challenge, especially when there are gaps in the documentation of old excavations. It is all the more pleasure for the directors of the Ephesos excavation to be able to present a particularly extraordinary as well as complex group of finds: the amber finds from the Artemision at Ephesos. Not surprisingly, the full presentation of these finds has been long awaited. It is the most extensive find complex of amber objects known so far from a Greek sanctuary. Alessandro Naso and his team were able to show that the majority of the small jewelry elements belong to a single girdle, for which comparative examples can only be found in Oenotrian princess tombs in modern-day Basilicata in Southern Italy. This proves a hitherto completely unknown contact of Ephesos, which was not involved in the colonization of Southern Italy, with the Gulf of Taranto. It appears that this contact was established already in a very early time, i.e. in the first half of the 7th century BC. On the basis of the amber finds from the Artemision the complex object biography of such rare prestige objects can be shown: the raw material originates from the Baltic, came to Italy, there it was processed and came to Ephesos, whereby also local production of amber elements could be proven – either for finishing or repair. The knowledge that can be derived from this is impressive and will bring sanctuary research an important step forward. It is of great value that Alessandro Naso and his team provide an analysis of the finds in detail not only technically and typologically, but also within their find contexts, whereby for the first time a short-lived rebuilding phase of the first temple could be proven – the Naos 1a – under whose floor the amber girdle had been deposited as a building sacrifice.

The editors congratulate the team of authors led by Alessandro Naso, who have contributed their individual expertise to this volume. They are: Silvia Alaura, Laura Ambrosini, Marco Bonechi, Vanora Estridge, Sarjit Kaur, Tripta Kaur, Michael Kerschner, Martina Ott, Caroline Posch, Serena Privitera, Andrea M. Pülz, Nunzia Laura Saldalamacchia and Edith Stout. An important element of the provenance analysis was infrared spectroscopy carried out at the Amber Research Laboratory at Vassar College, Poughkeepsie, NY, and performed successfully by Edith Stout, Vanora Estridge, Sarjit and Tripta Kaur. Among the many individuals and institutions involved in the success of the volume, the series editors would like to mention in particular the colleagues from the team of the Ephesos excavation and from the Efes Müzesi Selçuk, who provided excellent working conditions. For the Efes Müzesi these are especially director Cengiz Topal and Feride Kat. At the Istanbul Arkeoloji Müzesi, the director at the time, Zeynep Kızıltan, and the curator at the time, Mine Kiraz, were extraordinarily helpful. At the British Museum we feel indebted to the curator Alexandra Villing.

The high quality of the volume is based on the outstanding work of several people who must be highlighted here: Niki Gail (photography), Barbara Beck-Brandt and Judith Kreuzer (editing), Nikky Math and Isabella Benda-Weber (graphics and plans), and Andrea Sulzgruber (final layout of the plates).

The research would not have been possible without the excellent cooperation with the General Directorate of Cultural Heritage and Museums in Ankara for which the Ephesos excavation is always grateful. Finally, the editors would like to thank the publishing house of the Austrian Academy of Sciences for including the volume in its publishing program and for funding through the Academy’s Holzhausen Legat. Thanks are also due to the University of Naples Federico II for the financial support of the printing costs.
This volume provides a unique insight into world of amber, an organic gemstone that has captured the human imagination for centuries. The series editors are convinced that this volume will be appreciated by the scientific community. The systematic presentation of old excavations and their finds is, however, consistently maintained.

Sabine Ladstätter – Martin Steskal
Vienna, September 2023
PREFACE OF THE EDITOR AND ACKNOWLEDGEMENTS

The present publication may be the first book entirely devoted to pre-Roman amber finds from a single site, and it can be said that its roots run deep.

I had read the first reports on the amber carvings from the Artemision of Ephesos in summer 1991 while studying for my PhD. At the time, I was enjoying a fruitful period of study in Mainz, in the library of the Römisch-Germanisches Zentralmuseum (today Lebniz-Zentrum für Archäologie – LEIZA). I was intrigued by the new discoveries, amber being familiar to me as it is considered a common find in Central Italy but undoubtedly rare in Ionia. In those days, I could hardly imagine that, about twenty years later, I would begin research on the finds. I would have been even less likely to guess that, more than thirty years later, I would be publishing a book devoted exclusively to those amber carvings.

It is a real pleasure to mention and thank several colleagues in Vienna, Innsbruck and elsewhere, who supported the project in various ways. The late Sabine Ladstätter and Michael Kerschner entrusted me with publishing the amber finds from the Artemision at Ephesos. As director of the Austrian Archaeological Institute and head of the Ephesos Excavation, Sabine Ladstätter followed my research with great interest and patience, granting my team and me the use of several facilities in Selçuk and elsewhere, and finally suggested a book should be published in this series. Michael Kerschner first proposed that the amber finds from the Artemision should be the subject of a systematic study, and introduced me to the complex world of the Artemision »mit Rat und Tat.« He and Andrea M. Pülz provided literature and information from the archive of the Artemision excavation in Vienna and, as experienced staff members of the Artemision, wrote a chapter about the find contexts of the amber in the sanctuary. Niki Gail took beautiful photographs of the amber finds. With unstinting patience, Barbara Beck-Brandt carefully followed the gestation of this book, almost step by step, while the excavation profiles and the maps charting find distribution were masterfully drawn by Isabella Benda-Weber and Nicola Math to give visual shape to the information we had collected. Ruth Schleithoff (Berlin) composed the drawings in wonderfully laid-out plates.

A generous grant offered by the Oesterreichischen Nationalbank, Jubiläumsfonds, OeNB Projekt Nr. 15575 allowed my team and me to take trips to museums in Türkiye and England: I would like to thank the anonymous reviewers of the project for their advice and the administration staff of the OeNB for their assistance during each stage of the project.

The Leopold-Franzens-University Innsbruck (LFUI), financed the earliest research phases with the Berufungsgelder granted to my Chair of Pre- and Protohistory. I am grateful for their support to Karl-Heinz Töchterle, Klaus Eisterer and Walter Leitner, former Rector, Dean of the Faculty of Philosophy and History and Head of the Department of Archaeologies. At LFUI, I am indebted to Robert Rebitsch, Project Service Office, for his helpful advice regarding funding possibilities and to Andreas Matuella and Julia Stadler, both at the Department for Archaeologies, for taking care of the administrative aspects.

The University of Naples Federico II provided some funds to complete the manuscript and to support the printing of the book.

In my capacity as author, I would like to express my warmest gratitude to the General Direction of the Antiquities of the Republic of Türkiye: I wish to mention particularly Zeynep Kızıltan, former Director of the Istanbul Archaeological Museums, and Cengiz Topal, Director of the Ephesos Archaeological Museum in Selçuk, for granting permission to study the amber carvings from the Artemision at Ephesos which are held in Istanbul and Selçuk, and which Feride Kat
(Selçuk) and Mine Kiraz (Istanbul) respectively made accessible. In England, I am indebted to Alexandra Villing of the British Museum, London, for facilitating work there.

It is my pleasure to express my deep gratitude to many colleagues and friends for their advice on single finds and helpful discussions. Firstly Alfonsina Russo Tagliente (Rome) and then Salvatore Bianco (Lecce) introduced me to the impressive amber finds from the Oenotrian graves in modern-day Basilicata. Paolo Bellintani (Trento), Cecilia D’Ercole (Paris) and Marco Pacciarelli (Naples) discussed with me some amber finds from Italy. Giacomo Bardelli (Naples), Patrizia von Eles (Imola), Francesco Quondam (Rome, Vienna) and Roberto Spadea (Rome) provided information about unpublished amber finds from Numana, Verucchio, Francavilla Marittima and other sites in Calabria respectively. Volkmar von Graeve and Gamze Günay von Graeve (Izmir) showed me unpublished amber finds from Miletos. Alexander Mazarakis Ainian (Volos) provided general information about unpublished finds from Kythnos and useful literature.

Stephane Verger (Paris, Rome) described a few amber finds from Claros. Several colleagues were kind enough to provide specialist literature on various topics, which has been particularly useful during the COVID-19 pandemic and the library lockdown: I wish to warmly thank Vilma Basilissi (Rome), Elizabeth Baughan (Richmond), Salvatore Bianco (Lecce), Angelo Bottini (Florence), Alessandro Cocorullo (Paris), Massimo Cultraro (Catania), Raimon Graells (Alicante), Sandrine Huber (Lille), Borut Križ (Novo mesto), Ilze Loze (Riga), Dirce Marzoli (Madrid), Oscar Mei (Urbino), Monica Miari (Bologna), Aleksandar Palavestra (Belgrade), Alessandra Ricci (Istanbul), Maria Antonietta Rizzo (Rome), Christoph Reusser (Zürich), Giuseppe Scardozzi (Lecce), Udo Schlotzhauer (Berlin), Jutta Stroszek (Athens), Geoffrey D. Summers (Ankara), Gregory P. Warden (Lugano) and Denis Zhuravlev (Moscow). Last but not least, I wish to thank Piero Guzzo, who read an early draft of the research and offered useful suggestions. I am grateful to the two anonymous reviewers for their suggestions and comments. I apologise to anybody I may have left out.

I am very thankful for the invitations to give public lectures extended by Alfonsina Russo Tagliente (Rome), Olivier de Cazanove and Francis Prost (both in Paris), Luca Cerchiai and Mauro Menichetti (both in Salerno) and Maurizio Harari (Pavia). Those lectures were more profitable for me than for my patient audience, and I was able to discuss the preliminary results of the research with several colleagues.

The book, conceived as an international initiative, takes advantage of the contributions provided by Silvia Alaura, Laura Ambrosini and Marco Bonechi (all CNR - ISPC, Rome): S. Alaura and M. Bonechi reviewed the cuneiform sources about amber in the Near East, and L. Ambrosini classified the style of the figured amber. The volume includes the analysis of the amber samples carried out by Edith Stout with Vanora Estridge, Sarjit and Tripta Kaur in the world-class laboratories of Vassar College (Poughkeepsie, NY). In 2018 I enjoyed a fruitful period as visiting professor at the Université Paris I Sorbonne thanks to the generous invitation of Olivier de Cazanove and Francis Prost, both of whom I wish to thank warmly.

Last but not least, I am glad to acknowledge the support of my enthusiastic Austro-Italian working team, which includes Martina Ott (Feldkirch), Caroline Posch (Vienna), Serena Privitera (Pordenone) and Nunzia Laura Saldalamacchia (Naples) as co-authors. Among them, Martina and Serena played a unique role: the former also as the author of several photographs and Serena as a skilled draughts person. Manuela Bonadies and Martina Zinni (both Rome) improved some drawings.

Olivia Diana Ercoli (Rome) was patient enough to review and improve my basic English, Nicola Wood is to thank for the careful English proofreading.

All errors and omissions are my responsibility.

Alessandro Naso
Rome
1 STRATIGRAPHY AND CONTEXT OF THE AMBER FINDS

1.1 METHODS OF EXCAVATION AND PROCESSING: EXCAVATION AND RECONSTRUCTION OF THE STRATIGRAPHY

The archaeological exploration of the Artemision between 1965 and 1993 by the Austrian Archaeological Institute (OeAI) under the direction of A. Bammer, was mainly carried out as a metrical or arbitrary excavation (»Abhubgrabung«), after its beginnings as a dredging excavation. It was not until the year 1994 that a stratified excavation was executed.

In preparation, the entire excavation area was divided according to an orthogonal coordinate system, which was fixed to the edges of the Late Classical altar of Dipteros, namely the altar east edge (AOK) and the altar south edge (ASK) (plan 1). This internal excavation system is related to the axes of the temple and altar, which deviate slightly from magnetic north. All trenches (with a few exceptions) were basically oriented to this system. Also, the heights were related to the internal survey system of the excavation. They refer to a local zero point, which was fixed at the foundation of the Late Classical altar, i.e. +0.888 m above sea level (see plans 1 and 2 for the following remarks).

The excavation was carried out as a trench excavation according to a metrical system. Only occasionally was consideration given to stratigraphic elements identified during the excavation, such as different floors and layers. This inevitably means that natural strata were ignored and frequently intersected. As a consequence, finds from the same natural layer were found in different excavation units; on the other hand, the metrical units often contain material from two or more natural layers. Therefore, the actual stratigraphy had to be reconstructed afterwards. The metrical excavation unit (»Fundkiste«) in itself is not a stratigraphic unit but a self-defined unit (pl. 1, 1). This fact was often misunderstood in the older literature on the Artemision, which sometimes created pseudo-contexts.

The metrical excavation units were given a unique number consisting of the excavation year and a serial number (e.g. 892938 = excavation year [19]89 + serial number 2938). A similar height of two numbers does not always say anything about the spatial relationship between them, since serial numbers can also be located in different trenches. In the older publications a K (»Kiste« = box) was placed in between (e.g. 89 K 2938). However, since this letter is meaningless, it is now omitted. Instead, one or more zeros are placed between the year and the serial number to achieve a consistent six-digit number sequence, as is necessary for entry into the digital finds database.

During the excavation, each trench was divided into stripes of basically 1 × 1 m². These stripes were excavated in metrical or artificial spits (»Abhub«), the height of which varied. As a rule, it

3 Ohnesorg 2007a, 4 f. (with literature on older measurements).

6 Misleading equation of a metrical excavation unit with a natural layer i.e. in: Bammer – Muss 2013, 155 f.

is between 5 and 15 cm, depending on whether a large or small hoe was used for digging⁸ (pl. 1, 2; 2, 1). The individual excavation units are, geometrically speaking, flat rectangular cuboids. By levelling, the upper edge and the lower edge were measured after each excavation at one or more points in a trench. However, since the excavation was not carried out absolutely flat, there were fluctuations in the centimetre range, which can lead to uncertainties in the evaluation. The excavated finds were stored separately for each metrical unit, which was called a »Fundkiste« or simply »Kiste« (= box) by A. Bammer. From 1981 onwards, the soil was additionally wet-sifted. This brought to light numerous small objects such as beads and other jewellery, but also electrum coins. These were assigned to the corresponding metrical excavation unit⁹. Many of the small amber objects were among the finds from wet-sifting (pl. 2, 2).

Since the excavation was carried out on a large scale with numerous workers and also in sensitive areas often with coarse tools (large hoes)¹⁰ (pls. 1, 2; 2, 1), there could occasionally be minor mixing of the soil from adjacent excavation units during the excavation procedures, which can play a role, especially in the case of finds that only came to light during wet-sifting¹¹.

According to the theory of metrical excavation, the finds from the metrical excavation units have to be assigned to the natural strata afterwards by comparing the stratigraphy documented in profile drawings and photos with the schematic metrical excavation grid (»Fundkistenmatrix«)¹². In practice, however, such a subsequent assignment of geometrically defined excavation units to irregularly running natural strata has its limits¹³. Since the cuboidal units de facto never coincide with a natural stratum in toto, in many cases two or more contexts are mixed which cannot be separated afterwards.

The number of mixed units depends on four factors: 1. the size of the metrical units, 2. the height of the natural strata, 3. the angle of inclination of the natural strata in relation to the strictly horizontal metrical spit, and 4. the presence of pits and postholes¹⁴. The assignment of certain finds to stratigraphic contexts must therefore be reconstructed. Only then is it possible in aus sagekräftigen Sondagen die Schichtenfolge zu beschreiben und durch Keramikfunde die Termini für einzelne Deponierungsvorgänge festzulegen and to eventually define find contexts¹⁵.

The systematic processing of the stratigraphy and the find contexts of the Artemision excavations began in the year 1996¹⁶. For this purpose, a viable system was developed to arrive at a reconstruction of the stratigraphic sequence, its chronology and the associated construction phases of the sanctuary, taking into account the excavation methods described and the nature of the existing documentation.

This system, which has already been explained in detail elsewhere¹⁷, is also used in the present volume to determine the find contexts of the amber objects. It is in the nature of the evaluation of a metrical excavation that not all finds can be assigned to an individual context with the same degree of certainty. Objects whose excavation units fall completely within a single natural layer

⁸ Bammer 1984, 58.
¹⁴ See Praetzellis 1993, 84.
¹⁵ Weißl 2002, 315.
¹⁶ The study with M. Kerschner as principal investigator was financed by the Austrian Science Fund and the Austrian Archaeological Institute. M. Weißl carried out fundamental work such as the critical edition of the excavation diaries of the excavator and the trench supervisors, as well as the creation of a database of the excavation units. He also gained essential insights into the building and stratigraphic sequence of the Geometric, Archaic and Classical periods: Weißl 2002. Further important contributions were made by J. Auinger, S. Karl, M. Kerschner, A. Sokolicek, B. Pulsinger, S. Radbauer and U. Turgutarkan.
can be assigned with certainty. If an excavation unit contains material from two (or more) natural layers, both (or more) contexts are possible.

However, certain criteria may make it possible to weigh the likelihood of attribution. Often the following constellation can be found: if, for example, a metrical unit comprises two layers, one of which turns out to be devoid of finds in its remaining units – this includes, for example, sand layers resulting from flooding – but the other is rich of small finds, then it is very likely that the objects from the mixed metrical unit originate from the second context. This conclusion then is an argument of probability.

We have taken this complex situation into account in our definition of each context. In our listing of the numbers of metrical units belonging to a particular context, readers will find a gradation between certain and probable allocations.

1.2 CONSTRUCTION PHASES OF THE ARCHAIC SANCTUARY AND CONTEXTS OF THE AMBER FINDS

In the following, only those areas and contexts of the Artemision will be discussed that are related to the amber finds presented in this book. For a better understanding, it is necessary to give a short overview of the structures, especially the Early Archaic temples of Artemis, as the deposition of most of the amber objects is closely related to the construction of the temples Naos 1a, Naos 2, Sekos 1 and Sekos 2 and the levelling of the area surrounding them (pls. 1, 1–2; 1; tabs. 1. 3; also Appendix 2). When discussing the find contexts, we consider not only the amber objects, but also the artefacts made of other materials, especially bronze, gold and glass, that have already been published or are in the process of publication\(^ {18} \) (tab. 2).

Table 1 Coordinates of the metrical excavation units organised by spit heights (A. M. Pülz)

<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>õAOK</th>
<th>õAOK</th>
<th>nASK</th>
<th>nASK</th>
<th>TL</th>
<th>BL</th>
<th>Comment/Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>760238</td>
<td>352</td>
<td>26.4</td>
<td>30</td>
<td>–12</td>
<td>–11</td>
<td>–0.3</td>
<td>–0.44</td>
<td></td>
</tr>
<tr>
<td>880974</td>
<td>591</td>
<td>30</td>
<td>31.5</td>
<td>7</td>
<td>8</td>
<td>–0.255</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>892609</td>
<td>620</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>39</td>
<td>–</td>
<td>–0.5</td>
<td></td>
</tr>
<tr>
<td>800006</td>
<td>370</td>
<td>35.3</td>
<td>39</td>
<td>–6</td>
<td>–5</td>
<td>–</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>800431</td>
<td>370</td>
<td>35.3</td>
<td>39</td>
<td>–8</td>
<td>–7</td>
<td>–</td>
<td>–0.58</td>
<td>uncertain height</td>
</tr>
<tr>
<td>800433</td>
<td>370</td>
<td>35.3</td>
<td>39</td>
<td>0</td>
<td>–1</td>
<td>–0.3</td>
<td>–0.58</td>
<td></td>
</tr>
<tr>
<td>892645</td>
<td>701</td>
<td>37</td>
<td>38.1</td>
<td>15.4</td>
<td>18</td>
<td>–0.453</td>
<td>–0.568</td>
<td></td>
</tr>
<tr>
<td>860217</td>
<td>430</td>
<td>42</td>
<td>46</td>
<td>–8</td>
<td>–7</td>
<td>–0.06</td>
<td>–0.08</td>
<td></td>
</tr>
</tbody>
</table>

\(^ {18} \) In the following explanations, the catalogue numbers in parentheses for the amber finds refer to the present study: see catalogue. – For the gold finds see Pülz 2009. – For the bronze objects see Klebinder-Gauß 2007. – For the glass beads see Pulsinger – Pülz (in preparation). Further mentions of objects of other materials such as ivory or terracotta were taken from the diaries and distribution cards or are quoted. See also tab. 2.
<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>δAOK</th>
<th>dAOK</th>
<th>nASK</th>
<th>nASK</th>
<th>TL</th>
<th>BL</th>
<th>Comment/Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>850314</td>
<td>406</td>
<td>44.5</td>
<td>48</td>
<td>50</td>
<td>51</td>
<td>-0.07</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>850316</td>
<td>406</td>
<td>44.5</td>
<td>48</td>
<td>50</td>
<td>51</td>
<td>-0.07</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>860155</td>
<td>420</td>
<td>55</td>
<td>58</td>
<td>44</td>
<td>45</td>
<td>-0.045</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>860203</td>
<td>420</td>
<td>55</td>
<td>58</td>
<td>47</td>
<td>48</td>
<td>-0.14</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>860344</td>
<td>421</td>
<td>58</td>
<td>61</td>
<td>44</td>
<td>45</td>
<td>-0.01</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td>870081</td>
<td>560</td>
<td>67</td>
<td>72</td>
<td>44</td>
<td>45</td>
<td>-0.25</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>901329</td>
<td>772</td>
<td>75</td>
<td>77.7</td>
<td>18</td>
<td>19</td>
<td>0.05</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>900374</td>
<td>772</td>
<td>75</td>
<td>77.7</td>
<td>21</td>
<td>22</td>
<td>-0.51</td>
<td>-0.65</td>
<td></td>
</tr>
<tr>
<td>900483</td>
<td>772</td>
<td>75</td>
<td>77.7</td>
<td>23</td>
<td>24</td>
<td>-1.05</td>
<td>-1.13</td>
<td></td>
</tr>
<tr>
<td>900486</td>
<td>772</td>
<td>75</td>
<td>77.7</td>
<td>20</td>
<td>21</td>
<td>-1.05</td>
<td>-1.13</td>
<td></td>
</tr>
<tr>
<td>870104</td>
<td>562</td>
<td>78</td>
<td>82</td>
<td>46</td>
<td>47</td>
<td>0.2</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>870119</td>
<td>562</td>
<td>78</td>
<td>82</td>
<td>48</td>
<td>49</td>
<td>0.08</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>910611</td>
<td>940</td>
<td>78.5</td>
<td>81.5</td>
<td>10</td>
<td>14</td>
<td>-0.38</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>910496</td>
<td>900</td>
<td>78.9</td>
<td>83</td>
<td>24</td>
<td>24.6</td>
<td>0</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>900380</td>
<td>771</td>
<td>79</td>
<td>83.5</td>
<td>18</td>
<td>19</td>
<td>-0.64</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>900402</td>
<td>771</td>
<td>79</td>
<td>83.5</td>
<td>17</td>
<td>18</td>
<td>-0.93</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>900427</td>
<td>771</td>
<td>79</td>
<td>83.5</td>
<td>15</td>
<td>16</td>
<td>-1</td>
<td>-1.15</td>
<td></td>
</tr>
<tr>
<td>900434</td>
<td>771</td>
<td>79</td>
<td>83.5</td>
<td>22</td>
<td>23</td>
<td>-1</td>
<td>-1.15</td>
<td></td>
</tr>
<tr>
<td>880128</td>
<td>583</td>
<td>80.8</td>
<td>81.8</td>
<td>19.1</td>
<td>20.1</td>
<td>-</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>880915</td>
<td>583</td>
<td>85</td>
<td>86</td>
<td>23.1</td>
<td>24.1</td>
<td>-0.79</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>880170</td>
<td>583</td>
<td>86.8</td>
<td>87.8</td>
<td>22.1</td>
<td>23.1</td>
<td>-0.14</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>880594</td>
<td>583</td>
<td>86.8</td>
<td>87.8</td>
<td>16.1</td>
<td>17.1</td>
<td>-0.56</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>880443</td>
<td>583</td>
<td>87.8</td>
<td>88.8</td>
<td>20.1</td>
<td>21.1</td>
<td>-0.5</td>
<td>-0.54</td>
<td></td>
</tr>
<tr>
<td>880822</td>
<td>583</td>
<td>88.8</td>
<td>89.8</td>
<td>20.1</td>
<td>21.1</td>
<td>-0.79</td>
<td>-0.94</td>
<td></td>
</tr>
<tr>
<td>880807</td>
<td>583</td>
<td>90.8</td>
<td>91.9</td>
<td>17.1</td>
<td>18.1</td>
<td>-0.79</td>
<td>-0.94</td>
<td></td>
</tr>
<tr>
<td>880947</td>
<td>583</td>
<td>89.2</td>
<td>92.1</td>
<td>21.1</td>
<td>22.1</td>
<td>-0.9</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>880943</td>
<td>583</td>
<td>89.2</td>
<td>92.1</td>
<td>21.1</td>
<td>22.1</td>
<td>-0.94</td>
<td>-1</td>
<td>uncertain height</td>
</tr>
<tr>
<td>880949</td>
<td>583</td>
<td>89.2</td>
<td>92.1</td>
<td>21.1</td>
<td>22.1</td>
<td>-1</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>880946</td>
<td>583</td>
<td>89.2</td>
<td>92.1</td>
<td>17</td>
<td>18.3</td>
<td>-1.045</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>870348</td>
<td>582</td>
<td>91.95</td>
<td>92.8</td>
<td>20.7</td>
<td>22.1</td>
<td>-0.78</td>
<td>-0.86</td>
<td>Hoard</td>
</tr>
<tr>
<td>870298</td>
<td>582</td>
<td>92.8</td>
<td>93.8</td>
<td>17.1</td>
<td>18.1</td>
<td>-</td>
<td>-0.76</td>
<td></td>
</tr>
<tr>
<td>870354</td>
<td>582</td>
<td>92.8</td>
<td>93.8</td>
<td>17.1</td>
<td>18.1</td>
<td>-0.86</td>
<td>-0.95</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Construction phases of the Archaic sanctuary and contexts

<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>δAOK</th>
<th>δAOK</th>
<th>nASK</th>
<th>nASK</th>
<th>TL</th>
<th>BL</th>
<th>Comment/Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>870272</td>
<td>582</td>
<td>93.8</td>
<td>94.8</td>
<td>21.1</td>
<td>22.1</td>
<td>–</td>
<td>–</td>
<td>Hoard</td>
</tr>
<tr>
<td>870341</td>
<td>582</td>
<td>93.8</td>
<td>94.8</td>
<td>21.1</td>
<td>22.1</td>
<td>–</td>
<td>–</td>
<td>Hoard</td>
</tr>
<tr>
<td>870232</td>
<td>581</td>
<td>95.5</td>
<td>98.9</td>
<td>17.1</td>
<td>22.1</td>
<td>–</td>
<td>–</td>
<td>–0.66 –0.72</td>
</tr>
<tr>
<td>870246</td>
<td>581</td>
<td>95.5</td>
<td>97.3</td>
<td>20.5</td>
<td>21.4</td>
<td>–</td>
<td>–</td>
<td>Hoard</td>
</tr>
<tr>
<td>870281</td>
<td>581</td>
<td>95.5</td>
<td>96.8</td>
<td>20.1</td>
<td>21.1</td>
<td>–</td>
<td>–</td>
<td>–0.78 –0.86</td>
</tr>
<tr>
<td>870349</td>
<td>581</td>
<td>95.5</td>
<td>96.8</td>
<td>18.1</td>
<td>19.1</td>
<td>–</td>
<td>–</td>
<td>Hoard</td>
</tr>
<tr>
<td>870362</td>
<td>581</td>
<td>95.5</td>
<td>96.8</td>
<td>18.1</td>
<td>19.1</td>
<td>–</td>
<td>–</td>
<td>Hoard</td>
</tr>
<tr>
<td>870353</td>
<td>581</td>
<td>95.5</td>
<td>96.8</td>
<td>20.1</td>
<td>21.1</td>
<td>–</td>
<td>–</td>
<td>Hoard (?)</td>
</tr>
<tr>
<td>870352</td>
<td>581</td>
<td>96.8</td>
<td>97.8</td>
<td>20.1</td>
<td>21.1</td>
<td>–</td>
<td>–</td>
<td>Hoard</td>
</tr>
<tr>
<td>870374</td>
<td>581</td>
<td>96.8</td>
<td>97.8</td>
<td>19.1</td>
<td>20.1</td>
<td>–</td>
<td>1.17</td>
<td>–1.18</td>
</tr>
<tr>
<td>870233</td>
<td>581</td>
<td>97.3</td>
<td>98</td>
<td>18.75</td>
<td>20.5</td>
<td>–0.66</td>
<td>–0.72</td>
<td>Rammed earth layer</td>
</tr>
<tr>
<td>870245</td>
<td>581</td>
<td>97.3</td>
<td>98</td>
<td>18.75</td>
<td>20.5</td>
<td>–0.72</td>
<td>–0.78</td>
<td>Hoard</td>
</tr>
<tr>
<td>870324</td>
<td>581</td>
<td>97.8</td>
<td>98.8</td>
<td>19.1</td>
<td>20.1</td>
<td>–0.83</td>
<td>–0.88</td>
<td>Hoard</td>
</tr>
<tr>
<td>870409</td>
<td>581</td>
<td>91.95</td>
<td>101</td>
<td>15.1</td>
<td>24.1</td>
<td>–</td>
<td>–</td>
<td>Cleaning of profile (no stratigraphic assignment possible)</td>
</tr>
<tr>
<td>930697</td>
<td>1020</td>
<td>108.7</td>
<td>109</td>
<td>22</td>
<td>23.3</td>
<td>–</td>
<td>–</td>
<td>0.7 0.76</td>
</tr>
<tr>
<td>930984</td>
<td>1020</td>
<td>109</td>
<td>110</td>
<td>23.25</td>
<td>24.5</td>
<td>–0.99</td>
<td>–1</td>
<td></td>
</tr>
<tr>
<td>931289</td>
<td>1020</td>
<td>111</td>
<td>112</td>
<td>23.25</td>
<td>24.5</td>
<td>–1.5</td>
<td>–1.55</td>
<td></td>
</tr>
<tr>
<td>931010</td>
<td>1020</td>
<td>113</td>
<td>114</td>
<td>23.25</td>
<td>24.5</td>
<td>–1.03</td>
<td>–1.1</td>
<td></td>
</tr>
<tr>
<td>931107</td>
<td>1020</td>
<td>113.5</td>
<td>114</td>
<td>22</td>
<td>23.3</td>
<td>–1.132</td>
<td>–1.21</td>
<td></td>
</tr>
<tr>
<td>930672</td>
<td>1020</td>
<td>114</td>
<td>115</td>
<td>23.25</td>
<td>24.5</td>
<td>–0.74</td>
<td>–0.81</td>
<td></td>
</tr>
<tr>
<td>910584</td>
<td>913</td>
<td>112</td>
<td>113</td>
<td>13</td>
<td>14</td>
<td>–0.18</td>
<td>–0.2</td>
<td></td>
</tr>
<tr>
<td>940110</td>
<td>1022</td>
<td>115.5</td>
<td>117</td>
<td>22</td>
<td>23</td>
<td>0.1</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>940135</td>
<td>1022</td>
<td>116.75</td>
<td>118</td>
<td>23</td>
<td>24.5</td>
<td>–0.35</td>
<td>–0.41</td>
<td></td>
</tr>
<tr>
<td>940268</td>
<td>1023</td>
<td>114.5</td>
<td>116</td>
<td>25.5</td>
<td>26.5</td>
<td>–0.13</td>
<td>–0.23</td>
<td></td>
</tr>
<tr>
<td>940242</td>
<td>1023</td>
<td>117</td>
<td>118</td>
<td>24.5</td>
<td>25.5</td>
<td>0.9</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>940085</td>
<td>1038</td>
<td>114.5</td>
<td>116</td>
<td>19</td>
<td>20</td>
<td>0.46</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>940014</td>
<td>1032</td>
<td>115</td>
<td>116</td>
<td>16.5</td>
<td>17.5</td>
<td>–0.61</td>
<td>–0.67</td>
<td></td>
</tr>
<tr>
<td>940146</td>
<td>1036</td>
<td>118</td>
<td>119</td>
<td>16.6</td>
<td>17</td>
<td>–</td>
<td>–0.63</td>
<td></td>
</tr>
<tr>
<td>870199</td>
<td>570</td>
<td>136.45</td>
<td>141</td>
<td>44</td>
<td>45</td>
<td>0.19</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Concordance list: association of amber objects with finds made of other material (gold, bronze, glass, other within a metrical unit). The respective catalogue number is in parentheses (A. M. Pülz)

<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>Amber</th>
<th>Gold</th>
<th>Bronze</th>
<th>Glass</th>
<th>Other materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>760238</td>
<td>352</td>
<td>female bust (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800006</td>
<td>370</td>
<td>inlay (524)</td>
<td></td>
<td>needle (235, 262)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800431</td>
<td>370</td>
<td>inlay (528)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800433</td>
<td>370</td>
<td>needle head (534)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>850314</td>
<td>406</td>
<td>bead type 6 (257)</td>
<td></td>
<td></td>
<td>bead (197, 198, 212)</td>
<td></td>
</tr>
<tr>
<td>850316</td>
<td>406</td>
<td>bead type 6 (256)</td>
<td></td>
<td>earring (474)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>860000</td>
<td></td>
<td>bead type 6 (275, 276)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>860155</td>
<td>420</td>
<td>inlay (529)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>860203</td>
<td>420</td>
<td>bead type 6 (258)</td>
<td></td>
<td>fibula (211)</td>
<td>bead (233, 250, 266, 279, 532)</td>
<td>terracotta</td>
</tr>
<tr>
<td>860344</td>
<td>421</td>
<td>scarab (4)</td>
<td></td>
<td></td>
<td>fitting (931)</td>
<td></td>
</tr>
<tr>
<td>860217</td>
<td>430</td>
<td>inlay (531)</td>
<td>miniature jug (411)</td>
<td>needle (259)</td>
<td>bead (251, 267, 533)</td>
<td></td>
</tr>
<tr>
<td>Metrical unit</td>
<td>Trench</td>
<td>Amber</td>
<td>Gold</td>
<td>Bronze</td>
<td>Glass</td>
<td>Other materials</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>870081</td>
<td>560</td>
<td>inlay (526)</td>
<td></td>
<td>needle (281, 282) arm-ring (348, 349, 395) earring (493) coil (703)</td>
<td></td>
<td>ivory-hawk, terracotta head, alabastron</td>
</tr>
<tr>
<td>870104</td>
<td>562</td>
<td>bead type 7 (284)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>870119</td>
<td>562</td>
<td>bead type 2 (38, 39) bead type 4 (195)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>870199</td>
<td>570</td>
<td>bead type 2 (45)</td>
<td></td>
<td></td>
<td>bead (538, 680)</td>
<td></td>
</tr>
<tr>
<td>Metrical unit</td>
<td>Trench</td>
<td>Amber</td>
<td>Gold</td>
<td>Bronze</td>
<td>Glass</td>
<td>Other materials</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>870233</td>
<td>581</td>
<td>bead type 3 (86) bead type 6 (238) bead type 7 (278) pendant type 3 (312) pendant type 4 (318)</td>
<td>brooch – bird of prey (26) needle – bird of prey (28) pendant (81. 113. 145) bead (173, 179, 193, 194) needle (251) appliqué (329) sheet (464, 491, 559)</td>
<td>fibula (29, 30, 93, 158, 217) ring (646)</td>
<td>bead (195, 315, 489) pendant (728)</td>
<td>ivory</td>
</tr>
<tr>
<td>870246</td>
<td>581</td>
<td>bead type 1 (7, 8, 9, 10, 11, 12, 13, 14, 15, 16) bead type 2 (46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56) bead type 3 (65, 66, 67, 68, 69, 70, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96) bead type 4 (105, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 180, 189, 190, 197, 200, 201, 202, 203, 214) bead type 6 (241, 242, 243, 244, 261, 262) bead frgt. (294) pendant type 3 (300, 301, 302)</td>
<td>eye-plate (20) earring (230) needle (245) ring (261) appliqué (363, 364, 365) sheet (465, 490, 508, 560)</td>
<td>fibula (7, 14, 21, 24, 33, 34, 35, 36, 37, 38, 89, 90, 101, 102, 111, 127, 128, 129, 151, 159, 160, 161, 162, 163, 164, 165, 166, 194) arm-ring (444) finger-ring (672) bead (768) pendant (783, 795, 813) spiral roll (903) button (908) spout (933) sheet (962) fibula (D 1, D 2) bead (D 53)</td>
<td>bead (7, 51, 110, 111, 354, 358, 381, 417, 418, 452, 692)</td>
<td>2× faience scarabs, steatite scarab, faience amulet, ivory, terracotta</td>
</tr>
</tbody>
</table>
1.2 Construction phases of the Archaic sanctuary and contexts

<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>Amber</th>
<th>Gold</th>
<th>Bronze</th>
<th>Glass</th>
<th>Other materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metrical unit</td>
<td>Trench</td>
<td>Amber</td>
<td>Gold</td>
<td>Bronze</td>
<td>Glass</td>
<td>Other materials</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>870324</td>
<td>581</td>
<td>bead type 1 (29, 30) bead type 2 (42)</td>
<td>fibula (27, 57, 153)</td>
<td>bead (133, 186, 438)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>870349</td>
<td>581</td>
<td>bead type 2 (57) bead type 3 (75) bead type 5 (216) bead type 6 (251, 252, 274) bead type 7 (288, 289) spacer type 4–6 (416)</td>
<td>fibula (60, 96, 137) earring (596) bead (764)</td>
<td>bead (34, 254, 385, 482)</td>
<td>ivory</td>
<td></td>
</tr>
<tr>
<td>870352</td>
<td>581</td>
<td>human head (2, 3) bird-shaped protome (5) bead type 1 (28) bead type 2 (40, 41) bead type 3 (85, 103, 104) bead type 4 (110, 181, 182, 183, 184, 185) bead type 6 (217, 218, 236, 237, 249, 250, 253, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273) bead type 7 (277) pendant type 3 (313, 314) pendant type 5 (321, 322, 323, 324, 325, 326, 327, 328, 331, 335, 337, 338) spacer type 1 (350, 351) spacer type 2 (353) spacer type 3 (356) spacer type 4–6 (358, 359, 360, 361, 417) spacer type 7 (419, 420, 421, 422, 445, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472)</td>
<td>wire (420) sheet (955)</td>
<td></td>
<td>ivory</td>
<td></td>
</tr>
</tbody>
</table>
Metrical unit Trench | Amber | Gold | Bronze | Glass | Other materials
--- | --- | --- | --- | --- | ---
870352 | spacer type 8 (475, 485) fibula type 2 (491, 502) fibula type 3 (504, 506, 508, 511, 512, 513, 515, 516, 517, 519, 520, 522, 523) | | | | |
870353 | bead type 6 (235) pendant type 5 (320, 340, 344, 345) fibula type 3 (509) | sheet (483, 570) | fibula (61) miniature wheel (900) ring (D 33) | bead (65, 144, 145, 255, 301, 309, 365, 657, 684) | ivory, terracotta, faience scarab
870362 | pendant frgt. (315) | fibula (62) finger-ring (673) pendant (809) | | | ivory
870374 | bead type 2 (60) bead type 4 (178) | | | | |
870409 | pendant frgt. (316) | bead (204) needle (236) | ring (648) | | |
870272 | bead type 6 (263) | sheet (564) | | bead (117) | |
870298 | bead type 4 (210) bead type 6 (229, 230) | fibula (53) earring (605) | bead (59, 126, 127, 285, 355, 448, 465, 485) | ivory | |
870341 | bead type 2 (43) bead type 3 (77, 78, 79, 80) bead type 4 (111) bead type 6 (233, 234) bead type 7 (290, 291) pendant type 5 (332) spacer type 3 (355) | spiral roll (905) fibula (D 3) | | bead (64, 142, 683) | ivory
870348 | bead type 2 (44) bead type 3 (76) bead type 4 (112, 174, 175, 176, 198, 211) bead type 6 (231, 232, 254, 255) pendant type 3 (307) pendant type 5 (336) | sheet (569) | | bead (426) | |
<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>Amber</th>
<th>Gold</th>
<th>Bronze</th>
<th>Glass</th>
<th>Other materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>870354</td>
<td>582</td>
<td>bead type 2 (58, 59) bead type 4 (177) bead frgt. (295)</td>
<td></td>
<td></td>
<td></td>
<td>bead (367)</td>
</tr>
<tr>
<td>880000</td>
<td></td>
<td>bead type 1 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880128</td>
<td>583</td>
<td>inlay (525)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880170/880109</td>
<td>583</td>
<td>bead type 3 (83)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880443</td>
<td>583</td>
<td>bead type 2 (32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880594</td>
<td>583</td>
<td>pendant type 3 (308)</td>
<td></td>
<td></td>
<td></td>
<td>bird bowl</td>
</tr>
<tr>
<td>880807</td>
<td>583</td>
<td>bead type 5 (212) pendant type 4 (319)</td>
<td></td>
<td></td>
<td>pendant (784)</td>
<td></td>
</tr>
<tr>
<td>880822</td>
<td>583</td>
<td>pendant type 5 (329) appliqué (380)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880915</td>
<td>583</td>
<td>fibula type 3 (505)</td>
<td>fibula (195) pendant (800)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880943</td>
<td>583</td>
<td>bead type 6 (220) pendant type 3 (309) raw material (535)</td>
<td>fibula (196) handle bar (728) pendant (801)</td>
<td></td>
<td></td>
<td>ivory</td>
</tr>
<tr>
<td>880946</td>
<td>583</td>
<td>bead type 2 (31) bead type 6 (239, 240)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880947</td>
<td>583</td>
<td>bead type 6 (219) fibula type 3 (510)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880949</td>
<td>583</td>
<td>fibula type 2 (495)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880974</td>
<td>591</td>
<td>bead type 4 (186)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>892609</td>
<td>620</td>
<td>pendant type 5 (341, 343)</td>
<td></td>
<td></td>
<td>omphalos bowl (820)</td>
<td></td>
</tr>
</tbody>
</table>
Table: Metrical unit, Trench, Amber, Gold, Bronze, Glass, Other materials

<table>
<thead>
<tr>
<th>Metrical unit</th>
<th>Trench</th>
<th>Amber</th>
<th>Gold</th>
<th>Bronze</th>
<th>Glass</th>
<th>Other materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>892645</td>
<td>701</td>
<td>bead type 4 (187)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibula type 2 (496)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900380</td>
<td>771</td>
<td>pendant type 3 (310)</td>
<td>ring (265)</td>
<td>bead (550)</td>
<td></td>
<td>ivory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>frgt. (536, 537)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900402</td>
<td>771</td>
<td>bead type 2 (61)</td>
<td></td>
<td>fibula (143, 180, 181, 182)</td>
<td>bead (265, 495, 496, 552)</td>
<td>ivory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pendant type 2 (299)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900427</td>
<td>771</td>
<td>fibula type 2 (493)</td>
<td></td>
<td>fibula (D 31)</td>
<td>bead (70, 159, 191, 553, 554, 638, 701, 707)</td>
<td>ivory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibula (47)</td>
<td>ring (266)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sheet (673)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900434</td>
<td>771</td>
<td>bead type 2 (62)</td>
<td></td>
<td>fibula (9, 73)</td>
<td>bead (163, 164, 165, 166, 258)</td>
<td>pendant (736)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bead type 4 (179)</td>
<td>sheet (494)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900374</td>
<td>772</td>
<td>bead frgt. (296)</td>
<td></td>
<td>fibula (15)</td>
<td>bead (27, 68, 361, 548)</td>
<td>ivory, terracotta-hand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pendant frgt. (349)</td>
<td>wire (418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>frgt. (380, 492)</td>
<td></td>
<td>fibula (380, 492)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900486</td>
<td>772</td>
<td>bead type 7 (292, 293)</td>
<td></td>
<td>bead (259)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spacer 4–6 (357)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>frgt. (539)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901329</td>
<td>772</td>
<td>pendant type 1 (298)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>910496</td>
<td>900</td>
<td>bead type 3 (81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bead type 4 (199)</td>
<td>sheet (677)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>910584</td>
<td>913</td>
<td>bead type 3 (82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sheet (446)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>earring (505, 506, 507)</td>
<td></td>
<td>bead (207, 308, 573, 654)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>910611</td>
<td>940</td>
<td>inlay (530)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>appliqué (302)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930672</td>
<td>1020</td>
<td>inlay (532)</td>
<td></td>
<td></td>
<td></td>
<td>ivory astragalus</td>
</tr>
<tr>
<td>Metrical unit</td>
<td>Trench</td>
<td>Amber</td>
<td>Gold</td>
<td>Bronze</td>
<td>Glass</td>
<td>Other materials</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>930697</td>
<td>1020</td>
<td>bead type 4 (188)</td>
<td></td>
<td></td>
<td>bead (593)</td>
<td></td>
</tr>
<tr>
<td>930984</td>
<td>1020</td>
<td>bead type 5 (213)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>931010</td>
<td>1020</td>
<td>bead type 6 (259)</td>
<td></td>
<td></td>
<td>bead (449, 596)</td>
<td></td>
</tr>
<tr>
<td>931107</td>
<td>1020</td>
<td>fibula type 2 (492)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>931289</td>
<td>1020</td>
<td>bead type 2 (63)</td>
<td>fibula (190)</td>
<td></td>
<td>bead (388, 597, 670)</td>
<td></td>
</tr>
<tr>
<td>940110</td>
<td>1022</td>
<td>bead type 6 (260)</td>
<td></td>
<td></td>
<td>bead (612)</td>
<td>bird bowl</td>
</tr>
<tr>
<td>940135</td>
<td>1022</td>
<td>pendant type 5 (339)</td>
<td>sheet (485)</td>
<td></td>
<td>bead (619)</td>
<td></td>
</tr>
<tr>
<td>940242</td>
<td>1023</td>
<td>bead type 2 (64)</td>
<td>appliqué (354, 355)</td>
<td></td>
<td>bead (498, 623)</td>
<td></td>
</tr>
<tr>
<td>940268</td>
<td>1023</td>
<td>inlay (533)</td>
<td></td>
<td></td>
<td>bead (631, 675)</td>
<td></td>
</tr>
<tr>
<td>940014</td>
<td>1032</td>
<td>pendant type 3 (311)</td>
<td></td>
<td></td>
<td></td>
<td>ivory, scarab</td>
</tr>
<tr>
<td>940146</td>
<td>1036</td>
<td>spacer type 8 (474)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>940085</td>
<td>1038</td>
<td>bead type 3 (84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Concordance list: locations and amber finds (A. M. Pülz)

<table>
<thead>
<tr>
<th>Location – Areas</th>
<th>Figural</th>
<th>Bead</th>
<th>Pendant</th>
<th>Spacer</th>
<th>Fibula</th>
<th>Inlay</th>
<th>Needle head</th>
<th>Raw material</th>
<th>Indefinable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Basis D</td>
<td>cat. 4</td>
<td>cat. 38, 39, 45, 195, 256–258, 284</td>
<td></td>
<td></td>
<td>cat. 526, 529</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Basis B</td>
<td>cat. 64, 84, 260</td>
<td>cat. 311, 339</td>
<td></td>
<td>cat. 474</td>
<td>cat. 533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Eastern Sekos</td>
<td>cat. 63, 82, 188, 213, 259</td>
<td></td>
<td></td>
<td>cat. 492</td>
<td>cat. 532</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Western Sekos</td>
<td>cat. 61, 62, 81, 113, 179, 199, 292, 293, 296</td>
<td>cat. 298, 299, 310, 349</td>
<td></td>
<td>cat. 493</td>
<td>cat. 530</td>
<td></td>
<td></td>
<td></td>
<td>cat. 536, 537, 539</td>
</tr>
<tr>
<td>Western Peristasis of Dipteros 1</td>
<td>cat. 187</td>
<td></td>
<td></td>
<td>cat. 496</td>
<td>cat. 524, 528, 531</td>
<td>cat. 534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Temple Fore-court</td>
<td>cat. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Temple Fore-court</td>
<td>cat. 186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stray finds</td>
<td>cat. 6</td>
<td>cat. 275, 276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cat. 490</td>
</tr>
</tbody>
</table>
There are several reasons why it is difficult to acquire an overview of the research situation on the early Artemision. The excavation of the Early Archaic structures spanned a period of 90 years from 1904 to 1994; with long interruptions in between. Until 2002, there existed no phase plan of the Artemision that included the structures from all excavation periods. The numerous preliminary reports deal with individual areas, buildings or partial aspects. They reflect constantly changing levels of knowledge and new hypotheses and use designations that changed several times. There are structures that appear in the archaeological literature under seven different names, although they designate the same architectural element. Appendix 1 compiles all the terms that have been used over time for those structures and layers that are discussed in this volume. This concordance table should make it easier for readers to make the connection with previous publications and preliminary reports on the Artemision excavation.

A particularly complex structure that plays an important role in research on the Early Archaic Artemision is the so-called Central Basis. This is a term introduced by D. G. Hogarth and A. E. Henderson in 1908 to describe an excavation area in the centre of the sanctuary. Originally conceived as a provisional term, this name has been widely adopted in scholarly literature (Appendix 1). However, the Central Basis is not itself a temple. Rather, it consists of several structures originally belonging to different buildings: Naos 1, Naos 1a, Naos 2, Sekos 1, Sekos 2 and Dipteros 1, all dating from the Archaic period (pls. 3, 1–4, 1).

1.2.1 Naos 1

Naos 1 is the earliest known stone building in the sanctuary and the first traceable temple of Artemis (pls. 3, 2; 4; 5, 1; plans 4–7). It was built between 660 and 640 BC. The rectangular cella, measuring 6.3 × 11.1 m opened to the west. It was surrounded by 8 × 4 wooden columns on green schist bases, most of which were still encountered in situ during the excavation (pls. 3, 2; 4, 1; plan 4). Naos 1 is among the earliest Greek temples with a peristasis. The double-skin walls of the cella were built of marly limestone slabs, the lower layers of which are still preserved.

Inside Naos 1 there were two rows of wooden columns, of which six round bases of green schist were excavated. Presumably there were two more columns in the western part just behind the entrance; these were built over later by the so-called Large Western Basis of Sekos 2 and it was therefore impossible to uncover them. The shape of the roof is unknown. In the central axis of the cella, slightly shifted to the east, was an elongated rectangular basis of marly limestone slabs measuring 1.75 × 3.95 m. The edges of this so-called Rectangular Basis overlapped the inner edges of the column bases. The basis was therefore erected later, but probably shortly after the inner rows of columns. Both were used at the same time. The function of this Rectangular Basis has been variously interpreted as the location of the cult image, as an altar and finally, as a combination of both. Naos 1 was probably destroyed by heavy flooding.
Amber finds in the floor of Naos 1 (?)

A few amber objects (3 items) were found at the level of the floor of Naos 1 (plans 5 a–b; 7; 10 below), which may be the oldest find context of amber jewellery from the Artemision. However, it is conceivable that these few pieces actually belonged to the so-called Hoard under the floor of Naos 1a, which was deposited on the floor surface of the previous Naos 1 (see below). Since Naos 1 had probably been damaged by a flood, the floor had also been damaged. It is therefore impossible that parts of the hoard came to lie deeper in cavities in the original floor.

The floor surface of Naos 1 was at –0.90 m. The floor was up to 0.20 m thick and consisted of several layers of different, colour-differentiated materials. Under a layer of clay – the floor covering used as walking level – followed a white (lime?) layer only a few centimetres thick; below that a likewise thin reddish or yellow layer; and then, even deeper, a thick package of alternating black ash and yellow-brown clay layers. The individual layers of this subfloor were thin and each was made of special material intended to provide either a smooth, even surface (clay, lime) or an insulation against soil moisture (ash and charcoal). None of the thin layers consisted of debris with objects that would have disturbed the intended qualities. Therefore, it is unlikely that objects of amber or other material were deliberately deposited within the floor layers. Rather, the three amber objects were deposited after the flood damage of Naos 1 in shallow potholes and originally belonged to the large amber hoard in the filling under the floor of Naos 1a. The metrical excavation unit 870362 (plans 7. 10 below), containing the fragment of an amber pendant (cat. 315) as well as a bronze fibula, a bronze finger ring and a bronze pendant, is located in the clay layer of the subfloor at a level between –0.92 m TL (top level) and –0.98 m BL (bottom level).

From a height between –1.17 m TL and –1.18 m BL and thus, at least according to the height data, still below the ashy layers of the subfloor, was unit 870374 (plans 5 b; 10 below) with two amber finds: a ring-shaped bead of type 2 (cat. 60) and a cylindrical bead of type 4 (cat. 178).

1.2.2 Naos 1a: an unfinished (?) reconstruction of Naos 1

The first temple of Artemis, Naos 1, was always threatened by flooding due to its location in the estuary of a river. This was probably the cause of the damage that necessitated repairs to the masonry. During a fundamental renovation, an attempt was made to overcome the problem of flooding by raising the floor level both outside and inside. A retaining wall was built around the outside of the cella wall – the so-called Collateral Wall; it was as low as a step or a bench and was perhaps used to place votive offerings on it. The column bases were raised by placing them on hypocaust-like stacks of slabs of marly and of blue limestone, as well as reused green schist bases. It is doubtful whether this building – called Naos 1a (plan 4) – was completed, since

\[\text{Bammer 1990, 142 pl. 17 b; Bammer 2005, 182–186 fig. 1 (»Postamente«); Kerschner – Prochaska 2011, 83. A misleading impression is given by the schematic reconstruction drawing Bammer 2008a, 248 fig. 207 with ashlars placed on edge between the older, lower bases and the younger, upper bases. Such ashlars do not exist. This reconstruction is strongly reminiscent of a blind façade of the Roman Imperial period.} \]

\[\text{For the completion: Bammer 2008a, 244. Skeptical on this: Weiβl 2002, 326; Kerschner – Prochaska 2011, 83.} \]

\[\text{Bammer 2008a, 248 fig. 2 presented a schematic reconstruction of a hypothetical »2nd peripteros«, which combines} \]
this construction seems quite unstable. In any case, the reconstruction did not last long and was soon replaced by Naos 2. Consequently, this reconstruction is only counted as a subphase here.

Just like outside, the level was also raised on the inside: the surface of the new floor was at the level of approx. –0.72 m and thus about 20 cm higher than the previous floor of Naos 1 (plans 4–7). In the north-eastern part of the cella, it was a little higher at about –0.68 m. The floor of Naos 1a was preserved in the west, north and north-east of the cella. The clay floor itself had a total height of approx. 13 cm (TL of –0.68/0.73 m and a BL of –0.81 m) and consisted of a thin surface covering and a subfloor beneath. Along the north side, marly limestone slabs were laid in it.

In the middle of the cella, the clay floor of Naos 1a ran up against the old Rectangular Basis, which continued to be used (plans 5–6). Due to the raising of the floor, the visible upper part of this basis was now about 20 cm lower than before, but still more than 0.25 m high. The original height of the basis is unknown, as its original surface has not been preserved.

A major change in the cella was the abandonment of the interior columns that were originally located along the long sides of the Rectangular Basis and divided the room into three naves. The floor of Naos 1a covered the round bases of green schist (plans 5, 7). They can therefore no longer have supported wooden pillars. The cella was now one interior without subdivision of about 6.30 m width.

The Hoard under the floor of Naos 1a

The so-called Hoard (»Hortfund«) lay under the floor covering of Naos 1a (pl. 4, 2; plans 4; 5 b; 6–7). It was placed on the floor of its predecessor, Naos 1, and then covered with a filling on top of which a new floor was laid. In the subfloor of Naos 1a many small amber objects were found in the metrical excavation units 870272, 870298, 870245, 870246, 80249, 870281 (plan 9 below) as well as three fragments of a Phrygian omphalos bowl made of clay 870249.1. This was an elements from different construction phases: the raised column bases of Naos 1a are combined with the collateral wall of Naos 2. The cella is reconstructed hypaethral with a canopy over the Rectangular Basis, which, however, cannot have existed because the inner column bases were covered by the clay floor of Naos 1a (and also by the floor of Naos 2).

A. Bammer described the upper floor, but could not assign it to any of the construction phases he reconstructed. This floor remains without function in his phase sequence, while on the other hand Bammer’s »elevated peripteros« or »zwei peripteros« (which roughly corresponds to Naos 1a) remains without a floor of its own. Cf. Bammer 2005, 123: »Von einem Boden, welcher im Inneren der Cella der Erhöhung der Peristasis außen entsprechen würde, ist nicht[s] zu sehen, auch keine Ansatzspuren an den Cellainnenwänden. Es erscheint daher sehr fraglich, ob im Innen- der Cellaboden überhaupt jemals erhöht wurde.«

This floor was either not completely horizontal, or it was preserved at a slightly different height when it was excavated. This reported elevation measurements vary between –0.68 m in the north-east of the cella (Bammer 1988b, 7 fgs. 5–6; Kerschner 2005, 136 fig. 9) and –0–72 m, –0–72.5 m as well as –0–73 m for the west and north side of the cella (Bammer 2005, 212).

Bammer 2005, 212 stated that the floor is about 8–10 cm thick.

Bammer 2005, 212.

The best-preserved part of the Rectangular Basis is under the west wall of the Green Schist Basis, for which it serves as a foundation see pls. 4, 2; 5, 1; plan 6; cf. Kerschner – Prochaska 2011, 79 f. figs. 6–8; different, Bammer 2005, 197.

This rules out the assumption in Bammer 2005, 219: »... daß der Baldachin [= die Innenstützen] überhaupt erst in dieser Bauphase mit einem rechteckigen Sockel in Zusammenhang mit der Erhöhung der Peristasis errichtet wurde, scheint möglich.«

For the exact dimensions: Bammer 2005, 189 f. fig. 2.

Kerschner 2005, 126 f. figs. 1–3.
irreversible deposition which had preservative intention\(^{46}\). The Hoard, with numerous objects made of precious materials, among which the amber girdle was the most representative single piece (see A. Naso, chap. 5.6), can most probably be interpreted as a building sacrifice deposited in connection with construction phase Naos 1a around 650–640 BC\(^{47}\). The Hoard thus belonged to an older construction phase than the so-called Foundation Deposit (found by D. G. Hogarth; see below), which was deposited in the so-called Green Schist Basis as a building sacrifice for the subsequent temple Naos 2.

A total of 202 amber objects derived from this clay subfloor: unit 870272 (plans 6. 9 below) from a level of –0.76 m BL contained a gold sheet\(^{48}\) and a glass bead\(^{49}\), in addition to a biconical amber bead of type 6 (cat. 263). At the level between –0.72 m TL and –0.78 m BL derived 870243 (plans 5 b; 9 below), which contained 40 glass beads\(^{50}\) and a glass bird pendant\(^{51}\), in addition to a single globular amber bead of type 1 (cat. 21).

From 870246 (plans 7. 9 below) came 141 amber finds: 10 globular beads of type 1 (cat. 7–16), 11 ring-shaped beads of type 2 (cat. 46–56), 16 disc-shaped beads of type 3 (cat. 65–70. 87–96), 34 cylindrical beads of type 4 (cat. 105. 114–137. 180. 189. 190. 197. 200–203. 214), 6 biconical beads of type 6 (cat. 241–244. 261. 262), one bead fragment (cat. 294), 3 bulla-shaped pendants of type 3 (cat. 300–302), 27 bird-like spacers of type 4–6 (cat. 362–388), 19 triangle-shaped spacers of type 7 (cat. 423–441), 10 round spacers of type 8 (cat. 476–482. 486–488), one fibula of type 1 (cat. 489), one fibula of type 2 (cat. 494), one inlay (cat. 527) and one broken fragment that cannot be identified (cat. 538). This metrical excavation unit as part of the subfloor of Naos 1a\(^{52}\) also contained 11 gold finds (eye plate\(^{53}\), earring\(^{54}\), needle\(^{55}\), ring\(^{56}\), appliqués\(^{57}\), sheet metal\(^{58}\)), 28 bronze fibulae\(^{59}\), as well as 10 further objects made of bronze (arm-ring\(^{60}\), finger ring\(^{61}\), pendant\(^{62}\), spiral scroll\(^{63}\), button\(^{64}\), spout\(^{65}\), sheet\(^{66}\)), 3 objects made of white metal alloys (fibulae\(^{67}\), bead\(^{68}\)).

\(^{47}\) Contrary to the previous assignment of this hoard to Naos 2, which was based on an older state of elaboration of the stratigraphy – Kerschner 2017, 47 fig. 10; Kerschner – Konuk 2020, 125 f. The observation that »this hoard had been deposited on the floor of Naos 1« (Kerschner – Konuk 2020, 125) remains true.

\(^{48}\) Pülz 2009, cat. 564.

\(^{49}\) Pulsinger – Pülz (in preparation), cat. 117.

\(^{51}\) Pulsinger – Pülz (in preparation), cat. 729.

\(^{52}\) Level of the metrical spit: TL –0.71 m, BL –0.78 m.

\(^{53}\) Pülz 2009, cat. 20.

\(^{54}\) Pülz 2009, cat. 230.

\(^{55}\) Pülz 2009, cat. 245.

\(^{56}\) Pülz 2009, cat. 261.

\(^{57}\) Pülz 2009, cat. 363–365.

\(^{58}\) Pülz 2009, cat. 465. 490. 508. 560.

\(^{60}\) Klebinder-Gauß 2007, cat. 444.

\(^{61}\) Klebinder-Gauß 2007, cat. 672.

\(^{63}\) Klebinder-Gauß 2007, cat. 903.

\(^{64}\) Klebinder-Gauß 2007, cat. 908.

\(^{65}\) Klebinder-Gauß 2007, cat. 933.

\(^{66}\) Klebinder-Gauß 2007, cat. 962.

\(^{68}\) Klebinder-Gauß 2007, cat. D 53.
and 11 glass beads69, 2 scarabs70 and an amulet depicting a horse (?) made of faience71, another scarab made of steatite72, an ivory73 and a terracotta.

The metrical spit below 870281 (plans 7. 9 below), with the bottom level of –0.82 m, contained material from both the subfloor and the fill below. It comprised 61 amber finds: 6 globular beads of type 1 (cat. 22–27), 3 ring shaped beads of type 2 (cat. 35–37), 5 disc-shaped beads of type 3 (cat. 72–74. 101. 102), 7 cylindrical beads of type 4 (cat. 109. 171–173. 196. 208. 209), 9 biconical beads of type 6 (cat. 223–228. 246–248), 5 square beads of type 7 (cat. 109. 171–173. 196. 208. 209), one bulla-shaped pendant of type 3 (cat. 306), 2 fruit-shaped pendants of type 5 (cat. 330. 342), 2 pendant fragments (cat. 317. 348), one individual spacer of type 3 (cat. 354), 9 bird-like spacers of type 4–6 (cat. 407–415), 4 triangle-shaped spacers of type 7 (cat. 418. 451–453), one round spacer of type 8 (cat. 484), one fibula of type 2 (cat. 501) and 5 fibulae of type 3 (cat. 503. 507. 514. 518. 521).

In addition, 870281 contained 3 gold objects (pendant74, bead75, sheet76), 11 bronze finds (fibulae77, ring78, finger ring79, beads80), one white metal alloy bead81, 16 glass beads82 and a faience statuette of the god Bes83.

Further amber objects (144 pieces) and other small-format votives were found in the fill below the subfloor of Naos 1a which has a top level of –0.81 m and a bottom level of –0.90 m (plan 10 above). This fill lies directly on the floor of Naos 1. It includes metrical unit 870324 (–0.83 m TL to –0.88 m BL; plans 5 b; 10 above) with 3 amber finds (2 globular beads of type 1: cat. 29. 30; one ring-shaped bead of type 2: cat. 42) as well as 3 bronze fibulae84 and 3 glass beads85.

From a level between –0.78 m TL and –0.86 m BL derived 870341 (plans 6. 10 above), which contained 12 amber pieces: a ring-shaped bead of type 2 (cat. 43), 4 disc-shaped beads of type 3 (cat. 77–80), a cylindrical bead of type 4 (cat. 111), 2 biconical beads of type 6 (cat. 233. 234), 2 square beads of type 7 (cat. 290. 291), a fruit-shaped pendant of type 5 (cat. 332) and an individually designed spacer of type 3 (cat. 355). In addition, this metrical unit included a bronze spiral scroll86, a white metal alloy fibula87 and 3 glass beads88.

In the northern part of the central area of Naos 1a, at a level of –0.78 m TL and –0.86 m BL was unit 870348 (plan 10 above) with 14 ambers: one ring-shaped bead of type 2 (cat. 44), one disc-shaped bead of type 3 (cat. 76), 6 cylindrical beads of type 4 (cat. 112. 174–176. 198. 211), 4 biconical beads of type 6 (cat. 231. 232. 254. 255), a bulla-shaped pendant of type 3 (cat. 307)

69 Pulsinger – Pülz (in preparation), cat. 7. 51. 110. 111. 354. 358. 381. 417. 418. 452. 692.
70 G. Höbl in: Seipel 2008, 207. 209 cat. 226. 229: 2nd half of the 8th/beginning of the 7th cent. BC.
71 G. Höbl in: Seipel 2008, 203 cat. 214: probably late 8th cent. BC.
72 On the scarabs and the amulet made of faience see Höbl 1993, 236 fig. 1, 1. 2. 6 pl. 20, 1. 2. – Scarabs made of steatite: G. Höbl in: Seipel 2008, 207 cat. 225: 10th–8th cent. BC.
73 D. Tüzün in: Seipel 2008, 176. 180 cat. 132. 140: mid 7th and 7th cent. BC.
74 Pütz 2009, cat. 59.
75 Pütz 2009, cat. 172.
76 Pütz 2009, cat. 565.
77 Klebinder-Gauß 2007, cat. 8. 50–52. 86. 135. 170. 171.
78 Klebinder-Gauß 2007, cat. 658.
79 Klebinder-Gauß 2007, cat. 662.
80 Klebinder-Gauß 2007, cat. 763. 771.
81 Klebinder-Gauß 2007, cat. D 54.
84 Klebinder-Gauß 2007, cat. 27. 57. 153.
85 Pulsinger – Pütz (in preparation), cat. 133. 186. 438.
86 Klebinder-Gauß 2007, cat. 905.
88 Pulsinger – Pütz (in preparation), cat. 64. 142. 683.
89 Trench 582.
and a fruit-shaped pendant of type 5 (cat. 336). In addition, this metrical unit contained a gold sheet90 and a glass bead91.

870349 (plan 10 above), from the metrical spit between –0.88 m TL and –0.92 m BL, included 9 amber objects: a ring-shaped bead of type 2 (cat. 57), a disc-shaped bead of type 3 (cat. 75), a conical bead of type 5 (cat. 216), 3 biconical beads of type 6 (cat. 251. 252. 274), 2 square beads of type 7 (cat. 288. 289) and a bird-like spacer of type 4–6 (cat. 416) as well as 3 bronze fibulae92, a bronze earring93, a bronze bead94 and 4 glass beads95.

From a metrical spit between –0.86 m TL and –0.95 m BL96 were the metrical units 870352 and 870353 (plans 7, 10 above). This metrical spit crosses the boundary of two stratigraphic layers: it contained material from both the fill of Naos 1a and the floor of Naos 1. However, since we have seen that the fill is rich in small finds, while no finds can be assigned with certainty to the floor of Naos 1, it is likely that these artefacts also come from the upper part of the unit which belonged to the fill of Naos 1a. 870352 contained 96 amber finds: 2 heads (cat. 2. 3), one bird-shaped protome (cat. 5), one globular bead of type 1 (cat. 28), 2 ring-shaped beads of type 2 (cat. 40. 41), 3 disc-shaped beads of type 3 (cat. 85. 103. 104), 6 cylindrical beads of type 4 (cat. 110. 181–185), 17 biconical beads of type 6 (cat. 217. 218. 236. 237. 249. 250. 253. 264–273), one square bead of type 7 (cat. 277), 2 bulla-shaped pendants of type 3 (cat. 313. 314), 12 fruit-shaped pendants of type 5 (cat. 321–328. 331. 335. 337. 338), 2 triangular spacers of type 1 (cat. 350. 351), one rectangular spacer of type 2 (cat. 353), one indvidually designed spacer of type 3 (cat. 356), 5 bird-like spacers of type 4–6 (cat. 358–361. 417), 23 triangle-shaped spacers of type 7 (cat. 419–422. 454–472), 2 round spacers of type 8 (cat. 475. 485), 2 fibulae of type 2 (cat. 491. 502) and 13 fibulae of type 3 (cat. 504. 506. 508. 511–513. 515–517. 519. 520. 522. 523). Within this metrical unit were also a gold wire97, a bronze sheet98 and ivory99.

In unit 870353, 1 m further east but on the same level, were 6 ambers: a biconical bead of type 6 (cat. 235), 4 fruit-shaped pendants of type 5 (cat. 320. 340. 344. 345) and a fibula of type 3 (cat. 509) together with 2 gold sheets100, 2 bronze finds (fibula101, miniature wheel102), a white metal alloy ring103 as well as 9 glass beads104, a terracotta105 and a faience scarab106.

From the area south of the Rectangular Basis and therefore most likely not associated with the Hoard, came 870298 (plans 5 a; 9 below) with a bottom level of –0.76 m. This metrical unit contained a total of 3 amber finds: a cylindrical bead of type 4 (cat. 210) and 2 biconical beads of type 6 (cat. 229. 230). Furthermore, a bronze fibula and a bronze earring as well as 8 glass beads were found. Another metrical spit at a level between –0.86 m TL and –0.95 m BL – albeit not part of the Hoard because of its location – contained material from the metrical unit 870354 (plans 5 a; 10

90 Pülp 2009, cat. 569.

91 Pulsinger – Pülp (in preparation), cat. 426.

92 Klebinder-Gauß 2007, cat. 60. 96. 137.

93 Klebinder-Gauß 2007, cat. 596.

94 Klebinder-Gauß 2007, cat. 764.

95 Pulsinger – Pülp (in preparation), cat. 34. 254. 385. 482.

96 Correction by M. Weißl (older information in the diary: »zwischen –0,88 m OK und –0,92 m UK«).

97 Pülp 2009, cat. 420. When classifying individual finds such as the gold wire, a specific factor of uncertainty of the elutriation process must be taken into account, as digging with coarse equipment may have resulted in isolated finds being placed in the wrong boxes: cf. Kerschner – Konuk 2020, 158 f. figs. 37–38.

98 Klebinder-Gauß 2007, cat. 955.

100 Pülp 2009, cat. 483. 570.

101 Klebinder-Gauß 2007, cat. 61.

103 Klebinder-Gauß 2007, cat. D 33.

104 Pulsinger – Pülp (in preparation), cat. 65. 144. 145. 255. 301. 309. 365. 657. 684.

105 G. Güney-von Graeve in: Seipel 2008, 217 cat. 273: 2nd half of the 7th cent. BC.

106 Höbl 1993, fig. 1, 5.
above), which included a total of 4 amber objects: 2 ring-shaped beads of type 2 (cat. 58, 59), a cylindrical bead of type 4 (cat. 177) and a bead fragment (cat. 295). In addition, there was a glass bead.107

With about 344 individual objects, the Hoard represents the largest single complex of amber objects in the Artemision. Apart from the amber finds, it contained – as already mentioned above – gold and bronze jewellery, glass beads, faience and a Phrygian omphalos bowl made of clay, the latter being unique in Ionia.108

The Hoard was not recognised immediately during the excavation, but only afterwards during wet-sifting, when it was noticed that certain metrical excavation units included an unusually high number of small objects made of valuable material, especially amber (plans 3; 5 b–7; 9 below; 10 above). Only a few individual amber artefacts of larger size were noticed during excavation, and their findspot was precisely measured.109

The reason why the deposit was not recognised in situ was the excavation method mentioned above: in order to clarify the architectural contexts more quickly,110 several workers, working side by side, chopped up the soil with big hoes (pls. 1, 2; 2, 1). The soil broke up into clods and lumps, which were shovelled into wheelbarrows and transported to the margins of the excavation area, where they were temporarily stored in piles and then separated according to the metrical excavation units (pl. 2, 2). Finally, the soil was crushed and wet-sifted through a fine-meshed sieve, whereby the majority of the particularly small artefacts – including many of the amber objects – came to light. In most cases therefore, no precise location of an individual find can be given, but only the metrical excavation unit in which it was found, as visualised in plans 3–7 and 9–10. Rarely were layers observed during the excavation and no plans were drawn. For this reason, pits were usually only recognised when they appeared by chance in the profile. The same applies to concentrations of very small finds (which include the amber beads and the electrum coins).

The idea that the particularly numerous amber objects from the north-eastern part of Naos 1a must have belonged to a »Hortfund« (Hoard) was already formulated by A. Bammer in the first preliminary report.112 It offers a convincing explanation for the accumulation of so many, mostly similar amber artefacts in connection with other small finds of valuable materials in this area of Naos 1a. It is likely that this intentional deposition was part of a foundation sacrifice, as in the case of the two hoards of valuable votives in the subsequent temple, Naos 2 – the Foundation Deposit in the Green Schist Basis and the Pot Hoard in the south-west corner of the cella.113

In later publications, Bammer distanced himself from his original hypothesis of an intentional deposition: he interpreted the filling layer in which the objects were found as a »Schwemmenschicht« (alluvial layer) due to its sandy texture. According to this altered hypothesis, the small finds were not deliberately deposited, but rather transported there with the floods (»mit der Über-schwemmung«). He nevertheless retained the original name »hoard finds« without noticing that this contradicts the flood hypothesis, since finds that were washed away by the chaotic natural force of a flood cannot reassemble by accident as a closed hoard. The force of the water masses

111 Cf. Kerschner – Konuk 2020, 155–162 A.
112 Bammer 1988b, 22: »An der Nordseite der Rechteckbasis dagegen wurde ein in situ befindlicher Hortfund geborgen. Dieser wurde in den Kisten K 235, 246, 247, 335, 271, 307, 340 untergebracht.« The wording in situ is misleading in that the find was not recognised in situ, but only when it had already been dug away with the soil material. Cf. Bammer 1990, 150.
114 Bammer 2004, 72.
115 Bammer 2004, 72 fig. 3; cf. Bammer 2001a, 11 f. 22 fig. 3.
that obviously damaged Naos 1 would undoubtedly have ruptured the amber belt and washed away the feather-light beads. They would then not have been found gathered in one place, but rather scattered over a wide area116. Since this is not the case, the find situation clearly speaks for an intentional deposit117.

Since the Hoard was not recognised in situ and therefore was not excavated as a unit but in bits and pieces, it can only be reconstructed retrospectively. The conspicuously high concentration of amber objects in the north-eastern area of Naos 1a is shown in plans 3–7, 9 below and 10 above. Since the finds from wet-sifting can only be localised per se by metrical excavation units, the result is a »pixelated« picture consisting of the rectangles of the excavation grid. The exact demarcation of the Hoard cannot be recovered either in the horizontal nor in the vertical dimension118. However, there is a clear focus of the Hoard along the north and east side of the old Rectangular Basis of Naos 1, the lower part of which was backfilled to a height of 20 cm when the ground was raised for the floor of Naos 1a.

\subsection*{1.2.3 Naos 2}

Naos 2 was built shortly after a damage of Naos 1a, around 640–620 BC119. Naos 2 was a major reconstruction of the temple which rebuilt and reused the cella walls, but changed the layout of both the interior and the exterior (pls. 2. 4. 5. 1; plan 9 above). The peristasis that was raised in Naos 1a was eventually abandoned. The Collateral Wall continued to be used. The floor inside was raised by 0.3 m and the outside level was also raised accordingly in order to prevent future flooding (plans 5–7). The building was probably roofed120.

The interior of Naos 2 was also remodelled: the Rectangular Basis of Naos 1 was abandoned and replaced by the larger Green Schist Basis in the east of the cella and the so-called Small Western Basis made of marly limestone slabs in front of it. The Green Schist Basis was presumably the location of the xoanon, the wooden cult image of Artemis, while the Small Western Basis was used as an offering table. In a later construction phase, the Large Western Basis of Sekos 1, which is at a higher level, was added to the western long side of the Small Western Basis (pl. 3, 2; plan 5 a). The lowest stone layer of the small basis lay in the so-called Rammed Earth Layer. This is how D. G. Hogarth described the filling under the floor of Naos 2212. Both bases, the Green Schist Basis and the Small Western Basis, were connected by a narrow strip that was formerly the surface of the western section of the old Rectangular Basis of Naos 1 (labelled »T-foundation« by Hogarth; pl. 3, 1; cf. plan 5 a).

The Green Schist Basis, measuring 4.32 × 2.86 m, was free-standing, separated from the cella walls by a narrow corridor: 0.33 m to the north and south and a slightly wider one to the east.

116 Kerschner 2005, 137 n. 72; Kerschner – Prochaska 2011, 84. Another contradiction is that Bammer 1988b, 7 describes the compact Rammed Earth Layer as »reinen Flußsand« which is »weitgehend fundfrei«. Later, Bammer 2004, 72 describes the same layer as »voller Kleinfunde, welche mit der Überschwemmung dorthin gelangten«.

117 Cf. Weikart 2002, 125.

118 Bammer 1990, 150 assumes: »Hogarth may therefore have scraped the top of the amber hoard.« Individual amber objects, however, were also found in other places inside Naos 2 in the Rammed Earth Layer. Since the Hoard can only be roughly delimited, a possible connection with finds from the Hogarth excavation can no longer be verified.

120 An Early Archaic terracotta roof (Schädler – Schneider 2004) deposited in the backfilled riverbed around 600 BC possibly belonged to Naos 2, but it is also possible that it covered a roofed porch of Sekos 1; cf. Ohnesorg 2007b, 156 f. For a detailed discussion see Kerschner (in print).

212 Hogarth 1908c, 42. 45; Smith 1908, 169. Cf. Kerschner – Prochaska 2011, 83 f.; Kerschner 2020, 223–225 fig. 18; Kerschner – Konuk 2020, 124–128 fig. 12 (with a list of the different designations of this layer in the older literature).
STRATIGRAPHY AND CONTEXT OF THE AMBER FINDS

The inner filling of the Green Schist Basis was contemporaneous with its walls. It consisted of marly limestone slabs, some reused green schist blocks with clayey sand in between: in this inner filling D. G. Hogarth discovered the so-called Foundation Deposit, consisting of 800 to 1,000 small finds that were carefully embedded in the sand (plan 9 above, labelled with X). Among them were 120 amber objects (cat. 540–659) as well as 24 electrum coins. This was an intentional deposit, probably connected with the construction of Naos 2 around 640–620 BC which is the terminus ante quem for the deposited objects.

The floor of Naos 2 consisted of alternating layers of ash and clay (as in Naos 1). The filling beneath the floor was called »rammed earth layer« by D. G. Hogarth, who excavated the northern and western areas of the cella down to the bottom of the Green Schist Basis and in some places even deeper. This Rammed Earth Layer covered the upper part of the Rectangular Basis of Naos 1/Naos 1a up to its surface, which remained visible and served as a connection between the Green Schist Basis and the Small Western Basis. It was in this stratum that the so-called Pot Hoard was found in 1905: consisting of 17 electrum coins in a jug and a further 5 coins outside of it (pl. 5, 2). The typological dating of the jug by D. Williams points to the third quarter of the 7th century BC.

A. Bammer excavated the remaining parts of the Rammed Earth Layer in the east and south of Naos 2 in 1987. Based on diagnostic pottery fragments, this layer can be roughly dated to the second half of the 7th century. Since the subsequent temple Sekos 1 was built in the last quarter of the 7th century BC, Naos 2 must have been built earlier, i.e. between 640 and 620 BC. Therefore, the stratigraphic sequence supports the typological dating of the Pot Hoard jug by D. Williams.

AMBER OBJECTS FROM THE RAMMED EARTH LAYER UNDER THE FLOOR OF NAOS 2

More, but scattered finds of amber objects came from the compact Rammed Earth Layer (see above). This layer was placed over the floor of the previous Naos 1a during the construction of Naos 2 in order to raise the level within the reused and renewed cella walls. In this way, the temple rebuilt as Naos 2 on a modified ground plan was better protected against flooding.

The lower edge of the Rammed Earth Layer was at –0.68/–0.73 m (plans 5–7). The finds (a total of 149 amber objects) from this layer (see below) thus have a terminus ante quem between 640 and 620 BC.

The metrical unit 870232 (plans 7, 9 above) between –0.66 m TL and –0.72 m BL had a total of 130 amber finds: 4 globular beads of type 1 (cat. 17–20), 2 ring-shaped beads of type 2 (cat. 33, 34), 5 disc-shaped beads of type 3 (cat. 71, 97–100), 45 cylindrical beads of type 4 (cat. 106–108, 138–170, 204–207, 215), 3 biconical beads of type 6 (cat. 221, 222, 245), 3 square beads of type 7 (cat. 279–281), one drop-shaped pendant of type 1 (cat. 297),

122 It consists of several layers of limestone slabs and some reused green schist blocks with clayey sand in between.
125 Hogarth 1908e, 42, 45; Smith 1908, 169.
129 Bammer 1990, 141, here mistakenly called »flood layer«.
130 Kerschner – Konuk 2020, 127 f. fig. 18.
131 See above and Kerschner – Konuk 2020, 128.
132 The components clay and sand are weighted differently in the strata descriptions of the profile drawings and the preliminary reports, so that it is often not easy to understand that they are one and the same stratum. See in detail Kerschner 2005, 136 n. 67.
1.2 Construction phases of the Archaic sanctuary and contexts

3 bulla-shaped pendants of type 3 (cat. 303–305), 2 fruit-shaped pendants of type 5 (cat. 333, 334), 2 pendant fragments (cat. 346. 347), a rectangular spacer of type 2 (cat. 352), 18 bird-like spacers of type 4–6 (cat. 389–406), 9 triangle-shaped spacers of type 7 (442–450), 2 round spacers of type 8 (cat. 473, 483) and 4 fibulae of type 2 (cat. 497–500). Further finds include a bronze fibula\(^{133}\) and 48 glass beads\(^{134}\).

870233 (plan 9 above), with the level between −0.66 m TL and −0.72 m BL, included 5 amber finds: a disc-shaped bead of type 3 (cat. 86), a biconical bead of type 6 (cat. 238), a square bead of type 7 (cat. 278), a bulla-shaped pendant of type 3 (cat. 312) and a bottle-shaped pendant of type 4 (cat. 318). In addition, this metrical unit contained 14 objects made of gold (bird of prey brooch\(^{135}\), bird of prey needle\(^{136}\), 3 pendants\(^{137}\), 4 beads\(^{138}\), one pin\(^{139}\), one appliqué\(^{140}\), 3 sheets\(^{141}\)), 7 finds made of bronze (fibulae\(^{142}\), ring\(^{143}\)) as well as 3 glass beads\(^{144}\) and one pendant made of glass\(^{45}\) and a pendant in the form of a miniature aryballos made of ivory\(^{146}\).

The unit 870409 should also be added here. It includes stray finds that were found during the cleaning of walls and profiles. For this reason, they cannot be assigned to any particular construction phase. In addition to a pendant fragment made of amber (cat. 316), it contained a gold bead\(^{147}\), a gold pin\(^{148}\) and a bronze ring\(^{149}\).

WESTERN PART OF THE CELLA OF NAOS 2 (PLAN 3)\(^{150}\)

South of the Small Western Basis in Naos 2 (pl. 3, 2; plan 5 a) derived 880807, at a level between −0.79 m TL and −0.94 m BL, with 2 amber finds: a conical bead of type 5 (cat. 212) and a bottle-shaped pendant of type 4 (cat. 319). Furthermore, a bronze pendant\(^{151}\) was found in it. From the metrical spit between −1.045 m TL and −1.1 m BL was unit 880946 with 3 amber objects: a ring-shaped bead of type 2 (cat. 31) and 2 biconical beads of type 6 (cat. 239, 240).

West of the Small Western Basis, at a level of −0.5 m TL to −0.54 m BL, was 880443 with a ring-shaped amber bead of type 2 (cat. 32). Also, in this unit was a bird bowl. The metrical lift between −0.79 m TL and −0.94 m BL contained 880822 with a fruit-shaped amber pendant of type 5 (cat. 329) and a gold appliqué\(^{152}\).

From the area north of the Small Western Basis came the metrical units 880947, 880943 and 880949, from different metrical spits. 880947 at −0.9 m TL to −1 m BL contained 2 amber finds: a biconical bead of type 6 (cat. 219) and a fibula of type 3 (cat. 510). From 880943 (−0.94 m TL

\(^{133}\) Klebinder-Gauß 2007, cat. 28.
\(^{136}\) Püll 2009, cat. 28: 2nd half of the 7th cent. BC.
\(^{137}\) Püll 2009, cat. 81. 113. 145.
\(^{138}\) Püll 2009, cat. 173. 179. 193. 194.
\(^{139}\) Püll 2009, cat. 251.
\(^{140}\) Püll 2009, cat. 329.
\(^{141}\) Püll 2009, cat. 464. 491. 559.
\(^{143}\) Klebinder-Gauß 2007, cat. 646.
\(^{144}\) Pulsinger – Püll – (in preparation), cat. 195. 315. 489.
\(^{145}\) Pulsinger – Püll – (in preparation), cat. 728.
\(^{146}\) U. Muss in: Seipel 2008, 181 cat. 145: mid 7th cent. BC.
\(^{147}\) Püll 2009, cat. 204.
\(^{148}\) Püll 2009, cat. 236.
\(^{149}\) Klebinder-Gauß 2007, cat. 236.
\(^{150}\) Trench 583.
\(^{151}\) Klebinder-Gauß 2007, cat. 784.
\(^{152}\) Püll 2009, cat. 784.
and –1 m BL: but uncertain data) derived 3 amber objects: a biconical bead of type 6 (cat. 220), a bulla-shaped pendant of type 3 (cat. 309) and raw material (cat. 535). Also, 3 bronze objects – a fibula153, a handle of a belt154 and a pendant155 – were found. The following metrical spit between –1 m TL and –1.03 m BL contained 880949 with an amber fibula of type 2 (cat. 495).

Below the outer level of Naos 2

A few amber objects were found outside Naos 2, close to its western front. To the west, with a metrical spit between –0.79 m TL and –1.03 m BL, was unit 880915 (plan 3). It contained an amber fibula of type 3 (cat. 505), a bronze fibula156 and a bronze pendant157. From a metrical spit between –0.56 m TL and –0.59 m BL derived unit 880594 with a bulla-shaped pendant of type 3 (cat. 308).

1.2.4 Sekos 1

The next temple, Sekos 1, was built at the end of the 7th century BC158. With dimensions of 33.3 × 16.35 m, it was about three times larger than Naos 2. Sekos 1 introduced a fundamentally new layout that became exemplary for the three subsequent temples of Artemis. Its main part was a large inner courtyard surrounded by a perimeter wall. A small shrine in its centre sheltered the cult image. Sekos 1 had a pronaos in the west. There is no clear evidence of the existence of a peristasis. A wall which ran parallel to the eastern enclosure wall of Sekos 1, at a distance of 1.6 m, probably supported a terrace for placing votives and for protecting the temples against flooding.

The floor in Sekos 1 was paved with yellow limestone slabs.

The shrine in the courtyard of Sekos 1 used structures from Naos 2 as foundations, namely the cella walls in the eastern area, together with the western wall of the Green Schist Basis (pl. 3, 1). In Naos 2, a narrow corridor surrounded the already discussed Green Schist Basis to the south, north and east (plan 9 above)159. This corridor was filled in after the abandonment of Naos 2, presumably during the construction of the successor temple Sekos 1, when the entire eastern part of the cella of Naos 2 was used as a foundation for the shrine160. By filling in the former corridor around the abandoned Green Schist Basis, a high podium was created for the new cult image shrine of Sekos 1. The infill in the corridor consisted of slabs of sand and marly limestone, with a few finds and bones in between161. This infill is later than the Foundation Deposit inside the Green Schist Basis belonging to the preceding Naos 2. Nevertheless, the filling of the corridor during the construction of Sekos 1 still belongs to the late 7th century BC which gives a terminus ante quem for the finds.

To the west of the shrine was the Large Western Basis, built at the end of the 7th century BC and probably rebuilt around 600 BC for Sekos 2. Most likely it represents an altar: a cube built of small stone blocks (2.66 × 2.9 m) (pls. 3, 2; 4, 1)162. The Large Western Basis was built above the Rammed Earth Layer and the floor of Naos 2, separated from it by a grey sand layer (plan 5 a). The stratigraphic sequence therefore demonstrates that it belonged to Sekos 1.

153 Klebinder-Gauß 2007, cat. 196.
154 Klebinder-Gauß 2007, cat. 728.
155 Klebinder-Gauß 2007, cat. 801.
156 Klebinder-Gauß 2007, cat. 195.
157 Klebinder-Gauß 2007, cat. 800.
159 Hogarth 1908c, 36; Hogarth – Henderson 1908a, 55. 60, called it »extension of the basis or addition«.
160 Kerschner 2020, 227–231.
161 On the objects see Hogarth – Henderson 1908a, 55.
162 Kerschner – Konuk 2020, 128–130.
The shrine and the basis were surrounded by the so-called Inner Sekos Enclosure, two long walls running parallel in an east-west direction. In the foundation of the southern wall of this Inner Sekos Enclosure, five electrum coins were found, along with other small finds, which were given a terminus ante quem by the construction of Sekos 2 around 600 BC. Presumably, this was an intentional foundation sacrifice during the construction of the temple.

1.2.5 Sekos 2 and the surrounding temenos

Sekos 2 was built around 600 BC, reusing most of the structures from Sekos 1, but with a slightly raised floor. At the same time, the temenos was extended and two cuboid limestone bases—named B and D—were constructed.

Limestone Basis B (plans 3. 8)

Around 600 BC, the riverbed to the east of the temple, which was already almost dry at that time, was filled in and the temenos was extended to the east in the course of the construction of Sekos 2. On top of this fill, the Limestone Basis B (pl. 6, 1; plan 8) was built in the longitudinal axis of the temple. The infill incorporated two layers of (approx.) the same date: the lower layer, infill B, consisted of reddish grey, sandy soil with pottery, animal bones and charcoal. The broader layer above, infill A, consisted almost exclusively of fragments of an Early Archaic terracotta roof, which may have belonged to Naos 2 (see above).

The metrical unit 940242 belongs to the northern part of infill A (roof tile levelling). Infill A was dumped at the end of the 7th century BC: it contained a ring-shaped amber bead of type 2 (cat. 64), as well as 2 gold appliqués and 2 glass beads.

A mixed metrical excavation unit from infill A is 940110, dating to the end of the 7th century, which contained a biconical amber bead of type 6 (cat. 260) and a glass bead.

Unit 940135 in infill B comprised objects spanning the period from the second half of the 8th to the late 7th century BC, among them a fruit-shaped amber pendant of type 5 (cat. 339) as well as a gold sheet, a glass bead and a bird bowl.

Unit 940268 belonged partly to infill B. It contained an inlay of amber (cat. 533) and 2 glass beads. It was presumably a secondary deposition. This layer can be interpreted as a filling under the floor of Basis B and was infilled around 600 BC. An electrum coin also derived from this infill.

163 Kerschner – Konuk 2020, 130 f.
164 Kerschner 2020, 234 f. fig. 15 (with bibliography).
165 Bammer 1993, 156 fig. 7; Kerschner 1997, 87–90 figs. 2–3; Weißl 2002, 331 f. figs. 8–11; Kerschner – Konuk 2020, 137–143 figs. 19–20, 22–28 (with bibliography).
168 Trench 1023.
169 Kerschner 1997, 182.
172 Trench 1022. See Kerschner 1997, 224.
175 Pülz 2009, cat. 485.
177 Kerschner 1997, 147 cat. 75 fig. 32 pl. 10.
180 Kerschner 1997, 104. 181 figs. 3. 10. 11, 224–226 (infill B: 140–155).
181 Kerschner – Konuk 2020, 93 no. 107.
STRATIGRAPHY AND CONTEXT OF THE AMBER FINDS

The just described infill B covered a total of five successive older layers, called C to G (from top to bottom), all dating to the final third of the 7th century BC (pls. 5, 3; 6, 1; plan 8). They have been interpreted as sacrificial deposits because, in addition to eating and drinking equipment and numerous animal bones, they also contained iron obeloi that were intentionally deposited. In addition, there existed also individual votive offerings, most prominent among them four golden lion-headed fibulae and a golden statuette of the kore type, presumably representing the goddess. These depositional layers were separated from each other by narrow layers of river sand that thinned out towards the west. The depositional layers E, F and G were chronologically very close together, between 630–615 BC.

Unit 940146 in depositional layer D, located in the southern part of the excavated river bed, contained a round amber spacer of type 8 (cat. 474).

From the area west of Basis B came unit 940085 with a disc-shaped amber bead of type 3 (cat. 84) (plan 8).

The uppermost metrical spit in trench 1032, south-west of Basis B, at a level between –0.61 m TL and –0.67 m BL contained unit 940014 with a bulla-shaped amber pendant of type 3 (cat. 311). Further finds were an ivory artefact and a scarab. A chronological assessment cannot be made here, as this layer was disturbed by older excavations.

LIMESTONE BASIS D

Limestone Basis D, in the temenos north-west of Sekos 2, was also constructed at the end of the 7th century BC (pls. 6, 2; 3; 29; plan 1). The ashy layer to the east of the basis contained a large quantity of small finds.

The basis itself was built on a layer of sand about 0.66 m thick. This sandy layer with only very few finds in it, lay on an irregular layer of marly limestone slabs, probably a loosely laid pavement, at a level of –0.96 m. Directly above the sandy layer was a dark layer of charcoal, ash and small finds, and animal bones – the so-called Ashy Layer – extending to the east of Basis D. This Ashy Layer contained the remains of what were probably sacrificial meals together with small votive offerings, many of them made of precious material: seven electrum coins and a total of 244 gold, bronze, ivory, amber and faience objects – among them many imported pieces. How far this layer extended to the east, north and south is unknown, as its boundaries lie outside the excavated trenches (pl. 29; plan 1). So far we only know the western end of the layer which lies at 49 m east of the southern edge of the Classical altar (plan 2).

Several hypotheses have been expressed about the chronological and functional relationship between Basis D and the Ashy Layer. A. Bammer interpreted the Ashy Layer as a primary deposit that accumulated as a sacrificial deposit during the use of Basis D, which he therefore interpreted as a »cult basis«, yet without defining what the precise function of such a cult basis may have been. According to M. Weißl, the Ashy Layer was only a fill, dumped after Basis D was abandoned (secondary deposition). G. Forstenpointner’s analysis of the archaeozoological remains indicates...
1.2 Construction phases of the Archaic sanctuary and contexts

a secondary deposition, as the animal bones from the Ashy Layer were not sorted by species or skeleton part, which one would expect for residues of a specific sacrificial ritual191. The fact that the Ashy Layer covered Basis D up to half of the preserved height also speaks in favour of a secondary deposit which was infilled to construct a new open space in the northern temenos. In consequence, »the possibility of a primary deposit cannot be ruled out on the available evidence, but it is the less likely variant«192. The Ashy Layer was deposited around 590 BC or shortly thereafter193.

Some amber objects were found in the area around Basis D (pl. 32; plan 2):

West of the basis (and north of the northern \textit{krepis} foundation of Dipteros 1, which was built later)194 at a level of \(-0.07\) m are the units \textit{850314} and \textit{850316}. According to their location data (see tab. 2), both lie outside the western boundary of the Ashy Layer195. \textit{850314} contained a biconical amber bead of type 6 (cat. 257), 3 glass beads196 and 3 pendants of glass197. \textit{850316} included a biconical amber bead of type 6 (cat. 256) and a bronze earring198.

Other metrical excavation units with amber objects lie in the area south-east of Basis D199. Close to Basis D, though not adjacent to it, were the units \textit{860155} and \textit{860203}, \textit{860155} with a height of \(-0.045\) m TL to \(-0.08\) m BL. They belong to the layer above the Ashy Layer, i.e. the construction debris of the Late Archaic Dipteros 1200, and contained an inlay of amber (cat. 529) and a sheet of gold201. \textit{860203} from a metrical spit below \((-0.14\) m TL and \(-0.26\) m BL) yielded a biconical amber bead of type 6 (cat. 258) and a fibula made of bronze202, a bronze earring203 and 5 glass beads204.

\textit{860344} is from a metrical spit between \(-0.01\) m TL and \(-0.07\) m BL, till the beginning of the Ashy Layer205. From this metrical unit came the amber scarab (cat. 4) and, among other things, a bronze fitting206 and a kotyle of Lydian type207. This unit also belongs to the construction layer of Dipteros 1 with pottery from the late 7th century and the first third of the 6th century BC208.

From unit \textit{870081} at a level between \(-0.25\) m TL and \(-0.31\) m BL209, farther to the east of Basis D, is an amber inlay (cat. 526), 7 bronze finds (pins210, arm-rings211, earring212, coil213) as well as an ivory falcon214, a fragment of an alabastron and a terracotta head.

191 Forstenpointner 2001, 66 fig. 1; cf. Kerschner – Konuk 2020, 154 f.
192 Kerschner – Konuk 2020, 155.
193 Kerschner – Konuk 2020, 163–170 figs. 39–42.
194 Trench 406.
195 Excavation diary of September 3rd, 1985: »Abhub direkt des weißen Bodens« (white layer).
196 Pulsinger – Pülf 2009, cat. 631.
197 Pulsinger – Pülf 2009, cat. 631.
198 Klebinder-Gauß 2007, cat. 474.
199 Other metrical spit below (–0.14 m TL and –0.26 m BL) yielded a biconical amber bead of type 6 (cat. 258) and a fibula made of bronze202, a bronze earring203 and 5 glass beads204.
200 Kerschner – Konuk 2020, fig. 33.
201 Trench 420.
202 Pulsinger – Pülf (in preparation), cat. 197. 198. 212.
203 Pulsinger – Pülf (in preparation), cat. 730. 731. 739.
204 Klebinder-Gauß 2007, cat. 474.
205 Klebinder-Gauß 2007, cat. 211.
206 Klebinder-Gauß 2007, cat. 548.
207 Klebinder-Gauß 2007, cat. 211.
208 Klebinder-Gauß 2007, cat. 211.
209 Trench 421.
210 Trench 421.
211 Trench 560.
212 Klebinder-Gauß 2007, cat. 860155 and 860203.
213 Klebinder-Gauß 2007, cat. 860155 with a height of –0.045 m TL to –0.08 m BL. They belong to the layer above the Ashy Layer, i.e. the construction debris of the Late Archaic Dipteros 1200, and contained an inlay of amber (cat. 529) and a sheet of gold201.
214 Illustrated in: Hölbl 1993, pl. 21, 3.
Several amber objects came from units 870104 and 870119: 870104, +0.2 m TL till +0.16 m BL, contained a square amber bead of type 7 (cat. 284), and 870119, +0.08 m TL and –0.04 m BL, a total of 3 ambers: 2 ring-shaped beads of type 2 (cat. 38, 39) and a cylindrical bead of type 4 (cat. 195); furthermore, a sheet of bronze was found here.

Very far to the east of limestone Basis D, at the level of the northern krepis foundation of Dipteros 1, lies the metrical unit 870199 at a level of +0.19 m TL and +0.15 m BL, containing a ring-shaped amber bead of type 2 (cat. 45) and 2 glass beads.

SUMMARY

In summary, the amber objects were mostly found in four major contexts.

1. The Hoard under the floor covering of Naos 1a (north of the Rectangular Basis), deposited ca. 650–640 BC (excavation 1987).
3. Backfilling of a riverbed east of Sekos 2, deposited shortly before 600 BC (excavation 1994).

Apart from these four large find complexes, other find locations were underneath the western peristasis of Dipteros 1, in the southern and eastern temple forecourt, the western Sekos.
and the eastern Sekos227 – most of these contexts have not yet been studied in detail.

\textbf{APPENDIX 1: GLOSSARY OF THE NAMES USED FOR THE ARCHAIC AND CLASSICAL TEMPLES, STRUCTURES AND LAYERS IN THE ARTEMISION OF EPHESOS}

\textbf{Central Basis}

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Basis</td>
<td>Great Altar</td>
<td>Wood 1877</td>
</tr>
<tr>
<td></td>
<td>Steinsetzung H</td>
<td>Wilberg 1906</td>
</tr>
<tr>
<td>Central Basis, Basis</td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a; Robinson 1951; Bammer 1990; Weißl 2002</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Naos 1}

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naos 1</td>
<td>Peripteros</td>
<td>Bammer 1990; Bammer 1993; Weißl 2002; Bammer 2005</td>
</tr>
<tr>
<td>Naos B</td>
<td></td>
<td>Bammer 1988b228</td>
</tr>
</tbody>
</table>

228 Bammer 1988b, 17 assumes that the rectangular basis (»Rechteckbasis«) was part of his »Naos B«, although he is not sure about it. This means that »Naos B« has to be equated with Naos 1. On the other hand, Bammer’s »Naos B« contains elements of Naos 2, e.g. the collateral wall (»Flankenmauer«). Since Bammer recognised only one floor – that of Naos 1 – his Naos B has only one phase (in the interior). Thus, his term »Naos B« can be applied roughly to both Naos 1 and Naos 2. Bammer’s »Naos B« even comprises elements of Sekos 1, the sheathing wall which is the eastern part of the inner enclosure within the hypaethral courtyard of Sekos 1.
1 STRATIGRAPHY AND CONTEXT OF THE AMBER FINDS

<table>
<thead>
<tr>
<th>1. Peripteros</th>
<th>Bammer 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naos 1</td>
<td>Weißl 2002; Weißl 2006; Kerschner – Prochaska 2011; Kerschner 2015; Kerschner 2017</td>
</tr>
<tr>
<td>Naos 1, Rectangular Basis</td>
<td>foot/stem of the T-foundation Hogarth and Henderson 1908a</td>
</tr>
<tr>
<td>Rectangular basis</td>
<td>Bammer 1990</td>
</tr>
<tr>
<td>Baldachin</td>
<td>Bammer 1993</td>
</tr>
</tbody>
</table>

Naos 1a

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naos 1a</td>
<td>erhöhter Peripteros</td>
<td>Bammer 2001b; Bammer 2008a</td>
</tr>
<tr>
<td>2. Peripteros</td>
<td>Bammer 2001a; Bammer 2005; Bammer 2008a; Bammer 2008b</td>
<td></td>
</tr>
<tr>
<td>clay floor [Lehmboden]</td>
<td>Lehmboden</td>
<td>Bammer 2005</td>
</tr>
<tr>
<td>Lehmschicht</td>
<td>Kerschner 2005</td>
<td></td>
</tr>
</tbody>
</table>

Naos 2

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naos 2</td>
<td>Naos B</td>
<td>Bammer 1988b</td>
</tr>
<tr>
<td>Tempel B und Grünschieferbasis</td>
<td>Weißl 2002; Weißl 2005</td>
<td></td>
</tr>
<tr>
<td>Naos 2</td>
<td>Weißl 2006; Kerschner – Prochaska 2011; Kerschner 2015; Kerschner 2017</td>
<td></td>
</tr>
</tbody>
</table>

229 Bammer 1988b, 13–17; on the plan fig. 16 the rectangular basis is called »Rechteckbaus«.
230 Bammer 1990, fig. 7.
231 Bammer 1993, fig. 6.
232 Bammer 2001b, 73 fig. 5. Bammer later called this building phase »2. Peripteros«, see below.
233 Bammer 2001b, 73 combines the elevation of the column bases (here Naos 1a) with the construction of the »Flankenmauer« (= collateral wall, here Naos 2).
234 Bammer 2008a, 86 figs. 5. 6.
235 Bammer 2005, 219 fig. 17. This hypothetical building phase consists of the cella of Naos 1 combined with the collateral wall of Naos 2 and the raised column bases of the peristasis of Naos 1. Since obviously not all the column bases had been raised, it seems likely that the original plan of a raised peristasis was rejected during the construction process, cf. Weißl 2002, 326; Kerschner – Prochaska 2011, 83. The proposed reconstruction drawing – Bammer 2005, fig. 17; Bammer 2008b, fig. 207 – reminds one of Roman Imperial rather than of early Greek architecture.
236 Bammer 2001a, 12 assigns both the »erhöhte Ringhalle« – here Naos 1a – and the »Flankenmauer« (= Collateral wall) – here Naos 2 – to his »2. Peripteros« which is therefore a mixing of both building phases.
238 Bammer 2008a, 90 fig. 5 (right): combines both terms in »zweiten erhöhten Peripteros«.
239 Bammer 2008b, 244 fig. 207.
240 Bammer 2005, 212.
241 Kerschner 2005, 136 fig. 9.
242 Bammer 1988b, 9–12. 14. 17–19 figs. 15. 20. did not recognise the floor of Naos 2, only that of Naos 1. Therefore, his term »Naos B« has only one phase (in the interior) and can be applied roughly to both Naos 1 and Naos 2.
<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naos 2, cella</td>
<td>B cella</td>
<td>Head 1908; Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>girdle-wall of the B platform</td>
<td>Head 1908; Hogarth 1908c; Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td>Naos 2, north and south walls of the cella</td>
<td>Basis extension walls; extension walls of the basis; new north and south walls of the basis; prolongation</td>
<td>Hogarth 1908c; Smith 1908; Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>revetting walls</td>
<td>Gjerstad 1937</td>
</tr>
<tr>
<td>Naos 2, western wall of the cella</td>
<td>cross wall of temple B</td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td>Naos 2, Collateral Wall</td>
<td>thickened Basis extension wall</td>
<td>Hogarth 1908c</td>
</tr>
<tr>
<td></td>
<td>[lower part of the] C extension wall</td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>Traufenpflaster</td>
<td>Bammer 1988b</td>
</tr>
<tr>
<td></td>
<td>Flankenmauer</td>
<td>Bammer 1988b; Bammer 1990; Weißl 2002; Bammer 2005; Bammer 2008a; Kerschner – Prochaska 2011; Kerschner 2015; Kerschner 2017</td>
</tr>
<tr>
<td></td>
<td>flanking wall</td>
<td>Bammer 1990</td>
</tr>
<tr>
<td></td>
<td>2. Ummantelung</td>
<td>Bammer 1990</td>
</tr>
<tr>
<td>Foundation Deposit (in the Green Schist Basis)</td>
<td>foundation deposit</td>
<td>Head 1908; Hogarth 1908d; Weißl 2005; Bammer 2008a</td>
</tr>
<tr>
<td></td>
<td>basis treasure</td>
<td>Hogarth 1908d</td>
</tr>
<tr>
<td></td>
<td>basis deposit</td>
<td>Price 1983</td>
</tr>
<tr>
<td>Green Schist Basis</td>
<td>green schist basis</td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>earlier basis</td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>Fundament N</td>
<td>Weickert 1929</td>
</tr>
<tr>
<td></td>
<td>Central Basis</td>
<td>Gjerstad 1937</td>
</tr>
<tr>
<td></td>
<td>Basis</td>
<td>Gjerstad 1937; Jacobsthal 1951</td>
</tr>
<tr>
<td></td>
<td>Schiefermauer A</td>
<td>Bammer 1988b</td>
</tr>
</tbody>
</table>

243 Hogarth 1908c, 42: »westward prolongation of the north extension-wall of the Basis« means the western part of the northern cella wall of Naos 2.
244 Hogarth 1908c, 42.
245 Hogarth – Henderson 1908a, 61.
246 Hogarth – Henderson 1908a, 61.
247 Hogarth – Henderson 1908a, 61.
248 Hogarth 1908c, 38. 40.
249 Hogarth – Henderson 1908a, 59 fig. 18. Hogarth’s and Henderson’s »C extension wall« combines two distinct, superposed walls of two consecutive and separate buildings phases and ascribe it to their »Temple C« (= Sekos 1/2). Bammer 1990, 142 fig. 15; 21 pl. 16 a–b; Bammer 2005, 193 fig. 4, however, observed a »thin layer of sand« between these two walls which furthermore differ in width. Thus, actually there are two walls belonging to two different buildings: the lower part – called »collateral wall« – is a buttressing of the foundations of Naos 2, whereas the upper part – called »sheathing wall« – is an inner enclosure within the hypaethral courtyard of Sekos 1.
250 Bammer 1988b, 15 f. fig. 16. This name is only used as a label in the plan, but not in the text.
251 Bammer 1990, figs. 3–4, 7. 10.
252 Bammer 1990, 142.
253 Bammer 1990, fig. 21: this name appears only as labelling in the section drawing, but not in the text.
254 Unlike Hogarth – Henderson 1908a, Gjerstad 1937, 16 used the term »Central Basis« in a reduced form and applied it to the Green Schist Basis only.
255 Bammer 1988b, 7–10 figs. 8–11. This term denotes the remains of the Green Schist Basis extant in 1987: its western wall and the north-western angle.
### Name used in this text	Names used in earlier publications	Bibliography
Grünschieferbasis | | Weißl 2002
prüsum[p]tv gedachten Grünschiefer-kubus²⁵⁶ | | Bammer 2004
Kubus²⁵⁷ | | Bammer 2005; Bammer 2008a; Bammer 2008b; Bammer 2016
Naos 2, Small Western Basis | [western part]/head of the T-foundation | Hogarth 1908c, Hogarth – Henderson 1908a; Weickert 1929²⁵⁸; Gjerstad 1937²⁵⁹
schräge Ebene | | Bammer 1990²⁶⁰
Altar des Naiskos [östlicher Teil] | | Bammer 2005²⁶¹
Zwischenfundament | | Bammer 2008b
kleine, querrechtseckige Basis | | Kerschner – Prochaska 2011
Naos 2, infill under the floor | | Head 1908; Hogarth 1908c; Smith 1908
Schwemmsschicht/Überschwemmungs-schicht²⁶² | | Bammer 1988b; Stingl 2000/2001; Weißl 2002; Bammer 2004; Bammer 2005; Bammer 2008a; Bammer 2008b
flood stratum²⁶³ | | Bammer 1990
Anschüttung | | Weißl 2002
Lehmschicht²⁶⁴ | | Kerschner 2005; Kerschner – Prochaska 2011
Planierschicht | | Weißl 2005
große Sandschicht²⁶⁵ | | Bammer 2008a

Sekos 1 and Sekos 2

Name used in this text	Names used in earlier publications	Bibliography
Sekos 1 | temple C/Tempel C | Hogarth 1908c; Hogarth – Henderson 1908a; Robinson 1951; Bammer 1993; Weißl 2002; Bammer 2005; Bammer 2008a; Ohnesorg 2007a
Pythagorastempel | | Schaber 1982
Tempel C1²⁶⁷ | | Weißl 2002

²⁵⁶ Bammer 2004, 71. He distinguishes this »prüsum[p]tv gedachten Kubus« from the »Kubus« (p. 72), which corresponds to Hogarth’s »smaller rectangles«. This use of the name »Kubus« is not identical with »Kubus« in Bammer 2005, 203. 205–212 figs. 4–5. 13; Bammer 2008a, 84 fig. 1; Bammer 2008b, 247 fig. 205.

²⁵⁷ Bammer 2005, 203. 205–212 figs. 4–5. 13; Bammer 2008a, 84 fig. 1; Bammer 2008b, 247 fig. 205, regarded the Green Schist Basis as an unfinished structure and called it »Kubus« (cube). He assigned it to the last phase of his »Rechteckbau«. Bammer 2016, 47.

²⁵⁸ Weickert 1929, 17.

²⁵⁹ Gjerstad 1937, 16: »T-shaped platform«.

²⁶⁰ Bammer 1990, fig. 7 (»schräge Ebene« abutting on the east face of the »Naiskosaltarfundament«).

²⁶¹ Bammer 2005, 203–205 fig. 15.

²⁶² Head 1908, 74 f.; Hogarth 1908c, 42. 45; Smith 1908, 169.

²⁶³ Bammer 1988b, 22; Bammer 2004, 70–72; Bammer 2005, 219; Bammer 2008a, 83; Bammer 2008b, 243–244.

²⁶⁴ Bammer 1990, 141.

²⁶⁵ Kerschner 2005, 136 with n. 67; Kerschner – Prochaska 2011, 83 f.

²⁶⁶ Bammer 2008a, 84 figs. 1. 3.

²⁶⁷ Weißl 2002, 329 fig. 10.
<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekos 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sekos 1, sheathing wall</td>
<td>[upper part of the] C extension wall</td>
<td>Hogarth – Henderson 1908a<sup>268</sup></td>
</tr>
<tr>
<td></td>
<td>äußere Mauer [der Ummauerung von Naos B]</td>
<td>Bammer 1988b<sup>269</sup></td>
</tr>
<tr>
<td></td>
<td>Zusatzmauer von Naos B<sup>270</sup></td>
<td>Bammer 1988</td>
</tr>
<tr>
<td></td>
<td>(later) girdle wall</td>
<td>Bammer 1990<sup>271</sup></td>
</tr>
<tr>
<td></td>
<td>später angefügte Mauer/spätere Verstärkung</td>
<td>Bammer 2005<sup>272</sup>; Bammer 2008a; Bammer 2008b<sup>273</sup></td>
</tr>
<tr>
<td></td>
<td>Ummantelung</td>
<td>Weißl 2002</td>
</tr>
<tr>
<td></td>
<td>Ummantelungsmauer/Schalenmauer</td>
<td>Bammer 2005<sup>274</sup></td>
</tr>
<tr>
<td>Large Western Basis</td>
<td>western platform, western basis, western rectangle, rectangular platform<sup>275</sup></td>
<td>Head 1908; Hogarth 1908c; Hogarth 1908d; Hogarth – Henderson 1908a; Gjerstad 1937; Robinson 1951</td>
</tr>
<tr>
<td></td>
<td>altar of the Croesus naikos<sup>276</sup></td>
<td>Bammer 1990</td>
</tr>
<tr>
<td></td>
<td>Naiskosaltar<sup>277</sup></td>
<td>Bammer 1990; Weißl 2002; Weißl 2005</td>
</tr>
<tr>
<td></td>
<td>Altar der Kroisoszeit<sup>278</sup></td>
<td>Bammer 1993</td>
</tr>
<tr>
<td></td>
<td>Altar des Naikos [westlicher Teil]<sup>279</sup></td>
<td>Bammer 2005</td>
</tr>
<tr>
<td></td>
<td>trapezförmiges Fundament<sup>280</sup></td>
<td>Bammer 2008a; Bammer 2008b</td>
</tr>
<tr>
<td></td>
<td>provisorischer Altar [vor dem Naikos des Kroisostempels]</td>
<td>Bammer 2008b</td>
</tr>
<tr>
<td>extended western wall</td>
<td>transverse wall of the enlarged basis</td>
<td>Gjerstad 1937</td>
</tr>
<tr>
<td>of the Green Schist Basis<sup>281</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westmauer<sup>282</sup></td>
<td>Bammer 1988b</td>
</tr>
<tr>
<td></td>
<td>western wall/schist wall</td>
<td>Bammer 1990</td>
</tr>
<tr>
<td></td>
<td>Transversalmauer<sup>283</sup></td>
<td>Bammer 2001b; Bammer 2004; Bammer 2005; Bammer 2008a; Bammer 2008b</td>
</tr>
</tbody>
</table>

²⁶⁸ Hogarth – Henderson 1908a, 59 fig. 18.
²⁶⁹ Bammer 1988b, 17 figs. 16. 20.
²⁷⁰ Bammer 1988b, 20 fig. 23, calls the sheathing wall of Sekos 2 (»Zusatzmauer« in the caption of the figure, yet without any further comment on its function. Bammer 1988b, 19 states that this wall encapsulates (»ummantelt«) his »Naos B«.
²⁷¹ Bammer 1990, 142 pl. 16 c.
²⁷² Bammer 2005, 190. 193 fig. 4.
²⁷³ Bammer 2008b, fig. 205.
²⁷⁴ Bammer 2005, 191 photo 3.
²⁷⁵ Head 1908, 74 f.; Hogarth 1908d, 235. 238; Hogarth – Henderson 1908a, 57 f. 61; Gjerstad 1937, 17.
²⁷⁶ Bammer 1990, 148 fig. 14.
²⁷⁷ Bammer 1990, figs. 7. 14; Weißl 2005, 365 fig. 1; Weißl 2006, 365 fig. 1.
²⁷⁸ Bammer 1993, 149.
²⁷⁹ Bammer 2005, 203–205 fig. 15.
²⁸⁰ Bammer 2008b, 244 fig. 205.
²⁸¹ This composite structure consists of three parts belonging to two different building phases: the western wall of the Green Schist Basis of Naos 2, and its extensions both to the north and south, made of limestone slabs and closing the narrow corridor between the Green Schist Basis and the cella walls of Naos 2. These extensions were probably made for Sekos 1, where the whole structure served as part of the foundations of the shrine for the cult image.
²⁸² Bammer 1988b, 8 f. 17.
²⁸³ Bammer 2004, 70 f.; Bammer 2005, 190. 199. 202 f. 205–212 figs. 4. 18. 19 photos 8. 9. 11–13; Bammer 2008a, 84 fig. 1.
<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Sekos Enclosure of Sekos 1</td>
<td>später angefügte Mauer</td>
<td>Bammer 2005; Bammer 2008a<sup>284</sup></td>
</tr>
<tr>
<td></td>
<td>Unummantelung</td>
<td>Weißl 2002</td>
</tr>
<tr>
<td>Sekos 1, Basis F</td>
<td>fragment of B Western girdle wall<sup>285</sup></td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td>Sekos 2</td>
<td>temple C/Tempel C</td>
<td>Hogarth 1908</td>
</tr>
<tr>
<td></td>
<td>Pythagorastempel</td>
<td>Schaber 1982</td>
</tr>
<tr>
<td></td>
<td>Tempel C<sup>290</sup></td>
<td>Weißl 2002</td>
</tr>
<tr>
<td></td>
<td>Sekos 2</td>
<td>Weißl 2002; Weißl 2006; Kerschner – Prochaska 2011; Kerschner 2015; Kerschner 2017</td>
</tr>
<tr>
<td>Sekos 2, Inner Sekos Enclosure</td>
<td>first parallel wall<sup>287</sup></td>
<td>Hogarth 1908c</td>
</tr>
<tr>
<td></td>
<td>Enclosing wall<sup>288</sup></td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>B enclosure, B girdle wall<sup>299</sup></td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>B enclosure wall<sup>300</sup></td>
<td>Smith 1908</td>
</tr>
<tr>
<td></td>
<td>parallel walls<sup>391</sup></td>
<td>Gjerstad 1937</td>
</tr>
<tr>
<td></td>
<td>1. Stützmauer<sup>295</sup></td>
<td>Bammer 1990</td>
</tr>
</tbody>
</table>

Dipteros 1

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipteros 1</td>
<td>the last temple but two</td>
<td>Wood 1877</td>
</tr>
<tr>
<td></td>
<td>Croesus temple/structure; Temple D</td>
<td>Hogarth – Henderson 1908b; Robinson 1951;</td>
</tr>
<tr>
<td></td>
<td>Kroisos-Tempel</td>
<td>Bammer 1986/1987; Bammer 1993; Bammer 2005; Ohnesorg 2007a</td>
</tr>
<tr>
<td></td>
<td>Dipteros 1</td>
<td>Weißl 2002; Weißl 2006; Kerschner – Prochaska 2011; Kerschner 2015</td>
</tr>
<tr>
<td></td>
<td>1. Dipteros</td>
<td>Ohnesorg 2012</td>
</tr>
<tr>
<td>Inner Sekos Enclosure of Dipteros 1</td>
<td>Croesus inner foundations; Enclosing walls<sup>301</sup></td>
<td>Hogarth – Henderson 1908b</td>
</tr>
<tr>
<td></td>
<td>inner enclosure<sup>302</sup></td>
<td>Hogarth – Henderson 1908a</td>
</tr>
<tr>
<td></td>
<td>belt of Croesus foundations<sup>305</sup></td>
<td>Hogarth 1908c</td>
</tr>
<tr>
<td></td>
<td>parallel walls<sup>306</sup></td>
<td>Gjerstad 1937</td>
</tr>
<tr>
<td></td>
<td>intrusive D foundations<sup>397</sup></td>
<td>Hogarth 1908f; Hogarth – Henderson 1908a</td>
</tr>
</tbody>
</table>

²⁸⁴ Bammer 2005, 193 fig. 4.
²⁸⁵ Hogarth – Henderson 1908a, 62 fig. 20.
²⁸⁶ Weißl 2002, 329 fig. 10.
²⁸⁷ Hogarth 1908c, 45.
²⁸⁸ Hogarth – Henderson 1908a, 64 fig. 22.
²⁸⁹ Hogarth – Henderson 1908a, 59 fig. 18; 62 fig. 20.
²⁹⁰ Smith 1908, 167.
²⁹¹ Gjerstad 1937, 19.
²⁹² Bammer 1990, fig. 7.
²⁹³ Hogarth – Henderson 1908a, 64 figs. 20. 22; Hogarth – Henderson 1908b, 254 fig. 64.
²⁹⁴ Hogarth – Henderson 1908a, 68.
²⁹⁵ Hogarth 1908c, 45.
²⁹⁶ Gjerstad 1937, 19.
²⁹⁷ Hogarth – Henderson 1908a, 62 fig. 21 (»D intrusive Foundations«); Hogarth 1908f, 120 (»intrusive D foundations«).
Appendix 1

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>temenos wall (peribolos wall)</td>
<td>Bammer 1990</td>
<td></td>
</tr>
<tr>
<td>2. Stützmauer</td>
<td>Bammer 1990</td>
<td></td>
</tr>
<tr>
<td>Peribolosmauer</td>
<td>Bammer 1991</td>
<td></td>
</tr>
<tr>
<td>Jüngeres Fundament</td>
<td>Bammer 1993</td>
<td></td>
</tr>
<tr>
<td>sog. Stützmauer</td>
<td>Bammer 1993</td>
<td></td>
</tr>
</tbody>
</table>

sekos/large courtyard of Dipteros 1	(Croesus) cella	Hogarth 1908c; Hogarth – Henderson 1908b
naiskos of Dipteros 1	Great Altar	Wood 1877
	Steinsetzung H/Cultbildbasis	Wilberg 1906
	sog. Kroisos-Naiskos	Ohnesorg 2007a
	Naiskos des Kroisostempels	Bammer 1988b; Bammer 1993; Weißl 2002; Bammer 2005; Bammer 2008a; Bammer 2008b
filling under the naiskos of Dipteros 1	addition, extension	Hogarth 1908c, Hogarth – Henderson 1908a

Dipteros 2

<table>
<thead>
<tr>
<th>Name used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipteros 2</td>
<td>Temple (of Diana)</td>
<td>Wood 1877</td>
</tr>
<tr>
<td></td>
<td>last temple</td>
<td>Wood 1877</td>
</tr>
<tr>
<td></td>
<td>Hellenistic temple</td>
<td>Hogarth 1908a</td>
</tr>
<tr>
<td></td>
<td>Weltwunderbau</td>
<td>Bammer 2008b</td>
</tr>
<tr>
<td></td>
<td>Dipteros 2</td>
<td>Weißl 2002; Weißl 2006; Kerschner – Prochaska 2011; Kerschner 2015</td>
</tr>
<tr>
<td></td>
<td>2. Dipteros</td>
<td>Ohnesorg 2012</td>
</tr>
</tbody>
</table>

298 Bammer 1990, 144. 148 figs. 16–18 pl. 18 c–d.
299 Bammer 1990, fig. 7.
300 Bammer 1991, 80 fig. 25 (»Peribolosmauer«).
301 Bammer 1993, fig. 6: labelling of the southern part of the »Inner sekos enclosure of Dipteros 1« on the map. There is no reference to it in the text.
302 Bammer 1993, fig. 5: labelling of the south-western part of the »Inner sekos enclosure of Dipteros 1« on the map. There is no reference to it in the text.
304 Wilberg 1906, 229 f. figs. 181. 197. 198.
305 Hogarth 1908c, 36; Hogarth – Henderson 1908a, 55. 58. 60 ff., used the terms »addition« or »extension« for the narrow space between the Green Schist Basis and the northern, eastern and southern cella wall of Naos 2, interpreting them – erroneously – as a later »extension« attributed to their »Temple B«.
Terms used in previous publications, but not used in this contribution

<table>
<thead>
<tr>
<th>Name not used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition [of the basis]<sup>306</sup></td>
<td>Hogarth – Henderson 1908a</td>
<td></td>
</tr>
<tr>
<td>altar for the Croesus naissos</td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a</td>
<td></td>
</tr>
<tr>
<td>B platform</td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a</td>
<td></td>
</tr>
<tr>
<td>Baldachin/baldachin<sup>308</sup></td>
<td>Bammer 1990; Bammer 1993; Tölle-Kastenbein 1994; Bammer 2005; Bammer 2008a; Bammer 2008b; Bammer 2016</td>
<td></td>
</tr>
<tr>
<td>bottom sand, original sand<sup>309</sup>, virgin sand<sup>310</sup></td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a; Gjerstad 1937</td>
<td></td>
</tr>
<tr>
<td>Croesus platform = Croesus stratum<sup>311</sup></td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a</td>
<td></td>
</tr>
<tr>
<td>enlarged basis<sup>312</sup></td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a</td>
<td></td>
</tr>
<tr>
<td>extension of the basis<sup>313</sup></td>
<td>Hogarth 1908c; Hogarth – Henderson 1908a</td>
<td></td>
</tr>
<tr>
<td>further enlarged basis, third basis<sup>314</sup></td>
<td>Gjerstad 1937</td>
<td></td>
</tr>
</tbody>
</table>

³⁰⁶ This term is used interchangeably for »extension of the basis«, e.g. Hogarth – Henderson 1908a, 55. 60.

³⁰⁷ Bammer 1990, 144 fig. 14 (»4. Periodes«) interprets Hogarth’s and Henderson’s »T-foundation« as »an open altar for the Croesus naissos«.

³⁰⁸ Bammer 1990, 156 fig. 30; Bammer 1993, 139–142; Tölle-Kastenbein 1994, 47; Bammer 2005, 218 f. figs. 11. 13; Bammer 2008a, 86 f. figs. 4–6; Bammer 2008b, 244 figs. 204. 207; Bammer 2016, 47 assumed a baldachin covering the rectangular basis in Naos 1, supported by wooden columns resting on the six excavated round bases of green schist at both sides of the rectangular basis.

³⁰⁹ Hogarth believed that the layers he designated »Primitive stratum« were situated in a natural layer of »clean river sand« which he labelled »bottom sand« (Hogarth 1908c, 35; cf. Gjerstad 1937, 16) or »original sand« (Hogarth – Henderson 1908a, 53). As it was completely submerged under the groundwater, he was not able to excavate this layer properly, but rather dredged small parts of it and tried to determine its extent in depth by driving a »5 ft. bar« into it (Hogarth 1908c, 35). The resumed excavations by A. Bammer have shown that the bottom sand is in fact a sequence of occupation layers dating from the Late Bronze Age to the mid 7th cent. BC.

³¹⁰ Robinson 1951, 156.

³¹¹ Hogarth 1908c, 21–30; Hogarth – Henderson 1908a, 53 f. These terms comprise the extant parts of Dipteros 1, consisting of its foundations, stylobat, pavement and the lower parts of the sekos walls.

³¹² Hogarth 1908c, 40. This term describes the eastern part of the cella of Naos 2 after it had been walled off by the extended western wall of the Green Schist Basis at its western side and filled in to be reused as foundations of the cult shrine of Dipteros 1, but possibly already by its predecessors, Sekos 1 and 2. The Green Schist Basis is in the centre of the »enlarged basis«, yet shifted to the west of it, so that its western wall forms part of the perimeter of the enlarged basis, while the remainder is outlined by the north, east and south cella walls of Naos 2. Hogarth – Henderson 1908a, 60 (cf. Gjerstad 1937, 17 f.) considered the enlarged basis to be part of »Temple B«. The re-excavation of the »Central Basis« by A. Bammer down to its full depth has however shown that the cella walls of Naos 2 reach down deeper and belong to an earlier phase than the extensions of the western wall of the Green Schist Basis; those are actually the latest parts of the structure and assign the enlarged basis to Sekos 1 or 2 or, at the latest, to Dipteros 1.

³¹³ The »extension of the Basis« (Hogarth 1908c, 36) comprises the narrow, corridor-like rectangular spaces to the north, east, and south of the Green Schist Basis. Its outer limits are defined by the extended western wall of the Green Schist Basis to the west and by the cella walls of Naos 2 on the other sides.

³¹⁴ Gjerstad 1937, 19 f., assumed »a revetment of the basis of B, and its north and south walls are continued to the W. of the western end of that basis, enclosing a new and further enlarged basis«, which »attained a length of 15.10 m«. These walls are in fact the cella walls of Naos 2 and therefore older than the extended western wall of the Green Schist Basis. They belong to an earlier phase and were no longer visible at the time, but were rather reused as foundations of the cult shrine. Hence, a »third, further enlarged basis« never existed.
Appendix 1

<table>
<thead>
<tr>
<th>Name not used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
</table>
| large rectangle, later rectangle
| Hogarth 1908c; Hogarth – Henderson 1908a |
| Primitive N. wall
| Hogarth 1908c |
| Primitive Structures/Shrines/Foundations
| Head 1908; Hogarth 1908c; Hogarth – Henderson 1908a; Smith 1908 |
| Primitive western wall
| Hogarth 1908c |
| Primitive stratum, lower stratum
| Hogarth 1908c; Hogarth – Henderson 1908 |
| Rechteck B
| Weickert 1929 |
| Rechteckbau
| Bammer 2005 |
| rechteckiger Naos ohne Peristasis
| Bammer 2008b |
| smaller rectangle/earlier rectangle
| Hogarth 1908c; Hogarth – Henderson 1908a |
| Temple A
| Hogarth 1908c; Hogarth – Henderson 1908a |
| Temple B
| Hogarth 1908c; Hogarth – Henderson 1908a |

315 Hogarth – Henderson 1908a, 55 f. The extension of Hogarth’s »larger rectangle« corresponds to the area surrounded by the cella walls of Naos 1 and 2. It comprises several structures in its interior: the Green Schist Basis and a contemporaneous small western basis, both belonging to Naos 2, as well as the Large Western Basis belonging to Sekos 1 and 2.

316 Hogarth 1908c, 40: »the Primitive N. wall« in this context is the northern wall of the outer enclosure of Sekos 1/2.

317 This collective term comprises all early Archaic structures preceding Dipteros 1. They form part of Naos 1 and 2 and Sekos 1 and 2.

318 Hogarth 1908c, 41: »the Primitive western wall« is the western wall of the outer enclosure of Sekos 1/2, situated just east of the – later – western sekos wall of Dipteros 1.

319 With this term, Hogarth designated all layers preceding Dipteros 1 which he investigated beneath the pavement of the sekos of Dipteros 1 and above what he regarded as »bottom sand«. According to the current state of knowledge, this »Primitive stratum« in fact comprise several different layers contemporary with Naos 2 and the Sekoi 1 and 2. Due to the unfavourable conditions of the excavations at this deep level, which was submerged by groundwater, Hogarth was not able to differentiate further layers within his »Primitive stratum«.

320 Weickert 1929, 17 was the first to notice that this basis is later than the lateral basis of the ›T-foundation‹.

321 Bammer 2005, 219 fig. 13. This hypothetical temple combines elements of Naos 1 (Rectangular Basis), of Naos 2 (cella walls, collateral wall) and of Sekos 1 (sheathing wall).

322 Bammer 2008b, 244. This phase corresponds to the »Rechteckbau« (see above).

323 Hogarth 1908c, 35; Hogarth – Henderson 1908a, 55. This »smaller rectangle« comprises the eastern parts of Naos 1, Naos 2, Dipteros 1 and presumable also of Sekos 1/2 (fig. 22). It corresponds to the »Kubus« of Bammer 2004, 72, which he distinguished from a »präsum[p]tiv gedachten Kubuss« [i.e. the Green Schist Basis].

324 Hogarth – Henderson 1908a, 52–58.

325 Hogarth’s »Temple B« cannot simply be equated with one of the temples as they are comprehensible now, after their complete uncovering by A. Bammer 1987–1991. Temple B rather comprises elements of the Naos 1, Naos 2 and Dipteros 1, perhaps even of Sekos 1/2.
1 STRATIGRAPHY AND CONTEXT OF THE AMBER FINDS

<table>
<thead>
<tr>
<th>Name not used in this text</th>
<th>Names used in earlier publications</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-foundation326, T-förmiges Fundament</td>
<td>Hogarth 1908c, Hogarth – Henderson 1908a; Weickert 1929327; Gjerstad 1937328</td>
<td></td>
</tr>
<tr>
<td>Vorperipteros/Protoperipteros329</td>
<td>Bammer 2001b; Weißl 2002; Bammer 2005; Bammer 2008b</td>
<td></td>
</tr>
<tr>
<td>West area/W. area</td>
<td>Hogarth 1908c330</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX 2: LOCATIONS OF THE AMBER OBJECTS

Colour code

- Rammed Earth Layer – under the floor of Naos 2: 870232, 870233
- Hoard – under the floor of Naos 1a: 870245, 870246, 870249, 870272, 870281, 870324, 870341, 870348, 870349, 870352, 850353
- Probably part of the hoard – under the floor of Naos 1: 870362, 870374

Naos covering 1/Naos 2 – eastern cella

- Human heads (cat. 2. 3)
- Bird-shaped protome (cat. 5)
- Beads, type 1 – globular (cat. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30)
- Beads, type 2 – ring-shaped (cat. 33. 34. 35. 36. 37. 40. 41. 42. 43. 44. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60)
- Beads, type 3 – disc-shaped (cat. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104)

Beads, type 5 – conical (cat. 216)

Beads, type 7 – square (cat. 277. 278. 279. 280. 281. 282. 283. 285. 286. 287. 288. 289. 290. 291)

Beads – indefinable (cat. 294. 295)

326 Hogarth – Henderson 1908a, 57 f., dubbed the T-shaped structure extending to the west of the Green Schist Basis »T-foundation«. They thought that it 1. had been constructed in one piece, and 2. was contemporaneous with the Green Schist Basis (cf. Gjerstad 1937, 16 f.), neither of which, however, was the case, as was revealed when A. Bammer re-excavated the longitudinal part of the »T-foundation« and discovered that it reached down deeper than the foundations of both the Green Schist Basis and the lateral part of the »T-foundation«. The »T-foundation« actually consists of two separate parts which differ in their building date: 1. the lateral basis belonging to Naos 2 and presumably used as an altar for placing offerings in front of the cult image which probably stood on the Green Schist Basis, and 2. the upper surface of the older »Rectangular Basis« which had been built for Naos 1, and the surface of which was reused in Naos 2 to connect the lateral basis and the Green Schist Basis. Bammer 1990, 144 fig. 14 (»4. Period«) interprets Hogarth’s and Henderson’s »T-foundation« as »an open altar for the Croesus naiskos«.

327 Weickert 1929, 17.

328 Gjerstad 1937, 16: »T-shaped platform«.

329 Archaeological evidence for this hypothetical first sacred building proposed by Bammer 1990, 144. 148 f. fig. 22; Bammer 2005, 214. 216. 218 fig. 7; Bammer 2008b, 244 is inconclusive. Bammer assigned both the interior and the exterior column bases of Naos 1 to a preceding phase. Traces of its assumed cela walls are, however, completely lacking.

330 Hogarth 1908c, 19: western half of the courtyard (sekos) of Dipteros 1.
Appendix 2

Pendants, type 1 – drop-shaped (cat. 297)
Pendants, type 3 – bulla-shaped (cat. 300. 301. 302. 303. 304. 305. 306. 307. 312. 313. 314)
Pendants, type 4 – bottle-shaped (cat. 318)
Pendants – fragments (cat. 315. 316. 317. 346. 347. 348)

Spacers, type 1 – triangular end plates (cat. 350. 351)
Spacers, type 2 – rectangular (cat. 352. 353)
Spacers, type 3 – individual (cat. 354. 355. 356)
Spacers, type 8 – round (cat. 473. 475. 476. 477. 478. 479. 480. 481. 482. 483. 484. 485. 486. 487. 488)

Fibulae, type 1 (cat. 489)
Fibulae, type 2 (cat. 491. 494. 497. 498. 499. 500. 501. 502)
Fibulae, type 3 (cat. 503. 504. 506. 507. 508. 509. 511. 512. 513. 514. 515. 516. 517. 518. 519. 520. 521. 522. 523)
Inlay (cat. 527)
Indefinable fragment (cat. 538)

Naos 1/Naos 2 – western cella (so-called Hogarth-trench)
TRENCH 583

Beads, type 2 – ring-shaped (cat. 31. 32)
Beads, type 3 – disc-shaped (cat. 83)
Beads, type 5 – conical (cat. 212)
Beads, type 6 – biconical (cat. 219. 220. 239. 240)
Pendants, type 3 – bulla-shaped (cat. 308. 309)

Inlay (cat. 524. 528)

Naos 1/Naos 2 – western cella (so-called Hogarth-trench)
TRENCH 583

Beads, type 2 – ring-shaped (cat. 31. 32)
Beads, type 3 – disc-shaped (cat. 83)
Beads, type 5 – conical (cat. 212)
Beads, type 6 – biconical (cat. 219. 220. 239. 240)
Pendants, type 3 – bulla-shaped (cat. 308. 309)

Area of the southern temple forecourt
TRENCH 352
Female bust (cat. 1)

Area of the eastern temple forecourt
TRENCH 591
Beads, type 4 – cylindrical (cat. 186)

TRENCH 620
Pendants, type 5 – fruit-shaped (cat. 341. 343)

Area of the western peristasis of Dipteros 1
TRENCH 370
Inlay (cat. 524. 528)
Needle head (cat. 534)

TRENCH 430
Inlay (cat. 531)

TRENCH 701
Beads, type 4 – cylindrical (cat. 187)
Fibulae, type 2 (cat. 496)

Area western Sekos
TRENCH 771
Beads, type 2 – ring-shaped (cat. 61. 62)
Beads, type 4 – cylindrical (cat. 179)
Pendants, type 2 – elongated (cat. 299)
Pendants, type 3 – bulla-shaped (cat. 310)
Fibulae, type 2 (cat. 493)
Indefinable fragments (cat. 536. 537)

TRENCH 772
Beads, type 4 – cylindrical (cat. 113)
Beads, type 7 – square (cat. 292. 293)
Beads – indefinable (cat. 296)
Pendants, type 1 – drop-shaped (cat. 298)
Pendants – fragment (cat. 349)
Spacers, type 4–6 – bird-shaped (cat. 357)
Indefinable fragments (cat. 539)

Trench 900
Beads, type 3 – disc-shaped (cat. 81)
Beads, type 4 – cylindrical (cat. 199)

Trench 940
Inlay (cat. 530)

Area eastern Sekos
Trench 913
Beads, type 3 – disc-shaped (cat. 82)

Trench 1020
Beads, type 2 – ring-shaped (cat. 63)
Beads, type 4 – cylindrical (cat. 188)
Beads, type 5 – conical (cat. 213)
Beads, type 6 – biconical (cat. 259)
Fibulae, type 2 (cat. 492)
Inlay (cat. 532)

Area of the Limestone Basis B
Trench 1022
Beads, type 6 – biconical (cat. 260)
Pendants, type 5 – fruit-shaped (cat. 339)

Trench 1023
Beads, type 2 – ring-shaped (cat. 64)
Inlay (cat. 533)

Trench 1032
Pendants, type 3 – bulla-shaped (cat. 311)

Trench 1036
Spacers, type 8 – round (cat. 474)

Trench 1038
Beads, type 3 – disc-shaped (cat. 84)

Area of the Limestone Basis D
Trench 406
Beads, type 6 – biconical (cat. 256, 257)

Trench 420
Beads, type 6 – biconical (cat. 258)
Inlay (cat. 529)

Trench 421
Scarab (cat. 4)

Trench 560
Inlay (cat. 526)

Trench 562
Beads, type 2 – ring-shaped (cat. 38, 39)
Beads, type 4 – cylindrical (cat. 195)
Beads, type 7 – square (cat. 284)

Stray finds
Beads, type 1 – globular (cat. 6)
Beads, type 6 – biconical (cat. 275, 276)

Michael Kerschner, Andrea M. Pülz
2 TYPOLOGY OF THE AMBER FINDS FROM THE ARTEMISION

2.1 FIGURED FINDS (CAT. 1–5. 540)

Female bust (cat. 1) pl. 7, 1; 38

Excavation inv. ART 760238; AMS inv. 5/29/76

This bust bears close stylistic comparison with clay statuettes of the middle-Daedalic phase from Crete, representing a standing woman with both arms hanging parallel to the body; examples have been found at Ephesos and elsewhere in the Greek world, including Western Greece331, as attested by finds from the Achaeac colonies of Siris and Metapontum332 and from Sicily333. The echo of this type of sculpture also reached the ›minor‹ arts, i.e. jewellery: the impressive series of gold plaques and jewels from Rhodes reproducing Artemis shows a similar treatment of the hair, the so-called Etagenperücke334.

Female heads and busts with a similar rendering of hair arrangements, in bone, ivory and wood, were carved by Greek crafts workers in several regions: a Cretan origin has been suggested335. A small Daedalic ivory head was found in the sanctuary of Hera Limenia at Perachora and was dated to the third quarter of the 7th century BC because of its close stylistic link to a group of Corinthian heads336. The primary role played by Spartan workshops in carving ivories and bone is attested by finds at Sparta, such as a trapezoid seal337 and some bone busts from the sanctuary of Artemis Orthia338 and elsewhere, and by a female figure carved in bone, from Perachora, representing Hera339. The particular shape of the rounded breasts allows the amber bust to be compared with a gold statuette from the Artemision at Ephesos, dated to the mid 7th century BC340, and to wooden statuettes from the Heraion at Samos, belonging to the second half of the 7th century BC341. The wide distribution of wooden sculptures in the Mediterranean is also attested by three statuettes from Palma di Montechiaro near Akragas in Sicily, which are also comparable to the bust342.

331 See, for example, Böhm 1990, 150 T 14 pl. 11; 168 f. TK 70. TK 72 pl. 28 (from Crete); 176 TK 141 pl. 31 d (from Ephesos). See also Böhm 1990, 100 pl. 38 b for other statuettes from Ephesos, having a different position, but a comparable style. New finds from Miletos have been published by von Greave 2017.
332 Rolley 1996, 382.
333 Rizza 1996, 400.
335 Some wooden statuettes found in the Heraion at Samos have been assigned to Cretan workers (Kyrieleis 1998, 281–283). In the debate following that symposium N. Stampolidis suggested that a Cretan artist, active around 620–580 BC, might have carved an ivory head from the Artemision, which has very close stylistic comparisons with finds from Eleutherna (Stampolidis 1998: see below, n. 346).
337 Burr Carter 1985, 145 fig. 41, dated to the 3rd quarter of the 7th cent. BC See also an ivory head from Sparta: Burr Carter 1985, fig. 42.
338 Dawkins 1929, 218 f. CXVII–CXIX; Marangou 1969, 131 no. 74 fig. 97 a–b.
340 Pilz 2009, 215 cat. 5 pl. 3 and colour pl. 3.
341 For the wooden statuettes from the Heraion at Samos (Ohly 1967; Kyrieleis 1983) see the references quoted by Morris 1992, 201; Papadopoulos 1997; Kyrieleis 1998.
342 Morris 1992, 200 f., with previous literature.
Among amber finds, the bust from Ephesos has some comparisons with objects from Southern Italy, where amber carving was well established. The hairstyle is similar to the one shown in a sub-Daedalic pendant from Rutigliano in modern-day Puglia, depicting a male (?) crouching figure: several through-borings of the pendant testify that it was reused. Another comparison can be established with a sub-Daedalic amber head from tomb 96 of the Oenotrian cemetery of Chiaromonte in modern-day Basilicata, belonging to a necklace and dated to the early 6th century BC.

Laura Ambrosini

As often documented in the case of amber objects, several borings show that the bust was used more than once. It is difficult to determine whether the bust was really used as part of an artefact before it was assigned to a new role, or if the change of purpose occurred while it was still in the workshop because of a change of plan occurring during the carving phase.

The arrangement of the borings, all running in different directions, helps clarify the original purpose of the bust, which was assigned at least two different positions, probably at different times.

The three pairs of borings drilled at the base are irregular and have a sinuous course similar to a meander: although it is hard to interpret them, they seem to suggest they were not meant for suspension purposes, but rather to fix the bust onto a base with corresponding through-holes. Dowel pins, of perishable materials, flexible enough to be fashioned into sinuous shapes, i.e. straw or vegetable fibres, were probably used to connect the bust to a base. Apart from the taste for polymateric (i.e. multi-material) objects in antiquity, one can invoke several reasons to explain why the statuette was conceived in two parts (bust and base). The size of the naturally available raw lumps of amber, a material which was exotic and rare at Ephesos, surely provides a quite convincing reason. The figurine’s base could have been made of ivory. This material is often combined with amber in polymateric objects, as attested by small finds from the Artemision. Alternatively, the figurine’s base could have been sculpted of another material, such as bone or wood. If so, the first function of the bust could be that of a standing polymateric statuette.

The upper horizontal boring is wider than the lower ones, enough for a thread or a wire to pass through, so it might be used for the suspension of the bust along with a string necklace or a belt, probably as the highlight element associated with beads and pendants of various non-figurative shapes. Female depositions in tombs in the Oenotrian cemeteries of Latronico and Chiaromonte in Basilicata yielded some belts, as is illustrated by the Artemision girdle (below, chap. 2.4); the sub-Daedalic amber head from tomb 96 at Chiaromonte mentioned earlier formed part of a necklace.

Later finds document a widespread use of female heads of amber inserted as pendants in necklaces. Montanaro 2012, 72 no. B.II.5; 135 fig. 68 pls. 21–22. The pendant was found in grave 122/1977 of the Purgatorio cemetery. The grave was sealed in the 2nd half of the 6th– early 5th cent. BC, but also contained earlier finds such as this pendant (late 7th– early 6th cent. BC). This evidence was noted by Riccardi 2010, 348 f., followed by Montanaro 2012, 134 f, 204 and Montanaro 2015, 182, who mentions another reused amber object from grave 122/1977. The pendant discussed in the text has through-borings running in different directions and showing that the pendant changed both function and position.

The use of straw and other unidentified organic materials to connect amber discs to one another is documented in fibulae at Verucchio dated to the 8th and 7th cent. BC (von Eles 2015, 75 type 74; 76 type 75). Ivory figured elements originally belonging to polymateric statuettes have been found at Perachora, Samos and Delphi (Stubbings 1962, 406 f. no. A 9), Ephesos (Bammer 1992a, 186 pl. 6 a–b) and Eleutherna on Crete (Stampolidis 1992, with a particular focus on composite figures in ivory and wood from the Geometric and Archaic periods). Fibulae (see below, cat. 489–490) and astragaloi (see below, cat. 532) can be mentioned as polymateric objects in amber and ivory from the Artemision at Ephesos. See also below, cat. 659. See below, cat. 2–3 for bone or ivory pins with amber heads.

S. Bianco in: Ambre 2007, 238 no. III; 247 (belt, grave Latronico 83, early 7th cent. BC); 242 no. III; 264 (belt, grave Chiaromonte 156, dated to the late 8th cent. BC in: Bianco 2020, 111 fig. 14).
2.1 Figured finds

Necklaces in Southern Italy. In this case, the second purpose of the bust could be as a pendant as part of a necklace. As a votive offering, the bust could portray Artemis herself or her devotee. The question remains unanswered.

The bust can be ascribed to the mid-Daedalic style and dated to the second half of the 7th century BC, probably within the third quarter of the century.

Alessandro Naso

Human head (cat. 2)

Excavation inv. ART 870352.1; AMS inv. 141/61/87 (T 12)

Human head (cat. 3)

Excavation inv. ART 870352.2; AMS inv. 142/61/87

The heads and form a pair and are examined together. Despite the small size, from a stylistic point of view, one can appreciate the general characteristics of the face, such as the circular eyes and the pointed nose, which occur in the sculptures of the Geometric period, grouped by several scholars around the bronze _sphyrelata_ from Dreros (Crete) and which are dated to the late 8th/early 7th century BC. Gold and silver statuettes from the Artemision and bone plaques from the sanctuary of Artemis Orthia at Sparta show that in small-scale sculpture these features survived in female figurines until the end of the 7th century BC.

Amber human (female [?]) heads with polos are inserted in the bows of two bronze fibulae found in the female tomb 26 of Piazza Azzarita in Bologna in Northern Italy, closed in the first half of the 6th century BC. Amber figures representing two ducks and a couchant lion, respectively, are exceptionally inserted in the bows of two bronze fibulae from Verucchio and Bologna, respectively. Small amber animal-shaped pendants are documented in several sites in Northern and Central Italy and are dated to the 8th and 7th centuries BC.

Laura Ambrosini

In the case of the two heads, no traces indicate their original position, except for the borings. This absence suggests that either the two items were accurately disassembled from their context to be offered to Artemis, or else that the organic contexts have perished. In either case, it is hard to determine the type and shape of the objects to which they originally belonged.

348 Montanaro 2012, 72–99 pls. 23–51 fig. 47.
349 Denti 2019 reviews Daedalic heads from Greece and Southern Italy.
350 The two heads are very similar, and in the literature their inventory numbers have often been mixed up.
351 Blome 1982, 13–15 pl. 4, 1–2; Coldstream 2004, 284 fig. 91; Boardman 2006, 2–4. 8 fig. 1 (with important observations on technique and chronology).
352 Püll 2009, 214 f. cat. 1–3 pls. 1–3, colour pls. 1–3. 41–43 for the chronology.
353 Dawkins 1929, 216 CXII, 2–3, pl. 112; Marangou 1969, 169 f. nos. 114–115 figs. 140–141 (last quarter of the 7th cent. BC); Burr Carter 1985, 169 f. fig. 66.
354 Malnati 2007, 150 nos. III 76–77; Locatelli – Malnati 2007, 62 fig. 13 n. 32 (the fibula III.77 is said to come from grave 28 of Piazza Azzarita in Bologna). Female bronze heads on fibulas are documented in the 1st half of the 7th cent. BC in cemeteries at Bologna (Arsenale Militare, unpublished) and at Pontecchio Marconi (von Eles 1987, 112 nos. 58–59 fig. 74). Dr. Anna Dore (Museo Civico Archeologico, Bologna) kindly informed me that the fibulae were found in Bologna in the Arsenale Militare and not in the Arnaoaldi cemetery, as reported in the literature.
355 Verucchio, grave Lippi 27/1972, inv. 11392; Verucchio 1994, 161 no. 533 pl. 61, fig. 81; Boiardi – von Eles 2003, 110 f. fig. 10; 119 pl. 4, 20; Gentili 2003, 211 no. 30 pl. 191; Orsini 2010, 192 f. no. 58 fig. 58; von Eles 2015, 84 type 80.
356 Bologna, grave 131 Arnaoaldi: Negroni Catacchio 1993, 195 f. fig. 4 C; Macellari 2002, 314 f. no. 12 pl. 35; Dore 2010, 95 no. 17 fig. 17.
357 Useful reviews are available in Negroni Catacchio 1978, 176–192; D’Ercole 2013, 31–35.
As in the case of the amber bust cat. 1, both heads show several borings, which probably reflect different functions and purposes. Probably the borings were drilled at different times, to give both objects different functions and new positions; as both heads show similar borings, the same destination for both pieces can be assumed. As for the bust cat. 1, it is difficult to determine whether the heads were actually used as parts of an artefact before being reused or if the change of purpose occurred in the workshop, as a rethinking during the carving phase.

The evidence shows that the first holes to be drilled were the vertical blind ones on the top of the heads, because in the head cat. 2 this boring is filled with a tiny amber plug. Stopped bores filled with amber occur on human amber heads, and it is not apparent why the holes were bored and then plugged. If the vertical boring had reached all the way to the base, the heads could be inserted as an item in an ornament, probably using a gold wire. The blind boring is wider than the through-holes on the heads, but not wide enough to allow the passage of a bronze wire. Can one presume that in both cases, the fragility of the heads forced the artist to interrupt the boring process and to find another destination for both heads? It is quite likely. The vertical through-boring was a risky operation; it was presumably the last stage in the working process of an amber bead, as documented by the unfinished beads of the Tyrins type found in the amber workshop at Campestrin near Frattesina (commune of Grignano Polesine, province of Rovigo), dated to the 12th century BC. The presence of the same unfinished borings in both heads forces us to assume the simultaneous presence of at least two amber cutters in the workshop at Ephesos, because only one hole has been filled. In our opinion the detail proves the activity of more than one skilled worker—otherwise, the same worker would have meted out the same treatment to both heads. It seems improbable that only one head (cat. 2) could be destined for a new purpose and that the blind hole of the other head (cat. 3) would really be filled with perishable material.

Still conceived as a pair, the heads’ new purpose was to serve as female ornaments. During the 7th century BC pins in gold, silver, bronze, bone and amber were remarkably popular in the Artemision at Ephesos: P. Jacobsthal noted that the Artemision «yielded more pins than any Greek sanctuary except the Argive Heraeum». Ephesian pinheads are known outside Ephesos at least in Chios, Samos and perhaps Miletos. Pinheads of gold, bronze, crystal, bone, and amber in the shape of flowers and fruits commonly occur in the broad range of pins documented in the Artemision at Ephesos. Figured pinheads are a Near Eastern feature and they are rare at Ephesos and other Greek sites. Particularly noteworthy are two gold specimens from the Artemision at Ephesos, the first from the British and the second from the Austrian excavations: a tiny square gold finial with a female face on each side referencing the Phoenician schema of the «woman at the window», and a gold pin with two ad-dorsed female heads in Daedalic style, both dated to the second half of the 7th century BC. Figured amber pinheads are not common: in central Sicily, in the sanctuary of Polizzello (commune of Musomeli, province of Caltanissetta), a rich votive deposit including several amber beads came to light, as well as a tiny fragment of amber, with a Janus-like human face roughly reproduced, assigned to a pinhead.

358 Causey 2011, 122 f.
359 The Artemision finds offer useful comparisons regarding the beads for the fibulae: the borings of the beads inserted in the bows of fibulae have a minimum diameter of 0.35 mm (see below, cat. 489–523).
360 Bellintani et al. 2015, 422–426. In Frattesina two amber pinheads from the Final Bronze Age have been found (Negroni Catacchio et al. 2006, 1450 fig. 4).
361 Jacobsthal 1956, 33. 37. 88 (amber), recently confirmed by Pülz 2009, 89. Brøns 2017, 427 mentions the pins from the Artemision in Ephesos. See below, chap. 2.7.
362 Jacobsthal 1956, 34.
363 Jacobsthal 1956, 52–86. 63–65 for Ephesos. A Janus-shaped female ivory pinhead from the Idaean Cave at Crete has been classified as a Near Eastern import from the 8th cent. BC (Galanaki 2003).
364 Hogarth 1908a, 102 pl. 3, 8; Marshall 1911, 74 no. 963 pl. 10; Jacobsthal 1956, 64 fig. 268, with further literature; Pülz 2009, 45 f.
365 Pülz 2009, 217 cat. 10 pl. 4 and colour pl. 4, 45–47.
366 Tanasi 2009, 95. 101 no. 45 fig. 45; Stanco – Tanasi – Privitera 2012, 26. The amber deposit from Polizzello has
The two through-borings of the amber heads, one being oblique and the other horizontal, must have been used to anchor each amber head to its support, but it is hard to imagine both sets of borings in the same object being used simultaneously. All the borings are too small to allow the passage of a bronze pin. We must therefore either suggest a pin of organic material (ivory, bone, wood) or a gold wire. The comparisons mentioned above, from the votive offerings in the Artemision, would suggest at least one possible context for the reused heads. According to this hypothesis, each head could be fitted on the top of a pin with the face bent forward, as the oblique holes would indicate. It seems unlikely that both heads decorated the same (gold) pin as addorsed masks. However, the oblique course of the two through-borings could suggest such a purpose and position: Janus-like pinheads are relatively rare in continental Greece and Ionia, with some notable exceptions, such as the ivory pinhead from Crete mentioned earlier and various gold pins from the Artemision. The two heads were likely mounted on two different pins; P. Jacobsthal noted that several pins seem to constitute pairs and are mostly votive offerings, coming from sanctuaries.

Could a gold wire pass through the oblique borings, as part of a circular object, such as an earring or a necklace? Would this allow the two heads to decorate the ends of this object, always as a pair? This hypothesis is still only a theoretical possibility, to our knowledge as yet unsupported by any comparisons.

The horizontal through-borings are perhaps the last step in the working process of the two heads. The horizontal through-holes are in the lower part of both objects: the presence of the vertical blind hole in the upper part of each head forced the worker to drill the new one in the lower part, which was still free. The new holes damaged the faces’ general appearance, and they are not suitable for suspension as single pendants, because if suspended, the heads would pivot under their own weight and turn upside down. From this perspective, it is preferable to think of a string necklace, in which the heads could be suspended together with other pendants, which would keep them in place, facing the right way up. The diameter of the through-borings is compatible with the passage of a textile yarn or a thread.

According to the comparisons listed, the two heads can be assigned to the Late Geometric–Early Orientalising period and can be dated around 700 BC.
carve scarabs. Amber scaraboids have been found in Greek sanctuaries at Delos, in the Artemision at Ephesos, at Perachora, at Lindos on Rhodes and at Eretria; from the middle of the 8th century BC onwards, amber scarabs and scaraboids are documented in Etruria. Scarabs may have played a particular role in the Artemision at Ephesos – one of the architects of the Artemision, Theodoros of Samos, was also a highly appreciated gem carver: according to Herodotus, he created a precious emerald ring for the tyrant Polycrates of Samos.

Laura Ambrosini

J. Boardman assigned the scarab to a Syrian workshop. The find context in area E of the Limestone Basis D, related to the destruction layer of Dipteros 1, yielded pottery belonging to the late 7th and the first third of the 6th century BC and suggests a chronology around 600 BC.

Alessandro Naso

Bird-shaped protome (cat. 5) pls. 8, 2; 38, 5

Excavation inv. ART 870352.3; AMS inv. 143/61/87 (T 12)

Amber pendants in the shape of a bird’s head are rare. In the Artemision at Ephesos, three ivory duck heads have been discovered, all differing in size, quality and style, as well as gold and silver statuettes and brooches reproducing small birds. An amber bird comes from a tomb of the Kerameikos cemetery in Athens, dated to the third quarter of the 8th century BC.

Very stylised, tiny amber ducks were inserted as spacers in multi-string necklaces and belts in Oenotrian female burials of the 8th century BC at Francavilla Marittima, in modern-day Calabria, in several necropolises of the 7th century BC in modern-day Basilicata, and at Sala Consilina in southern Campania. Amber birds of several shapes dating to the 6th and the 5th century BC were found in Serbia at Novi Pazar, Atenica and other sites, and in the Artemision at Ephesos. Amber pendants shaped as double protomes of bird heads have been discovered in Early Iron Age tombs at Torano Castello and Crichi in modern-day Calabria. Similar finds have come to light on the Eastern Adriatic coast in burials explored at Nin in Croatia and Osovo in Bosnia.

The carved ambers representing ducks or swans discovered in sanctuaries dedicated to the cult of Artemis have been connected to the Greek myth concerning the origins of the fossil resin. According to one version of the myth, when the Greek hero Meleager died, his sisters were changed into birds by Artemis, and migrated from Greece to the lands beyond India, where...
they wept tears of amber for their dead brother. Birds and waterbirds are often reproduced on bone and ivory votive offerings at the sanctuary of Artemis Orthia at Sparta, and in isolated Laconian finds, such as a bronze thymiaterion from Tarentum showing Artemis dancing with a bird on her head, as well as on the bronze hydria from Grächwil.

According to the comparisons and its style, the amber protome can be dated from the second half of the 8th to the mid 7th century BC.

Laura Ambrosini

The duck protome was probably the head of a pin made of either metal, ivory or bone. The fixing system was meant to keep the protome in place.

Alessandro Naso

Female statuette (cat. 540)

AMI inv. 2912

This statuette, despite its size, finds some stylistic comparisons in the small votive Greek and eastern Greek sculpture, mostly made in clay and ivory, inspired by Near Eastern models. One common characteristic is the lack of arms and hands and the absence of any definition of the legs in the frontal view. Instead breasts and glutes emphasise its female gender. The lack of visible limbs could mean the body is represented as shrouded by a long and heavy cloth, covering arms, hands and legs. The lack of genital organs may support this hypothesis, since their accentuation can be a peculiarity of nude female images, so as to emphasise the sexual potency. Several female figures, in gold and ivory, are documented at the Artemision at Ephesos, and mostly represent dressed figures. The veil covering the head is a distinctive feature of several statuettes from the Artemision at Ephesos, such as two gold ones, and some ivory figures found both in this sanctuary and in a tomb at Bayindir near Elmali in Southwest Türkiye. Compared to the smaller amber figure, the remarkable size of these female figurines allowed the artist the chance to include more details, such as the veil worn over a polos and tucked into a sizeable belt. T. Şare convincingly considered the pieces from Ephesos and Bayindir as belonging to the same stylistic group and dated them to the late 7th century BC. She suggested the group should be classified as a West Anatolian production, strictly connected to the cult of Artemis Ephesia. The arrangement of the hair, which aims to reproduce a veil covering, is also attested on an ivory statuette from the Heraion of Samos, dated to the late 8th/early 7th century BC and on faience finds from various sites, dated to the second half of the 7th century BC. The same style of the amber figure also characterises a small basalt head from the votive deposit of Kamiros on Rhodes.

Laura Ambrosini

387 Dawkins 1929, 216 f. pl. 113 (carved on bone plaques); 235 pls. 156. 158 (incised on the lower surfaces of ivory animals carved in the round); Burr Carter 1985, 172 f. 245–248.
390 Pülz 2009, 33–39, with references; see also Şare 2010.
391 Böhm 1990, passim; quotation from Webb 2016, 122 with references.
392 For the gold statuettes see Pülz 2009, 39, with references; the ivories, which are of exceptionally high quality, are not entirely published (Hogarth 1908a; Seipel 2008, 161–166 nos. 109–111, 114).
393 Pülz 2009, 214 cat. 1 pls. 1–2 colour pls. 1–2; 216 cat. 6 pl. 3 and colour pl. 3 for the gold figures; Şare 2010 for the ivories from Bayindir.
394 Şare 2010.
396 Webb 1978, 149 f. nos. C 25–C 28 pl. 16; Webb 2016, 122 discusses this group of figurines.
397 Jacopi 1932, 287 no. 3; 289 fig. 13.
Amber statuettes are very rare in the 8th and 7th centuries BC398 and become more numerous only later. In Etruria the workshops at Veii and Vetulonia played a special role, and in the 7th century BC several types of geometric and figured artefacts appear, including also female figures: the Circolo dei Monili and Circolo di Bes at Vetulonia, both dated to the early 7th century BC, constitute remarkable contexts, requiring further research399.

An exceptional context is tomb VI at Satricum in Latium, dated between 650 and 640 BC, which yielded over 500 amber pendants; stylistically, these are actual statuettes, carved in the round. The Satricum figurines portray women with their arms arranged in either the pudica pose or placed on the abdomen, reflecting the iconography of Astarte, as developed in the Near East: some pendants are similar to the Ephesos exemplar, and are characterised by stocky forms and claw-like feet400. Other amber pendants, reproducing a female figure in the pudica pose have been found in Central Italy, mostly in Etruria and Latium vetus, both as interments in burials dated to the first half of the 7th century BC and as votive offerings in sanctuaries from the end of the 7th century BC401. The rich occurrence of amber finds in Italy, both as statuettes and pendants, allowed several scholars to suggest that carved amber may have followed the route from Italy to Greece402.

The absence of hands and the lack of a separation between the legs in frontal view are both features which survive in later finds, such as in a now lost amber statuette found in 1743 at Adria in Northern Italy, and luckily known through a drawing (pl. 8, 4)403. The work can probably be considered as a votive offering dedicated to a female deity in a local sanctuary. The chronology of the Etruscan presence at Adria and the work’s style both support the dating of this statuette to sometime around the middle of the 6th century BC404.

According to its style and the comparisons listed, the amber statuette from Ephesos can be dated to the second half of the 7th century BC.

\textit{Alessandro Naso}

398 In the 2nd half of the 8th cent. BC, two amber female statuettes were deposed in southern Etruria in the rich female grave Laghetto 2161 at Caere (Rizzo 2018, 70–72 fig. 41). Closely related to these statuettes are some pendants, such as those reproducing a man from Veii, grave QF HH 11–12 (Berardinetti Insam 2001, 102 f. no. I.G.5.33.3) or some reproducing women from Narce (RussO Tagliente 2016, 397–399, with previous bibliography).

399 For the two graves see still Falchi 1891, 96–102 (Circolo dei Monili) and 104–109 (Circolo di Bes); Randall McIver 1924, 107 fig. 25; von Hase 1989, 1054 fig. 20; Colombi 2018, 173 pl. 79, 2–3 (female statuettes from Circolo dei Monili). Good photographs of some amber finds from Vetulonia are in Cygielman – Palmieri – Rafanelli 2005 and Cygielman – Spaziani – Rafanelli 2009. The carved ambers from Vetulonia have mainly been reviewed by Massaro 1943 and Pagnini 2006. An amber pendant reproducing a woman seated on a throne with a baby’s head between her legs from the rich grave of the Monili in Vetulonia, early 7th cent. BC (Falchi 1891, 101 pl. 7, no. 4; Colombi 2018, 173 pl. 79, 1) finds a comparison in a similar amber statuette (or a pendant [?]) reproducing a woman seated on a throne, probably imported from Etruria, found in modern-day Basilicata, grave Alialnello 546, early 6th cent. BC (the statuette dates to the 7th cent. BC): S. Bianco in: Magie 2005, 101 f.; Bianco – Preite 2014, 422; by contrast Rocco 2020, 6 fig. 14 interpreted the image as the reproduction of a Greek female deity. A review of amber female statuettes dating to the late 6th–5th cent. BC is given in: Palavestra – Krstić 2006, 134–137.

400 Waarsenburg 1995, 404–455 for the amber pendants and 427–429 for the Astarte figurines, which have also been produced in faience (Webb 2016, 122). The female pendants (Waarsenburg 1995, 416–418. 468 f. nos. 6, 1–9) have been reproduced with good photographs in: Arancio – Massimi 2012, 77–79.

401 Pagnini 2006, 146; for Etruria and Latium vetus see L. M. Michetti in: Ambre 2007, 161 f. A pendant representing a woman from Praeneste, grave Galeassi also belongs to the group (Ambrosini 2015, 41 no. 8).

402 Waarsenburg 1995, 428 with previous literature.

403 Robino 2009, 78 f. pl. 19. I owe the particular information on this statuette to L. Ambrosini.

404 Recently the presence of a cult to Hera Argiva at Adria has been suggested (Rossignoli 2004, 210 f. 214 f.; Robino 2009, 79).
2.2 BEADS (CAT. 6–296. 541–591)

2.2.1 Introduction

The amber beads of the Artemision of Ephesos are the largest group of amber findings, a total of 412 amber beads having been found in the sanctuary. The beads occur in all kinds of different shapes, so the introduction to the typology, the comparison with other amber typologies and the definition of individual types have to be dealt with first.

The Ephesian amber beads were part of votive offerings to Artemis, and their original shapes are reconstructable through comparisons with better-preserved finds. Amber ornaments created as grave goods or votive offerings are common in Mediterranean sites, and they were found all over Greece, the Balkans and mostly Italy. Because of their widespread diffusion, the Mediterranean is investigated as a study area. Some shapes are found over the entire study area while other shapes are not so widely diffuse.

2.2.2 Amber beads from the Artemision of Ephesos: typology and distribution

H. C. Beck was one of the first scientists who proposed a typology of beads made of different materials. In 1928 he drew up a general typology of prehistoric beads, which forms the basis for later typologies. Based on Beck’s classification, in 1981, E. Sprincz and C. W. Beck created a typology for Late Bronze Age amber beads in Hungary. This classification also fits the Early Iron Age beads from the Artemision. The methodology set up by Sprincz and Beck is especially useful here. Besides their general appearance, the scholars classed the Hungarian amber beads based on the ratio between their height and diameter. Another element is the design of the edges. The present work follows this classification scheme, but the edge design is not considered a criterion. Some forms described by Sprincz and Beck also appear in the types of Ephesian amber beads. In particular, the groups are classified as follows: globular, circular, disc-shaped, conical and biconical beads.

N. Negroni Catacchio, A. Massari and B. Raposso suggested a typology for Italian amber beads dating to the Bronze Age. A total of 13 types are described by the authors, including beads of the types Tiryns and Allumiere. Some types can be connected to the bead types from Ephesos. This highlights that there is an overlap in the types 1–3 and 8. The classification suggested in 2006 by L. Benedetti and M. Cardosa for the Early Iron Age amber beads from Calabria is also used for the creation of the typology. However, some changes and adjustments are needed.

Amber beads are often associated with glass beads, as part of a single thread. Among general classifications for beads of different materials, typologies of Iron Age glass beads are especially well established. Based on this connection, typologies of glass beads were also taken into consideration in this paper. Our typology of amber beads is described and compared to the previous ones (tab. 4).

In 1966 D. E. Strong published the amber finds of the Artemision of Ephesos preserved in the British Museum, but he did not develop a typology. Development of the types started deductively, by dividing the objects into broad categories, and on the other hand inductively, by introducing other subtypes.
Table 4 Types of amber heads

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Height/ Diameter (cm)</th>
<th>Beck 1928</th>
<th>Sprincz – Beck 1981</th>
<th>Negroni Catacchio et al. 2006</th>
<th>Benedetti – Cardosa 2006</th>
<th>Koch 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>globular</td>
<td>1/1</td>
<td>I.C.1.a</td>
<td>VI</td>
<td>–</td>
<td>II</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>ring-shaped</td>
<td>1/2</td>
<td>I.B.1.a</td>
<td>II; III; IV</td>
<td>–</td>
<td>–</td>
<td>b; c</td>
</tr>
<tr>
<td>3b</td>
<td>angular disc-shaped</td>
<td>1/4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3c</td>
<td>disc-shaped, with a horizontal hole</td>
<td>1/4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4a</td>
<td>simple cylindrical</td>
<td>5/1, 3/1, 1/1</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>III</td>
<td>f; g; h</td>
</tr>
<tr>
<td>4b</td>
<td>cylindrical, with faceted surface</td>
<td>5/1, 3/1, 1/1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4c</td>
<td>spiral</td>
<td>5/1, 3/1, 1/1</td>
<td>–</td>
<td>–</td>
<td>5 (?)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4d</td>
<td>cylindrical with spiral ends</td>
<td>5/1, 3/1, 1/1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>conical</td>
<td>2/1, 1/1</td>
<td>I.B.2.d</td>
<td>X</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6a</td>
<td>simple biconical</td>
<td>2/1, 1/1, 1/2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>VI.1</td>
<td>k</td>
</tr>
<tr>
<td>6b</td>
<td>compressed biconical</td>
<td>2/1, 1/1, 1/2</td>
<td>I.B.2.f</td>
<td>IXB; IXC</td>
<td>8, var. c–d</td>
<td>VI.2</td>
<td>–</td>
</tr>
<tr>
<td>6c</td>
<td>long biconical</td>
<td>1–1/2</td>
<td>I.C.2.f</td>
<td>IXD; IXE</td>
<td>8, var. a–b</td>
<td>VI.3; VI.4</td>
<td>–</td>
</tr>
<tr>
<td>6d</td>
<td>rosette-shaped</td>
<td>1–1/2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>m</td>
</tr>
<tr>
<td>7</td>
<td>square</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>III; IX–XI</td>
<td>–</td>
</tr>
</tbody>
</table>

In this paper, a bead is defined as a small object, often but not necessarily round. A perforation runs through the entire object. Furthermore, the bead is assumed to have had an ornamental function (below, chap. 2.2.3).

To ensure the documentation and the catalogue are easier to understand, it was recorded at which points of a bead the measurements have been taken. Bead diameter, diameter of the bore-hole and height of the object are included. For square beads, the indication of the diameter can be replaced by length and width. Firstly the diameter, secondly the height and finally the diameter of the bore-hoie are recorded. The order of diameter and height can change for cylindrical and long biconical beads. For these two types, the relevance of height and diameter increases. A different scheme is suggested for square beads. For these, the diameter of the hole can be specified in addition to the length and width.

The rough division into types is based on the general shape and uses geometric shapes. Another refinement of some major categories was carried out, based on specific characteristics. So seven primary groups with associated subgroups were created. An eighth category (other beads) was created for non-classifiable forms. This category includes 74 pieces (pl. 9).

The beads discussed here were found during the excavations by the British Museum (118 beads) and by the OeAI (294 beads). Any differences between the two groups will be discussed when describing the different types.

As for all amber finds from Ephesos, the beads also constitute the largest amber context to be found so far in the Aegean. In sanctuaries on the Greek mainland, the Aegean islands and in Ionia, amber beads represented a popular votive offering for deities. Beads have been found in
Aegean sanctuaries such as in Rhodes (Lindos, Athenaion)\(^{411}\), Ithaca (Aetos)\(^{414}\), Perachora (Hera Limenia)\(^{415}\), Eretria (Apollonion)\(^{416}\), Chios (Kato Phana)\(^{417}\), Kythnos\(^{418}\), Miletos (Apophrodision) and Claros (Apollonion)\(^{419}\). Lindos on Rhodes represents one of the most extensive amber contexts found in a Greek sanctuary, with over 200 known amber objects. Forty-six amber objects have been found in the temple of Aetos at Ithaca, dated to the sub-Geometric and Orientalising phases\(^{420}\). At Cyprus amber beads are known from burials in the necropolis at Enkomi\(^{421}\).

Unlike the Greek mainland, Aegean islands and Ionia, the Central Mediterranean region played a primary role in the spread of amber beads. In the Early Iron Age, a significant centre of amber processing can be identified on the Adriatic coast of Italy at Verucchio\(^{422}\). In the second half of the 7th century BC, the area of Picenum took over the role of main amber centre in Italy's eastern regions\(^{423}\). On the opposite shore of the Adriatic Sea, the two sites of Novo mesto (Slovenia) and Novi Pazar (Serbia) constitute important centres of amber processing, both closely connected to Italy\(^{424}\).

From the 8th and 7th centuries BC, graves with amber ensembles containing beads have been identified in Southern Italy, mostly concentrated in Basilicata\(^{425}\). These ornamental objects are located primarily, but not exclusively, in rich female burials. Amber beads as grave goods from the Bronze and Early Iron Age were also found in Apulia\(^{426}\), Calabria\(^{427}\) and Sicily\(^{428}\). In many regions of the Balkans, such as Croatia\(^{429}\), Bosnia\(^{430}\), Serbia\(^{431}\), Kosovo\(^{432}\), Albania\(^{433}\) and Bulgaria\(^{434}\), amber beads have been discovered in several localities. North of the Alps, necklaces with amber beads are found at Hallstatt\(^{435}\). Typically, beads of several types are strung together in the same necklace.

\(^{411}\) Blinkenberg 1931, 110 ff.; Strong 1966, 22.
\(^{412}\) Heurtley – Robertson 1948.
\(^{413}\) Dunbabin 1962.
\(^{414}\) Huber 2003, 1, 83, 86 ff.
\(^{415}\) Lamb 1934/1935, 154 fig. 11, 1–6.
\(^{416}\) Amber finds from sanctuaries at Kythnos are mentioned in preliminary reports: Mazarakis Ainian 2010, 35 pl. 20, 4; Koukoulidou et al. 2017, 241 fig. 138 a, upper row; see also Mazarakis Ainian 2019, 106.
\(^{417}\) The ambers found from the excavation in the Aphrodision at Miletos, and the Apollonion at Claros are both unpublished. Courtesy of V. von Graeve and G. Günay von Graeve, it was possible to view the amber finds from the Aphrodision at Miletos, including also several amber beads. S. Verger kindly reported the existence of a few amber beads among the finds from Claros.
\(^{418}\) Verucchio 1994; Boiardi et al. 2006; Malnati 2007; von Eles 2010; Bentini et al. 2020.
\(^{421}\) For amber objects in Apulia see P. Bellintani in: Agamennone 2010, 141–146 (Bronze Age) and Montanaro 2012, 31–58 (Iron Age, 7th–4th cent. BC).
\(^{422}\) L. Benedetti and M. Cardosa briefly mentioned some important amber sites in Calabria, such as Torre del Mordillo, Francavilla Marittima, Corigliano, Raggiano, Torano Castello, Bisignano, Castiglione di Paludi, Murge di Strongoli, Tirio, Crici Simeri, Torre Galli, Castellace di Oppido Mammertina, Calanna, Onofrio di Roccella, Pirettina, Canale-Janchina-Patarriti-Scorciabove, but they did not name the types of the individual beads, so it is not possible to identify the shapes (Benedetti – Cardosa 2006).
\(^{423}\) Culturro 2007, 389 ff.
\(^{424}\) Hiller 1991.
\(^{425}\) Benac – Ćović 1957.
\(^{426}\) Palavestra 1993; Palavestra – Križ 2006; Balkani 2007.
\(^{427}\) These finds have been published by Palavestra 1997 (line drawings) and Palavestra – Krstić 2006 (photographs).
\(^{428}\) Kurti 2012.
\(^{430}\) Hoernes 1921; Kromer 1959; Hodson 1990.
The group of globular beads includes 28 objects. The beads are approximately spherical, and the surface is well rounded. This shape is usually described as a pearl and is common all over the Mediterranean over an extended period. A common feature in globular beads is a narrow bore-hole with a size of 0.1–0.15 cm, in some cases to 0.2 cm and only in one case to 0.3 cm (cat. 21). The objects’ surface treatment varies: some pearls are entirely smooth, like cat. 23, while others are faceted, like cat. 7 or cat. 15.

As this is a basic shape, globular beads are widely distributed. Globular amber beads have been found in all sanctuaries in which amber items are detectable in Ionia436, the Aegean437 and the Greek mainland438.

In the Early Iron Age, globular beads were popular ornaments among members of the elite in several regions in Italy. In Northern Italy, at Este439, Bologna440 and Verucchio441, globular beads were found mainly as part of single-row sequences. In Etruria, in Central Italy, globular beads occur in burials from the Early Iron Age onwards at Vetulonia442, Vulci, Cerveteri and Veii443. In Middle-Adriatic Italy, globular beads are well known in the 8th and 7th centuries BC at Fossa444 and Campovalano445. Globular beads have also been documented in northern Campania, at Nola446, Maddaloni447 and Cumae448. In Southern Italy, amber beads occur in several localities in modern-day Basilicata. In Braida di Vaglio a young woman was buried with an amber sceptre and a parure of several amber necklaces, composed of beads of different types, including a gold diadem (pl. 15)449. Chiaromonte provides a large variety of well-preserved sequences, including globular beads450. Globular beads occur in necklaces, girdles and other rich amber ornaments from Alianello451 and Latronico452; they are also documented at Serra d’AIELlo in Calabria453 and occur already in the Late Bronze Age sites in Calabria454 and Sicily455. In Slovenia globular beads

436 Among the amber finds from the Aphrodision at Miletos there are also globular beads (see n. 419).
437 Kato Phana-Chios (Lamb 1934/1935, 154 fig. 11, 6); Lindos (Blinkenberg 1931, 109–113); Ithaca (Heurtley – Robertson 1948, 17); Enkomia (Murray et al. 1990, grave 66, 43 no. 301 pl. 9).
438 Perachora: Dunbabin 1962, 524 pl. 195, H 8–9; Eretria (Huber 2003, II, 56 f. nos. O 148–150 pl. 47).
439 Many globular beads were found at Este: these are often together with disc-shaped beads and in single rows composed of amber, glass, coral and other materials: Villa Benvenuti, graves 78 and 91 (Capuis – Chieco Bianchi 2006, 122 no. 15 pl. 49; 164 no. 8 pl. 77).
440 Bologna: tomba degli Ori (Morigi Govi 1971, 228 f.), Savena grave 123 (Malnati 2007, 147 no. III.65); Benacci grave 251 (Malnati 2007, 147 no. III.66).
441 Verucchio 1994; Gentili 2003; Tamburini Müller 2006; von Eles 2010.
446 Nola, Torricelle, grave 112: F. Grasso in: Ambre 2007, 192 no. III.159.
447 Calatia, grave 201: M. R. Borriello in: Ambre 2007, 199, 201 no. III.169.
448 Cumae, sporadic find: M. R. Borriello in: Ambre 2007, 211 no. III.188.
450 Alianello, graves 316 (Magie 2005, 68, 77), 356 (Magie 2005, 90) and 299 (Magie 2005, 93).
451 Latronico, grave 83 (early 7th cent. BC: Magie 2005, 84. 98 f.; S. Bianco in: Ambre 2007, 238 nos. III.242–244).
452 Serra d’AIELlo, grave 6 (early 8th cent. BC): L. La Rocca in: Ambre 2007, 251 no. III.295.
453 Benedetti – Cardosa 2006.
454 Beck – Hartnett 1993; Angelini – Bellintani 2017.
are represented at Most na Soči on a pectoral and at Novo mesto. Outside Slovenia, globular beads were found throughout the Central Balkans at Novi Pazar and in graves dated from the 7th to 4th centuries BC in Serbia, Bosnia, Kosovo, Albania and Bulgaria. Several globular beads have been found in the burials at Hallstatt (Austria).

Globular beads are an enduring amber bead type and are not typical of one particular period. In the 7th to the 6th century BC they were common in the whole Mediterranean area, especially in Southern Italy.

Type 2: Ring-shaped beads (cat. 31–64, 544–546)

A regular shape and a D-shaped cross-section are typical for ring-shaped beads, which constitute 37 items. Type 2 beads are similar to biconical beads, but there are small differences in shape. In contrast to biconical beads, ring-shaped beads have no pointed ends at the widest point, and their cross-section is round. Hence, compared to disc-shaped beads, ring-shaped beads are thicker. These beads' diameter measures between 0.5 and 1.5 cm, the height is between 0.2 and 1 cm and the bore-hole diameters measure between 0.2 and 0.5 cm. An exception is bead cat. 544: the diameter is 3.25 cm, the height is 1.4 cm, and the diameter of the drilling is 0.3 cm. In contrast to the other types, the ring-shaped beads are a very heterogeneous group. Beads cat. 36, 37 and 38 are especially good examples of the pearl-shaped beads. The majority of ring-shaped beads come from the Austrian excavations.

Besides globular beads, circular beads were the most widely used shape of beads all over the Mediterranean. Circular beads can be found in Greek sanctuaries at Eretria, Perachora, Chios and Cyprus. Circular beads also occur in several regions of Italy, as in the funerary interments at Vetulonia and Cerveteri. Further north, circular beads are common in Bologna, Este, and

458 V. Krstić in: Balkani 2007, 91 no. 42. A. Palavestra defined a bead type from Novi Pazar as »spherical and flattened globular beads« and united globular beads and disc-shaped beads. All in all, 5197 complete and 833 fragmented beads of this type are known from Novi Pazar (Palavestra – Krstić 2006, 278 f.).
460 Glasinac: Benac –ović 1957, 69 pl. 14, 3 (Ililjak, tumulus III, grave 23); 70 pl. 19, 3 (Ililjak, tumulus II, grave 1); 75 pl. 30, 4 (Criluci, tumulus I, grave 2); 84 without fig. (Rudine-Rusanović, tumulus I, grave 5).
462 Kurti 2012, 108 pl. 4, no. 42.
463 Katrishte, tombs 16–17 (Gergova 2009, 180 figs. 5–6); Gradec (7th cent. BC: Gergova 2009, 179 fig. 1).
464 Hallstatt: Kromer 1959, 92 pl. 58, no. 9 (grave 343); 102 pl. 67, no. 9 (grave 413); 122 pl. 78, no. 14 (grave 527); 143 pl. 156, no. 5 (grave 676).
466 Eight globular amber beads from Perachora have been compared with beads from Vetulonia, Lindos and Chios: Dunbabin 1962, 524 p. 195, H 10–17.
467 Lamb 1934/1935, 154 fig. 11, 2.
468 Enkomi, grave 66: Murray et al. 1900, 43 no. 304 pl. 9.
472 Este, Villa Benvenuti, graves 78 and 91 (Capuis – Chioco Bianchi 2006, 122 no. 15 pl. 49; 164 no. 8 pl. 77); Este, Capodaglio, sporadic find (E. Mangani in: Ambre 2007, 130 f. no. III.21).
and in the 5th century BC in Genoa475. Ring-shaped beads also occur in Picenum and its surrounding area. At Novilara474, Alfedena475, Campi476 and Fossa477, several ring-shaped amber beads are found in necklaces. Three ornamental pendants were found in fibulae at Numana478, consisting of several rows of amber beads. Type 2 beads have a wide distribution in Southern Italy, especially in northern and southern Campania479. Basilicata480, Apulia and Calabria481.

On the opposite shore of the Adriatic, a large number of type 2 beads has been found, especially in Novo mesto482, but also at San Canziano del Carso/Škocjan483 and Most na Soči484. Several circular beads were identified in Croatia at Nin485. Together with globular beads, circular beads represent the largest bead type at Novi Pazar and also occur in Early Iron Age sites in Serbia486, Macedonia487, Bulgaria488, Bosnia and in several sites at Glasinac489, as well as in Kosovo, in graves dated to the 6th to 5th centuries BC490 and Albania491. Many ring-shaped beads belonging to
2.2 Beads

67 necklaces were found in the graves at Hallstatt\(^\text{492}\). Like globular beads, ring-shaped beads have a long lifespan.

Type 3: Disc-shaped beads (cat. 65–104, 547–551) pl. 10, 4; 39–41; 58

Disc-shaped beads have a cross-section or length at least 1.5 times larger in proportion to the height. The edges of the disc-shaped beads can be both clearly defined or rounded. The bore-hole may extend both horizontally and vertically through the object. The course of the bore-hole is a criterion for distinguishing between subtypes of the disc-shaped bead. Globular beads may also have slightly flat areas, but these beads are significantly thicker. This bead type includes a total of 45 pieces.

As to size, disc-shaped beads register a diameter between 0.5 and 1.4 cm; the height varies between 0.1 and 0.5 cm; and the diameter of the bore-hole ranges between 0.1 and 0.4 cm. Bead cat. 85 exceeds these measurements: 2.3 cm (diameter), 1 cm (height) and 0.2 cm (diameter hole).

Due to the diversity of disc-shaped beads, the following subgroups were formed among the finds from the Artemision:

19 round disc-shaped beads (type 3a), cat. 65–82, 547
5 angular disc-shaped beads (type 3b), cat. 83–84, 548–550
21 disc-shaped beads with a horizontal bore-hole (type 3c), cat. 85–104, 551

Disc-shaped beads were a popular shape all over the Mediterranean in the Early Iron Age and were spread over a wide area. Nevertheless, not all subtypes prove equally frequent. In the Late Bronze Age and the Early Iron Age round, disc-shaped beads (type 3a) are more common than angular, disc-shaped beads (type 3b). The third type, disc-shaped beads with a horizontal bore-hole (type 3c), is prevalent in the 6th to the 5th century BC.

Type 3a: Round disc-shaped beads (cat. 65–82, 547) pl. 10, 4; 39–41; 58

Flat and round shapes with a central, vertical bore-hole are a feature of round, disc-shaped beads.

This type includes 19 pieces, and the diameter varies from 0.5 to 1.4 cm. The height measures between 0.2 and 0.5 cm, and the diameter of the bore-hole measures between 0.1 and 0.4 cm. Both beads with rounded edges and beads with defined, angular edges can be found in this subtype. As a general rule, ambers with a lenticular cross-section have rounded edges, and the ones with a square cross-section tend to have angular edges. Beads cat. 65 and 68 of the type 3a are particularly good examples of this type.

Disc-shaped beads are documented in sanctuaries on the Aegean islands and mainland Greece, at Kato Phana on Chios\(^\text{493}\) and at Perachora\(^\text{494}\), respectively.

492 Hallstatt: Kromer 1959, 56 pl. 13, no.18 (grave 118); Hodson 1990, 142 pl. 3, no.2 (grave 121); Hodson 1990, 142 pl. 5, no.4 (grave 136); Kromer 1959, 64 f. pl. 21, no.9 (grave 174); Hodson 1990, 143 pl. 8, no.12 (grave 196); Hodson 1990, 143 pl. 8, no.15 (grave 200); Kromer 1959, 69 pl. 23, no.11 (grave 208); Kromer 1959, 70 pl. 26, no.14 and Hodson 1990, 143 pl. 9, no.4 (grave 210); Kromer 1959, 71 pl. 29, no.16 (grave 220); Kromer 1959, 81 pl. 45, no.11 (grave 281); Kromer 1959, 85 pl. 52, no.5 (grave 300); Kromer 1959, 76 pl. 31, no.14 (grave 324); Kromer 1959, 85 f. pl. 49, no.7 (grave 302); Kromer 1959, 92 pl. 58, no.9 (grave 343); Kromer 1959, 92 pl. 54, no.7 (grave 347); Kromer 1959, 100 pl. 66, no.17 (grave 404); Kromer 1959, 102 pl. 67, no.18 (grave 413); Kromer 1959, 104 f. pl. 72, no.7 (grave 434); Kromer 1959, 114 pl. 91, no.5 (grave 495); Hodson 1990, 149 pl. 35, no.3 (grave 505); Hodson 1990, 149 pl. 40, no.4 (grave 521); Kromer 1959, 121 f. pl. 78, no.14 (grave 527); Kromer 1959, 123 pl. 91, no.21 (grave 542); Kromer 1959, 127 pl. 107, no.9 (grave 569); Kromer 1959, 133 pl. 116, no.6 (grave 603); Kromer 1959, 142 pl. 130, no.9 (grave 671); Kromer 1959, 142 pl. 138, no.9 (grave 672); Kromer 1959, 143 pl. 156, no.5 (grave 676); Kromer 1959, 143 pl. 139, no.19 (grave 678); Kromer 1959, 145 pl. 123, no.7 (grave 694); Kromer 1959, 146 pl. 124, no.2 (grave 696); Kromer 1959, 148 pl. 148, no.5 (grave 710); Kromer 1959, 149 pl. 150, no.6 (grave 717); Kromer 1959, 163 pl. 168, no.16 (grave 834); Hodson 1990, 156 pl. 51, no.7 (grave 929a).

493 Lamb 1934/1935, 154 fig. 11, 1–2.

Beads of type 3a are widely distributed in Italy. Specimens have been used as elements of necklaces in graves at Este\(^{495}\) and Genoa\(^{496}\), Verucchio\(^{497}\) and Vetulonia\(^{498}\). At Bologna six round disc-shaped amber beads were located on a spindle and 13 formed a sequence\(^{499}\). In Central-Eastern Italy sequences with round disc-shaped beads occur in Novilara\(^{500}\), Campli\(^{501}\) and Fossa\(^{502}\). In a rich grave at Numana, they are inserted in pendants of various shapes\(^{503}\). Further south, type 3a beads are widespread in Basilicata at Guardia Perticara (8th–7th cent. BC)\(^{504}\), Alianello (7th cent. BC)\(^{505}\), Chiaromonte (7th–6th cent. BC)\(^{506}\) and Banzi (6th cent. BC)\(^{507}\). This type of bead is also attested in Campania\(^{508}\) and Calabria\(^{509}\).

Both very small and larger round disc-shaped amber beads were found in large numbers in the Early Iron Age at Stična, Novo mesto, San Canziano del Carso/Škocjan and Kompolje in Slovenia\(^{510}\). Among other items, this bead type was used here as part of a bronze pendant\(^{511}\). Already in the 8th century BC, round disc-shaped beads existed in the graves of Nin (Croatia)\(^{512}\). Round disc-shaped amber beads have come to light in some localities in Serbia: Glogovik (Lantisko groblje), Vranište (Ražana), Atenica (Umke) and Trnjaci (Pilatovići)\(^{513}\).

Beads of type 3a appear in Bosnia at Glasinac\(^{514}\), in Albania\(^{515}\) and in Kosovo\(^{516}\) in graves belonging to the 6th to 5th centuries BC. Furthermore, round disc-shaped beads are found in Hallstatt\(^{517}\).

\(^{495}\) Este, Villa Benvenuti, graves 78 and 91: Capuis – Chieco Bianchi 2006, 122 no. 15 pl. 49; 164 no. 8 pl. 77.

\(^{500}\) Novilara, Molaroni grave 2: Beinhauer 1985, 690 no. 13 pl. 2, nos. 22–23.

\(^{505}\) The grave Alianello 315 dates to the 7th cent. BC and also yielded a diadem of disc-shaped amber, ivory, glass and bone beads (Magie 2005, 61).

\(^{507}\) Banzi, grave Piano Carbono 426, around 550 BC: Montanaro 2012, 37 fig. 32.

\(^{508}\) Two disc-shaped beads in a sequence with bronze spacers from Nola, grave 112 (F. Grasso in: Ambre 2007, 192 no. III.159); Calatia, grave 201 (M. R. Borriello in: Ambre 2007, 199, 201 no. III.169); Santa Maria Capua Vetere, tomb 1582a (V. Sampaolesi in: Ambre 2007, 205 nos. III.174–175); Cumae, sporadic find, disc-shaped bead with clearly defined edges (M. R. Borriello in: Ambre 2007, 208. 211 nos. III.186–187).

\(^{513}\) Palavestra – Krštic 2006, 313 nos. 482–483 (Glogovik); 317 no. 489 (Ražana, mound V, grave 1); 319 no. 491 (6th cent. BC: Pilatovići); 332 nos. 521–523 (late 6th–early 5th cent. BC: Atenica, Umke).

\(^{514}\) Glasinac: Benac – Cović 1957, 66 pl. 7, 6 (Ilijak, tumulus IV, grave 2); 69 pl. 14, 3 (Ilijak, tumulus III, grave 2); 70 pl. 19, 3 (Ilijak, tumulus II, grave 1); 66 pl. 8, 6 (Gosinjan Planina, tumulus XXXVII, grave 1); 75 pl. 30, 4 (Čitluci, tumulus I, grave 4); 81 pl. 46, 9 (Potpećine, tumulus IV, grave 1).

\(^{515}\) Kurti 2012, 106 pl. 2, nos. 9–37–42; 108 pl. 4, nos. 1–6.

\(^{516}\) Palavestra 1997, 29 f. pl. 7 b, 1–3 (Romaja); 31. 33 f. pl. 8 c, 2–3 (Karagač) = Palavestra – Krštic 2006, 347 no. 561 (necklace).

\(^{517}\) Hallstatt: Kromer 1959, 56 pl. 13, no. 18 (grave 118); Hodson 1990, 142 pl. 3, no. 2 (grave 121); Hodson 1990, 136 pl. 5, no. 4 (grave 136); Kromer 1959, 64 f. pl. 21, no. 9 (grave 174); Hodson 1990, 143 pl. 8, no. 12 (grave 196); Hodson 1990, 8, no. 15 (grave 200); Kromer 1959, 69 pl. 23, no. 11 (grave 208), 70 pl. 26, no. 14 (grave 210);
2.2 Beads

Type 3b: Angular disc-shaped beads (cat. 83–84, 548–550)
pls. 41, 58

Angular disc-shaped beads can roughly be described as pentagonal and hexagonal. With a total of five pieces, this subgroup represents a small type but should be considered separately from the round disc-shaped beads due to its uniqueness. The diameters and lengths of the angular disc-shaped beads vary from 0.6–1 cm, the height between 0.4 and 0.5 cm, and the diameters of the holes measure between 0.15 and 0.2 cm. Differences appear in diameter and length, not in height. Looking at the beads individually, it is striking that beads *cat. 83 and 84* have a regular tilting and thus assume the shape of a pentagon or hexagon. The beads *cat. 548–550*, however, reveal an irregularly shaped base.

Angular disc-shaped beads represent a rare form: similar but not identical to the square, biconical amber beads from Marsiliana d’Albegna in Etruria. The angular disc-shaped beads from Albania provide a better comparison.

Type 3c: Disc-shaped beads with a horizontal bore-hole (cat. 85–104, 551)
pls. 41, 58

Flat beads with a horizontal perforation are quite different from the items described so far. These 21 beads have a flat, oval basic shape and a horizontal bore-hole runs through the whole object. The diameter of the bead is at least twice as large as the height and ranges from 0.6–2.3 cm. The height ranges from 0.1–0.3 cm and the diameter of the holes from 0.1–0.2 cm. Particularly small holes are typical for this subgroup. Edges are consistently clearly defined. Almost all beads of this type are well preserved and hardly deviate from standard. Bead *cat. 98* is a typical example of these beads.

Disc-shaped amber beads with a horizontal bore-hole are less widespread than other bead types. In the Aegean, beads of type 3c occur only in the sanctuary on the island of Kythnos and at Lindos, where they show a horizontal bore-hole.

The magnificent female burial of the Tomba degli Ori (Bologna), dating to the end of the 7th century BC also contained a sequence comprising disc-shaped beads with a horizontal bore-hole. A sequence with six beads of this type occurred in a burial of the 6th century BC in Serbia at Trnjaci (Pilatovići). Disc-shaped beads with a horizontal bore-hole are assembled with other bead types in a necklace from Bosnia. An isolated disc-shaped bead with a horizontal bore-hole occurs in grave 300 at Hallstatt.

Type 4: Cylindrical beads (cat. 105–211, 552–566)
pls. 10, 5–7; 41–43; 58

Cylindrical beads constitute the largest type among the amber beads of the Artemision, totaling 122 specimens in all. Cylindrical beads can be described as long beads with a longitudinal...
bore-hole. Differences in surface design constitute a distinguishing feature among the subgroups of this type:

Simple cylindrical beads, 14 specimens (type 4a), **cat. 105–113. 552–556**.

Cylindrical beads with faceted surface, 66 specimens (type 4b), **cat. 114–179**.

Spiral beads, 30 specimens (type 4c), **cat. 180–199. 557–566**.

Cylindrical beads with spiral ends, 12 specimens (type 4d), **cat. 200–211**.

Type 4 occurs all over the Mediterranean, but some shapes are more widespread than others. Thus, simple cylindrical beads (type 4a) are a popular type and are found in most of the sites with amber objects. Cylindrical beads with a faceted surface (type 4b), spiral beads (type 4c) and cylindrical beads with spiral ends (type 4d) are rare and occur only in a few sites.

Type 4a: Simple cylindrical beads (cat. 105–113. 552–556) pls. 41. 58

The basic form of cylindrical beads totals 14 pieces. The height is between 0.6 and 2 cm; the diameter varies from 0.3–0.8 cm and the diameter of the bore-hole between 0.1 and 0.2 cm. This group is somewhat varied, for example beads **cat. 105** and **108**. In this subtype, beads can show bore-holes with rounded edges, as in bead **cat. 105**, and beads with a sharp edge and flat area around the bore-hole, like bead **cat. 108**. They were mostly found during the British excavations. Simple cylindrical beads occur only in two Aegean sanctuaries, each with one specimen, i.e. on Chios with an amber bead526 and at Kythnos with a rock crystal527. Smaller examples of simple cylindrical beads are found in sequences at Este528 and Verucchio529, where they also occur on a spindle, as in Bologna530. They are known in Cerveteri531. In Central-Eastern Italy simple cylindrical amber beads have been found in necklaces from Alfedena532, Campi533 and Fossa534. In Basilicata simple, cylindrical amber beads occur in Banzi535, Braida di Vaglio536, Alianello537, Chiaromonte538 and Latronico539. Simple cylindrical beads are also found in northern and southern Campania (Calatia and Cumae, Sala Consilina, respectively)540 and in Calabria (Serra d’Aiello)541. In Slovenia, simple cylindrical beads can be found at Štična542, but sequences with simple cylindrical beads also occur in Novo mesto543 and San Canziano del Carso/Škocjan544.

526 Lamb 1934/1935, 154 fig. 11, 13 (perhaps belonging to a fibula).
527 Mazarakis Ainian 2010, 35; Mazarakis Ainian 2019, 237 fig. 129.
528 Examples from Villa Benvenuti, tombs 78, 91 and 92 (Capuis – Chicco Bianchi 2006, pls. 49, 77. 80) and Capodaglio, sporadic find (Mangani 2007, 130 f. no. III.21).
530 Three cylindrical beads were found together with a sizeable biconical bead and six disc-shaped beads on a spindle in the grave De Luca 15: L. Minarini in: Principi 2000, 278 f. no. 349.
532 Alfedena, grave 27: M. Ruggeri in: Ambre 2007, 180 f. no. III.139 (Type 4a).
535 Banzi, grave Piano Carbone 426 (around 550 BC: Montanaro 2012, 37 fig. 32).
537 Alianello, grave 316: Magie 2005, 68.
542 Tumulus VI, grave 16 (Wells 1984, 206 fig. 147 c = Wells 1985, 272 fig. 2). Other finds from Štična have been published in Gabrovček et al. 2006 and Gabrovček – Teržan 2010.
2.2 Beads

Cylindrical, quite long beads that are slightly oval in cross-section are also documented at Novi Pazar and in other localities in Serbia\(^{445}\). Cylindrical beads of different heights are known in graves dated from the 7\(^{th}\) to the 5\(^{th}\) century BC in Kosovo\(^{446}\). A few simple cylindrical bead shapes are also common in Albania\(^{447}\). They also occur in the Early Iron Age graves at Hallstatt\(^{448}\).

Type 4b: Cylindrical beads with faceted surfaces (cat. 114–179) pl. 10, 5; 42

The cylindrical beads with faceted surfaces constitute a large and homogeneous subgroup totalling 66 specimens. The surface is faceted. The size of the beads (height: 0.2–1 cm; diameter: 0.3–0.4 cm; diameter hole: 0.1–0.2 cm) indicates a high degree of homogeneity and unity within the subtype. The bead’s diameter and the diameter of the bore-hole hardly vary, but the overall height does; this is because some are in fragmentary condition. A typical example is represented by the bead **cat. 122**. Type 4b is only documented in the Austrian excavations.

Cylindrical beads with a faceted surface are far less common than simple cylindrical beads, appearing widely only in the Balkans. Five cylindrical beads with a faceted surface occur in Serbia at Novi Pazar\(^{449}\). Cylindrical beads with an irregular faceted surface can also be identified in Kosovo\(^{450}\) and Albania\(^{451}\). The beads from Albania usually have a cross-section ranging from a square to a pentagonal shape. The large number of specimens found at the Artemision proves that this shape was especially popular at Ephesos.

Type 4c: Spiral beads (cat. 180–199. 557–566) pl. 10, 6; 43; 58

Spiral amber beads have a cylindrical shape and are decorated with circular, spiral carvings. The basic form is similar to the simple, cylindrical bead, except for the surface decoration. Many spiral-shaped pearls are broken, surviving only as fragments. All in all, 30 beads show a height from 0.35–2.3 cm, a diameter of 0.25–0.7 cm and a cross-section of the bore-hole between 0.1 and 0.2 cm. The beads **cat. 196** and **198** are particularly representative for the subtype.

Spiral amber beads occurred in the Late Bronze Age with the Allumiere type (below chap. 5.4 and pl. 27), but in the Early Iron Age they are rarely carved in amber. Spiral-shaped beads can be found in Italy, at Satricum in the 7\(^{th}\) century BC\(^{552}\), and in modern-day Basilicata in the 6\(^{th}\) century BC\(^{553}\), another shape variety was found at Este\(^{554}\). Spiral-shaped beads are more often made

\(^{446}\) Palavestra 1997, 29 f. pl. 7 b; 6; 31 f. pl. 8 a, 28 (Romaja); 31–33 pl. 8 b, 4 (Prêcevo-Boka); 31. 33 f. pl. 8 c, 4 (Karagač).

\(^{447}\) Kurti 2012, 106 pl. 2, nos. 53–54.

\(^{448}\) Kurti 2012, 106 pl. 2, nos. 53–54.

\(^{449}\) V. Krstić in: Balkani 2007, 93 no. 45.

\(^{451}\) Kurti 2012, 106 pl. 2, nos. 48–52.

\(^{452}\) Satricum, tomb VI, 650–640 BC: Waarsenburg 1995, 408. 471 no. 6.34 pl. 83 (77 pieces).

\(^{453}\) Banzì, grave Piano Carbone 426 (around 550 BC: Montanaro 2012, 37 fig. 32); Braida di Vaglio, grave 102 (late 6\(^{th}\) cent. BC: Magie 2005, 47. 74–76. 118. 120; A. Bottini in: Ambre 2007, 232–236).

\(^{454}\) Este, Capodaglio, sporadic find. E. Mangani in: Ambre 2007, 130 f. no. III.21. The spiral beads of Este are, in contrast to the beads from the Artemision, only scratched on the surface and do not show the characteristic grooved profile.
in bronze or gold. Therefore, it is likely that amber spiral beads imitated metal models made of twined bronze or gold wire.555

An almost identical spiral-shaped bead comes from Albania556. The beads forming a sequence from Trnjaci (Pilatovići) in Serbia are very similar to the spirals from the Artemision557. These represent the best comparison to type 4c beads with fine circumferential grooves. Further north, in the Alps, a spiral-shaped pearl was found in a burial at Hallstatt558.

Type 4d: Cylindrical beads with spiral ends (cat. 200–211) pl. 10, 7; 43

The cylindrical beads with spiral ends, totalling 12 pieces, are similar to the cylindrical beads with a faceted surface, but their ends are decorated with delicate spiral carvings. In intact beads, the spiral groove runs around the bead three times. In some examples, the carvings occur at the ends of the bead in the form of deeply incised concentric rings, as is the case with bead **cat. 202**. The height of the beads ranges from 0.65–1.4 cm, the diameter from 0.25–0.4 cm and the diameter of the boring from 0.08–0.2 cm. Bead **cat. 200** represents a typical example of the spiral-ended type of bead. Cylindrical beads with spiral ends have been found only in the Austrian excavations.

This particular subtype is rare. Only the cylindrical beads from Most na Soči (Slovenia) are roughly comparable559. Nevertheless, while these beads, which are part of an amber pectoral, have the same type of carvings that run three times around the object, in this case, the spiral carvings also cover the centre of the object. These additional scorings are not to be found on the beads of the type 4d. Another comparable bead comes from grave 678 of the necropolis of Hallstatt560.

As is the case for the beads of type 4b, beads of type 4d have few comparisons in other places and seem to be unique to the Artemision.

Type 5: Conical beads (cat. 212–216. 567–571) pl. 10, 8; 43; 58

Beads of type 5 take the shape of a cone. How far the beads narrow varies but each bead shows a lengthwise perforation. The group of conical beads includes a total of ten examples and thereby represents a smaller type group. Five out of ten beads are from the Austrian and five from the British excavations.

The design of the narrow sides can vary. Thus, the longer sides can taper towards the bore-hole, or there can be a flattened, narrow area around the bore-hole. The edge of the base of the cone can be either rounded, as in beads **cat. 212** and **214**, or more defined and angular, as in bead **cat. 571**.

Conical beads are a less common shape of amber beads. However, they occur in Perachora561, Cumae562 and Serra d’Aiello563. Conical beads of different sizes occur in Kosovo at Iglařevo (14th–13th cent. BC), Pečka Banja and Rogovo-Fuše in necklaces dated from the 6th to 5th centuries

555 Gold spirals from Ephesos (London, BM 994–1011: Marshall 1911, 77 f. pl. 9) and from Enkomi: Murray et al. 1900, 43 pl. 8 (tomb 19); 43 pl. 9, no. 283 (tomb 66). Similar beads have also been found in the »Hortfund« in Naos 1a (Pülz 2009, 261 no. 207).
556 Kurti 2012, 107 pl. 3, no. 78; 108 pl. 4, no. 32.
558 Hallstatt, grave 300: Kromer 1959, 85 pl. 52, no. 5.
560 Hallstatt, grave 678: Kromer 1959, 143 pl. 139 no. 19.
2.2 Beads

BC564. Beads of type 5 are also largely represented in Serbia565 and Albania566. A small conical bead was found in Croatia in grave 85 of Nin-Ždrijac567. They occur in Hallstatt, too568. Outside of Greece, conical beads were found only in Southern Italy and the Balkans, particularly in Kosovo, Serbia and Albania569.

Type 6: Biconical beads (cat. 217–276, 572–582) pl. 10, 9–10; 44–46; 59

The group of biconical beads comprises 71 objects, so this is one of the most numerous types of amber beads. This bead type can be divided into the following subgroups:

- 28 compressed biconical beads (type 6b), cat. 235–260. 577–578.
- 16 long biconical beads (type 6c), cat. 261–274. 579–580.
- 4 rosette-shaped beads (type 6d), cat. 275–276. 581–582.

The subdivision is due to small differences regarding the bead’s shape and appearance. If the edge is rounded or flat, then it is not considered a biconical bead, but rather a ring-shaped bead (type 2).

The distribution area of biconical beads extends over the whole of the Mediterranean. Long, biconical forms seem just as popular as type 6a beads in the Early Iron Age. By contrast, compressed biconical beads and rosette-shaped biconical beads are not nearly as common as the two types just mentioned.

Type 6a: Simple biconical beads (cat. 217–234. 572–576) pl. 44. 59

The simple biconical beads amount to 23 pieces. The maximum width is usually towards the centre and tapers relatively steeply towards the bore-holes. The maximum diameter of these beads is always greater than the maximum height; the result is a relatively flat and compact bead shape.

Depending on the condition, the edges are more (cat. 223) or less defined (cat. 231 and 232).

Because of the steep sides, the cross-section of these beads often appears lenticular, as in bead cat. 223.

The simple biconical bead is a widespread bead shape in the area being considered. These beads are found in Greece, where they occur at Kato Phana on Chios570 and at Perachora in the sanctuary of Hera Limenia571, in the Aegean and Ionia, as well as in the Balkans and the Italian Apennine area. The use as spindle-whorls of larger examples of simple biconical beads will be discussed in a separate chapter (below, chap. 2.2.3). Simple biconical beads as part of sequences occur in Bologna572 and Genoa573. In the eastern regions of Central Italy, simple biconical beads on necklaces were documented in burials at Novilara574, Campoli575 and Alfedena576. In northern

564 Palavestra 1997, 16–18 pl. 1, 15 = Palavestra – Krstić 2006, 308 no. 473 (Iglarevo); Palavestra 1997, 21 f. pl. 3, 29 (Pećka Banja); 27 f. pl. 6, 12. 16 (Rogovo-Fuse).
565 Palavestra – Krstić 2006, 206 f. nos. 406–407 (Novi Pazar); 319 no. 491 (Pilatovići, burial 2); 335 no. 527 (Athena, Umke, mound I, central grave, late 6th–early 5th cent. BC).
566 Kurti 2012, 107 pl. 3, nos. 63–70; 108 pl. 4, nos. 24–28.
567 Nin Ždrijac, grave 85: Hiller 1991, 368 f. pl. 24, 259.
568 Hallstatt: Kromer 1959, 76 pl. 31, no. 14 (grave 234); 163 pl. 168, no. 16 (grave 834).
569 The relationship between Kosovo, Bosnia and Serbia in the 7th cent. BC has been described by Kurti 2012, 101–104.
570 Lamb 1934/1935, 154 fig. 11, 3. 5.
571 Dunbabin 1962, 524 H 18–19, pl. 195, mentioned comparisons from Delphi and Chios.
573 A large, simple, biconical bead, part of a single row from grave 30: P. Melli in: Ambre 2007, 159 no. III.98.
574 Novilara, Molaroni, graves 7, 8 and 11 (Beinhauer 1985, 691 no. 1 pl. 3 nos. 43–44; 691 f. no. 2 pl. 4, no. 47; 692 f. no. 1 pl. 6, no. 71).
575 Campovalano, grave 245: A. Martellone in: Ambre 2007, 183 no. III.147.
576 Alfedena, grave 27: M. Ruggeri in: Ambre 2007, 180 no. III.140.
Etruria simple biconical beads are quite often represented at Vetulonia; type 6a beads are also found in South Italy, especially in Basilicata and Campania.

Beads of the type 6a also come from modern-day Croatia. According to Hiller, they occur in the graves of Nin from the 9th to the 6th century BC. Simple biconical beads also occur in Bosnia, Serbia and Bulgaria. In the area north of the Alps, simple biconical beads were found at Hallstatt.

Type 6b: Compressed biconical beads (cat. 235–260. 577–578) pls. 44. 45. 59

This type can be described as having the same basic shape as the simple biconical bead, but, in this case, the area around the bore-holes is flattened, showing clearly defined edges. The cross-sections of these beads may vary, as lenticular and angular shapes occur. Even in the simple biconical bead type, flattening is sometimes minimal. However, as this type does not show clearly defined edges, it is not included in the subgroup of biconical beads with a flat area.

Totalling 28 items, this is the largest subgroup of biconical beads. As in bead type 6a, the diameter of these beads is greater than the height. Beads are good examples of this group. The most significant number was found during the Austrian excavations.

The distribution area of type 6b beads is not as wide as the circulation area of simple biconical beads (type 6a). Comparable beads mainly occur in Southern Italy, in the eastern regions, at Verucchio and Novilara. Outside Italy, they turn up in Croatia, Kosovo and north of the Alps.

578 A large biconical bead on the needle of a »Doppelkahnfibel« from Rutigliano, tomb 9/1976 (Montanaro 2012, 48 fig. 48). A large biconical bead is inserted in an earring together with disc-shaped glass beads in Guardia Perticara, grave 514 (Zürich 2010, 20). A small biconical bead is inserted in a pectoral and a bracelet, respectively, from Chiaromonte, grave 325 (late 8th–early 7th cent. BC: see above, n. 450).
581 Glasinac: Benac – Cović 1957, 66 pl. 8, 6 (Gosinja Planina, tumulus XXXVII, grave 1); 75 pl. 31, 10 (Rusanovići, tumulus I, tomb 5); 76 pl. 34, 29 (Ilijak, tumulus XXII, grave 1).
582 Palavestra – Krstić 2006, 264 nos. 408–410 (Novi Pazar); 313 no. 481 (Glogovik, mound I, grave 38, necklace, 750–650 BC); 315 f. nos. 484–487 (Mojšinje, Lugovi-Bent); 319 no. 491 (Pilatovići, burial 2, necklace); 335 no. 527 (Atenica, Umke, mound I, central grave, necklace, late 6th–early 5th cent. BC); 358 no. 588 (Lisijevo Polje, Donje Luge).
583 Katršitshe, tombs 16–17 (Gergova 2009, 180 figs. 5–6).
584 Hallstatt: Kromer 1959, 56 pl. 13, no. 18 (grave 118); Hodson 1990, 143 pl. 8, no. 12 (grave 196); Hodson 1990, 143 pl. 8, no. 15 (grave 200); Hodson 1990, 147 pl. 25, no. 6 (grave 404); Kromer 1959, 104 f. pl. 72, no. 7 (grave 434); Kromer 1959, 114 pl. 91, no. 5 (grave 495); Hodson 1990, 149 pl. 35, no. 3 (grave 505); Kromer 1959, 121 f. pl. 78, no. 14 (grave 527); Kromer 1959, 123 pl. 91, no. 21 (grave 542); Kromer 1959, 148 pl. 48, no. 5 (grave 710); Kromer 1959, 169 pl. 172, no. 5 (grave 874); Hodson 1990, 156 pl. 51, no. 7 (grave 929a).
585 Guardia Perticara, graves 514 and 199: large, compressed biconical amber beads as a part of an earring together with small disc-shaped glass beads (Zürich 2010, 20; Magie 2005, 96); Sala Consilina, graves 367 and 3 (M. Romito in: Ambre 2007, 227 no. III.235; 231 no. III.240).
586 Alfedena, grave 30; M. Ruggeri in: Ambre 2007, 180 no. III.140.
588 Compressed biconical beads are common in female burials from the necropolis of Molaroni and Servici (Beinhauer 1985).
589 Hiller 1991, 371 f. pl. 28, 314 (Nin-kod crkve svetog Jurja, grave 88); 387 f. pl. 47, 478. 482 (Zaton, grave 3).
591 Hallstatt, grave 404: Hodson 1990, 147 pl. 25, no. 6.
2.2 Beads

Type 6c: Long biconical beads (cat. 261–274. 579–580) pl. 10, 9; 45; 59

Long biconical beads have a similar form to type 6b. However, in contrast to the other biconical beads, this type’s height is greater than the diameter. So the shape of this bead type is long and less compressed. Excepting only one bead (cat. 579), all the other 15 items show a flattened area on the narrow sides. Long biconical beads were mainly found in Italy. Several type 6c beads were documented at Bologna592, Verucchio593, Marsiliana d’Albegna594 in Etruria and in Abruzzo at Campovalano and Fossa595. The richest parures of amber ornaments with long biconical beads are found in Southern Italy, in Basilicata (Guardia Perticara, Chiaromonte and Latronico)596 and in Campania at Calatia597.

Long biconical beads also appear in the Balkans. This bead type was used as a part of a pectoral at Most na Soči (Slovenia)598. About 86 pieces of type 6c beads of various shapes were found at Novi Pazar, dated to the 6th to 5th centuries BC599. Long biconical beads are rare in Albania600. Their distribution includes Hallstatt601.

Type 6d: Rosette-shaped beads (cat. 275–276. 581–582) pl. 10, 10, 11; 46. 59

With only four beads, the subgroup of rosette-shaped biconical beads constitutes a tiny group. In their basic shape, they resemble the simple biconical beads. However, the rosette-shaped biconical beads show extensive groove marks extending vertically over the entire object, which gives the object a rosette-like appearance. All four beads are very well preserved and consist of dark, red amber.

Compared to the other rosette-shaped forms, biconical amber beads are rare. They appear already in the Bronze Age in Sicily and Sardinia as well as in the Early Iron Age and were often made out of glass or faïence602. It is difficult to find exact comparisons for beads of the type 6d. A bead from Italy at Braida di Vaglio is similar but not identical603. A suitable comparison comes from Cumae in Campania604. Specimens from Novi Pazar have the same basic shape, but the design of the rosette-shaped beads (trefoil and quatrefoil rosettes) is not as regular as in the amber finds from Ephesos605. A. Palavestra described another bead type at Novi Pazar as a »ribbed bead«, but this type is longer, almost cylindrical606, as are other specimens from

593 Verucchio, graves Lippi 20/1972 and Moroni 19/1969: T. Trocchi in: Ambre 2007, 140 no. III.46; 144 no. III.54, both belonging to the late 8th–early 7th cent. BC.
600 Kurti 2012, 106 pl. 2, no. 47.
601 Hallstatt: Kromer 1959, 121 f. pl. 78, no. 14 (grave 527).
602 For amber, glass and faïence beads from the Bronze Age: Bellintani et al. 2006.
606 According to A. Palavestra, this type is widespread in the Central Balkan area, where glass and metal beads also occur (Pilatovići, Kremna, Romaja, Krusevica, Trebenište, Karčanji, Golibić, Ribić, Jezerine, Prozor, Lički Ribnik, Vače). The amber beads from Novi Pazar belong to the late 6th–early 5th cent. BC (Palavestra – Krstić 2006, 253–
Serbia\(^607\) and Slovenia\(^608\). Rosette-shaped beads are also found in Kosovo at Pećka Banja in graves dated to the late 6th to the early 5th century BC, while glass beads of this shape have been found at Prćevo-Boka\(^609\). Similar rosette-shaped amber beads with carvings have been found in 7th century BC graves in Albania\(^610\).

In Greece, no rosette-shaped amber beads have come to light so far. One glass bead from Eretria is comparable with the amber beads type 6d of Ephesos\(^611\). At Enkomi gold rosette-shaped beads were found\(^612\). The specimens from the Artemision might originally belong to a spinning tool such as a wooden distaff.

Type 7: Square beads (cat. 277–293. 583–590) pl. 10, 12; 46; 59

This group, with a total of 25 objects, includes beads which have a basically square shape. The sides are often rectangular, but the beads may have the form of a lozenge or a parallelogram. The bore-hole runs along the longitudinal side and the cross-section of the beads may have a square or triangular shape. Square beads’ sizes also vary: the lengths measure from 0.8–2.9 cm, the width varies between 0.7–2.7 cm, the height ranges from 0.25–1.7 cm, and the diameter of the bore-hole between 0.1 and 0.45 cm.

Square beads, as they appear in the sanctuary of Artemis at Ephesos, are rare in the Early Iron Age and they occur in different areas in small numbers. They have been found in the sanctuary of Kato Phana on the island of Chios\(^613\) and at Enkomi on Cyprus\(^614\). Some slightly irregular square beads of a necklace appear at Serra d’Aiello (Calabria)\(^615\). Small square amber beads occur in Italy in Basilicata, at Guardia Perticara, Chiaromonte and Latronico\(^616\) — but unlike the square beads from the Artemision, these are drilled on the narrow side. Other comparable examples appear in Campania at Sala Consilina\(^617\), in Marche at Novilara\(^618\) and in Abruzzo at Alfedena\(^619\).

Rectangular, almost square, amber beads are documented at Novi Pazar, Mojsinje (Lugovi-Bent) and Mrčajeveci (Guševac) in Serbia\(^620\), dating from the 6th century BC. Square beads with different cross-sections appear in Kosovo\(^621\) and Bosnia\(^622\).

\(^607\) Palavestra – Krstić 2006, 314 no. 483 (Glogovik, mound I, grave 38, necklace, 750–650 BC); 356 nos. 583–584 (Lisijevo Polje, 6th–5th cent. BC); 333 no. 524 (Atenica, Umke, late 6th–early 5th cent. BC).

\(^608\) Stična: tumulus VI, grave 16 (Wells 1984, 206 fig. 147 c = Wells 1985, 272 fig. 2). Other finds from Stična are in Gabrovect et al. 2006 and Gabrovce – Teržan 2010. Ribbed amber beads similar to the Ephesian pieces are used as a coating on the bronze pin (a sceptre ?) found in the Tripod grave at Novo mesto, dated to the 2nd half of the 7th cent. BC (Križ 2017, 44. 129 no.1).

\(^610\) Kurti 2012, 107 pl. 3. nos. 74–76.

\(^611\) Huber 2003, 56 no. O 137 pl. 47.

\(^612\) Grave 19: Murray et al. 1900, 43 pl. 8.

\(^613\) Lamb 1934/1935, 154 figs. 11–12 (8th cent. BC).

\(^614\) Enkomi, grave 66: Murray et al. 1900, 43 pl. 9 (6th cent. BC).

\(^617\) Sala Consilina, graves 360, 367 and 3: M. Romito in: Ambre 2007, 224 f. no. III.231; 227 no. III.235 and 230 f. no. III.240.

\(^618\) Novilara, Molaroni, grave 2: Beinhauer 1985, 690 no. 7 pl. 2, no. 17.

\(^619\) Alfedena, graves 27 and 30: M. Ruggeri in: Ambre 2007, 180 f. nos. III.139–139.140.

\(^620\) Palavestra – Krstić 2006, 266 no. 404 (Novi Pazar, late 6th–early 5th cent. BC); 316 no. 488 (Mojsinje, mound I, grave 3, trapezoidal bead, 6th cent. BC); 342 f. nos. 544–546 (Mrčajeveci, mound I, 6th cent. BC).

\(^622\) Glasinac: Benac – Čović 1957, 66 pl. 8, 6 (Rusanovići, tumulus XXII, grave 1); 78 pl. 39, 4 (Potepećine, tumulus II, grave 1).
2.2 Beads

Type 8: Other beads (cat. 294–296, 591)

In this category are included the objects which do not belong to one clearly defined type. Cat. 294
and 295 include tiny fragments and splinters of amber beads, which are too small to be assigned
to a type. The total amount of type 8 beads numbers 74 pieces.623

2.2.3 Function of amber beads

As part of jewellery, amber beads were once used in ornaments of several kinds. They were worn as
necklaces in the Early Iron Age. In several grave finds, mainly from Basilicata624, amber necklaces
were found in situ, so we can reconstruct how they were worn. These necklaces can be divided
into different types or shapes: single rows – consisting mostly of beads; single rows including other
types of pendants – beads in association with other shapes; and multi-row necklaces (colliers).

Single-row sequences are quite common and may constitute threads of different lengths, as in
Northern Italy at Este625, and in Southern Italy in Basilicata626 and north of the Alps at Hallstatt627.
It was common to string together on necklaces glass and bone beads as well as amber beads. The
range of shapes extends indifferently to all materials employed. These necklaces include beads of
roughly equal size or beads whose size increases towards the middle of the sequence. Single-row
arrangements, including beads and pendants of different materials, occur in Southern Italy in
Basilicata at Vaglio628 and Chiaromonte629. The varieties of shapes of amber pendants, often in
combination with amber beads, vary widely. However, teardrop-shaped pendants, triangular and
square pendants and carved figures are quite common shapes.

Several rows are decisive for the identification of a necklace as a collier. Multi-row amber
necklaces were added to female burials and placed on the chest of the deceased, supposedly ac-
cording to the same customs followed during her lifetime. Particularly noteworthy are the multi-
row necklaces from Basilicata630. Some parures are exceptionally well preserved and display a
variety of shapes: round, ring-shaped, disc-shaped and cylindrical amber pendants often belong
to the same necklace. Additional pendants in a variety of shapes can hang from the lower row. In
Southern Italy amber necklaces have been found in female burials, while in Northern Italy sin-
gle-row chains occur mostly in male burials, as in Este631. One may conclude that amber necklaces
belong to male and female contexts, but multi-row colliers occur exclusively in female contexts.

Several bronze girdles show that these ornaments were common votive offerings for Artemis in the
7th century BC632. Amber as a material for girdles has been mainly found in situ in several fe-
male burials from Basilicata, dating throughout the 7th century BC633; based on a comparison with
the burials from Basilicata, A. Palavestra suggested the hypothetical reconstruction of an amber
composite jewellery set from Novi Pazar634. The amber girdles in Basilicata and Serbia include

623 76 amber beads are preserved in the Archaeological Museum of Istanbul under the same inv. (no. 591), because
they all hang on the same modern string and they could not be separated. A detailed analysis of each bead was not
possible, and only some beads were recorded typologically.
624 Chieco Bianchi – Calzavara Capuis 1985; Capuis – Chieco Bianchi 2006.
625 Alianello, grave 316: Magie 2005, 68.
626 Kromer 1959; Hodson 1990.
627 Braida di Vaglio, grave 102, late 6th cent. BC: Magie 2005, 47. 74–76. 118. 120; A. Bottini in: Ambre 2007, 232–236.
628 Chiaromonte, grave 75: Magie 2005, 64.
629 Latronico, grave 83 (early 7th cent. BC: S. Bianco in: Ambre 2007, 238 nos. III.242–244); Chiaromonte, graves 325 (late
8th–early 7th cent. BC: see above, n. 450); 152 (late 8th cent. BC: see above, n. 450) and 140 (Magie 2005, 92 f.).
630 Chieco Bianchi – Calzavara Capuis 1985; Capuis – Chieco Bianchi 2006.
632 Chiaromonte, graves 152 (late 8th cent. BC: S. Bianco in: Ambre 2007, 239 f. nos. 251–252; see above, n. 450); 325 (late 8th–early 7th cent. BC: see above, n. 450). Latronico, grave 83 (early 7th cent. BC: Magie 2005, 84. 98 f.;
633 Palavestra 2003, 221 fig. 9; Palavestra 2009, 168 fig. 3.
rows of beads of various types, including flat triangle-shaped beads, duck-shaped spacers and pendants of many other shapes, i.e. the same shapes also documented at the Artemision. This element points to the original presence of amber girdles as votive offerings for Artemis (below, chap. 2.4).

In addition to the interpretation of amber beads in necklaces, colliers and girdles, the presence of other ornaments such as diadems can be suggested. Similar ornaments are documented in the female burials of Basilicata. The diadem from grave 315 at Alianello, belonging to the 7th century BC, consists of six rows made up of hundreds of small, round, flat beads, made of amber, bone, ivory or glass. On the front of the diadem, carved scarabs were also attached as pendants. A diadem from the late 6th century BC has been found in grave 102 at Braid
di Vaglio (below, pl. 15). Another suspension ornament of unknown destination (diadem [?], pectoral [?], girdle [?]) can be reconstructed from a female burial dating to the first half of the 5th century BC near the abbey of San Clemente at Casauria in southern Abruzzo.

Large, compressed biconical beads can be used as earrings, like the beads from the rich female burial 514 at Guardia Perticara dated to the early 7th century BC, which were found in situ. Amber earrings in bronze wire have been found in rich graves at Chiaromonte, belonging to the 7th century BC. Amber earrings with biconical or ring-shaped beads are typical for the Iron Age in Emilia-Romagna and the Etruscan mainland. At Verucchio, more than 200 pairs of specimens show the remarkable popularity of this type of ornament from the phase Verucchio III (770–730 BC) to the phase Verucchio V (680–650 BC). At Verucchio and in the surrounding territory, biconical amber beads were associated with gold or bronze wires, which are twisted once, or several times; such earrings of gold wires occur at least at Bologna, Fermo, Tarquinii, Veii and Ardea. The bead shapes which are identified as belonging to earrings occur in the Artemision.

Amber beads are also a decorative element on fibulae. On the one hand, ring-shaped or disc-shaped amber beads or amber rings can be mounted on the needle or the bow. On the other hand, amber beads were used as a part of a separate element attached to the fibula (below, chap. 2.5). Thin disc-shaped beads threaded with bronze wires as earrings are exceptionally employed at Verucchio as a decorative element in the bow of two fibulae.

The identifications discussed so far regarding the possible uses of amber beads were based on the idea of beads as jewellery. However, the shapes of some conical and biconical beads from the Artemision may indicate that they were meant for a different purpose. Some of the very large conical and biconical beads are strikingly similar to Early Iron Age spindle-whorls. In particular, the size appears to be an indication of their use – some amber beads are simply too large and impractical to be used as ornamental components. Normally, spindle-whorls were made out of clay. In cemeteries in Central Italy spindle-whorls are often deposited in female graves and have a large conical or biconical shape. They might originally form part of a spinning tool, such as a wooden distaff, as documented for clay spindle-whors, which appear in Early Iron Age cemeteries of Central Italy. In Emilia-Romagna amber spindle-whorls are also known, as documented by rich graves at Verucchio from the late 8th to the early 7th century BC (pls. 37, 2–4) and at Bologna in

634 Magie 2005, 47, 74 f.
635 Papi 1979, 80–83 fig. 22 pl. 15, 7. For this find, see below, chap. 2.4.
636 Zürich 2010, 20; Bianco 2011, 50 f. 57 (early 7th cent. BC).
637 Chiaromonte, graves 142 (Zürich 2010, 17) and 129 (see above, n. 450).
638 von Eles 2015, 30 fig. 2 no. 32; Manzoli 2018, 112–115 (seven types); von Eles – Pacciarelli 2018, 239–244 describe the peculiarities of the mentioned Verucchio phases.
639 A pair of earrings has been found in a burial at Furano di Gorolo (commune Borghi) in the Uso valley: Gentili 1987, 32.
640 L. Drago Troccoli in: Piceni 2001, 199 no. 105 mentions the bibliography for each site.
642 See the finds in the cemetery of Osteria dell’Osa in Latium, 10th–7th cent. BC: Bietti Sestieri – De Santis 1992, 309–314 types 33a–33g pl. 26, and relevant literature.
643 Verucchio, graves Le Pegge 24/1970 (P. Poli in: Le ore 2007, 178 no. 112), Lippi 47/1972 (G. V. Gentili in: Veruc-
2.2 Beads

the 7th century BC. Outside Italy, amber spindle-whorls were found at least in Poland, but they could not be dated because they are sporadic.

2.2.4 Conclusions

The amber beads from the Artemision of Ephesos are unique because of their quantity and quality.

These beads can have many different shapes. On the one hand, there are common shapes: globular, ring-shaped or cylindrical beads, and on the other hand, there are local shapes, such as cylindrical beads with a faceted surface or cylindrical beads with spiral ends, which are typically Ephesian beads. The typology of these beads is based on published typologies from different periods. Seven types plus one category for unclassifiable beads were formed, based on these typologies. These eight groups could be further divided into three or four subtypes. In the Aegean, amber beads have come to light in female burials or were offered to a deity, mostly female. Amber beads may occur in male graves and exceptionally are votive offerings to a male god, as occurs at the sanctuary of Apollo at Claros. Regarding necklaces, one can conclude that long, single-row chains could belong to male and female contexts, but multi-row colliers occur exclusively in female contexts.

Amber beads generally occur in nearly every Early Iron Age site which has yielded amber finds. The commonest bead shapes are globular, ring-shaped, disc-shaped, simple biconical and long biconical. Other types, such as disc-shaped with horizontal bore-holes, cylindrical with faceted surfaces, cylindrical with spiral ends and rosette-shaped biconical ones are not frequent.

It can be said that in the case of amber bead types, widespread distribution is usually matched by a long lifespan. So for instance, globular and ring-shaped beads were common, and occurred during the whole Late Bronze Age and through the Iron Age. On the other hand, comparative finds for subtypes (types 4b and 4d) are rare and date to the 6th and 5th centuries BC.

118 amber beads were found during the British, and 294 during the Austrian excavations. Most of the bead types occur in the same relation to the total number of amber beads. Two shapes, cylindrical beads with faceted surfaces (type 4b) and cylindrical beads with spiral ends (type 4c), have been found only in the Austrian excavations and find few comparisons outside Ephesos, which leads us to conclude that these were particular types, carved for the Artemis of Ephesos. In particular, the 66 cylindrical beads of type 4b are the largest group among the amber beads, supporting the hypothesis of a local production.

Amber beads were part of an ornamental ensemble, and they may belong not only to necklaces and colliers but also to other female ornaments, such as belts, diadems and fibulae.

Large conical and biconical amber beads could be used as components of spindles, and they testify to the use of amber for functional tools such as spindle-whorls. Comparative amber objects are known in female burials in Emilia-Romagna belonging to the 8th to 7th centuries BC and in sporadic finds from Poland. Spindle-whorls made out of clay were a popular type of grave goods for female burials or votive offerings for gods in the Early Iron Age. In conclusion, amber as a votive offering is a unique and exclusive gift, which attests to the social rank of the donor.

Martina Ott

A spindle from the grave De Luca 15 (7th cent. BC) shows six simple disc-shaped amber beads and three simple cylindrical amber beads: L. Minarini in: Principi 2000, 278 f. no. 349.

Stahl 2006, 30. 95. 306 Liste 12.
2.3 PENDANTS (CAT. 297–349. 592–630)

2.3.1 Introduction

Together with beads (cat. 6–296. 541–591) and spacers (cat. 350–488. 631–634), pendants constitute one of the largest groups among the amber finds of the Artemision in Ephesos. The variety, range of shapes and appearance means that the works were once part of necklaces and ornaments, gifted as votive offerings to the goddess.

Like the other amber artefacts, the pendants were mostly found in two main votive deposits beneath or within the earlier basis of Naos 2. According to the stratigraphy of the site, both deposits date to the second half of the 7th century BC, no later than 640–620 BC. The first deposit, excavated by D. G. Hogarth and labelled as a foundation deposit of this phase of the temple, was found within the Green Schist Basis of Naos 2. In his report of 1908, he stated that the deposit yielded about 60 pendants (or amulets), either whole or fragmented. He differentiated three types:

a) Squat, with a simple ring neck and no base, recalling a flattened aryballos or pilgrim bottle.

b) Elongated, with a gable top and a pointed base, recalling a form of oinochoe.

c) Elongated, without base, but with round button-top, incised rosette pattern above.

The amber finds from the 1905 excavation were divided between the Archaeological Museum in Istanbul and the British Museum in London. About 50 years later, D. E. Strong described 22 bulla-shaped pendants in the collection of the British Museum that he associated with Hogarth’s type a, and an elongated variety with a pointed base, comparable to the type b described above. Strong furthermore stated that pendants of type c do not seem to be part of the British Museum collection.

In total, 42 amber pendants could be ascribed to the British excavations. It is not clear how many pendants originally formed part of the deposit, as Hogarth only estimated their number and did not give absolute figures.

In 1987 the Austrian Archaeological Institute excavations revealed another deposit. North of the former »Rechteckbasis«, it was covered by a layer of clay, under the floor of Naos 2, and belongs to a building phase called Naos 1a. This cache also yielded a remarkable number of amber artefacts. It is thought to be a hoard of intentionally deposited objects (»Hortfund«). In total, the Austrian excavations included 50 amber pendants.

Within this section, pendants are classified as objects with a peripheral perforation and/or an asymmetric shape, for instance, drop-shaped objects with a recognisable projection on their upper or lower part. This classification was also applied for objects with a central perforation running through the whole artefact. 94 objects were therefore identified as pendants. Three objects were classed as pinheads, since this classification seemed more suitable for the purpose. Our aim is to establish a typology for the different forms of pendants within the ensemble and to reconstruct the distribution of the established types in the Mediterranean area.

As to their dating, it is difficult to assign the pendants of the Artemision to a definite chronological framework purely by their typological appearance, since jewellery types mostly have a very long lifespan, due to their function as personal ornaments. The analysis of the items found in the clay layer on the floor of Naos 1a was conducted by M. Kerschner and provides a useful...
terminus ante quem. Here, a date for the deposition of the layer no later than 650–640 BC has been proposed.656

2.3.2 Typology

The typology for the various forms of pendants presented within this section should serve as a basis for an adequate comparison with similar pendants in the Mediterranean. No clear distinction was made between the types of objects from the British and the Austrian excavations. The same differentiation was applied to both collections. The main parameters considered were the overall shape of the object, its projections and the nature of its drill holes. As mentioned above, an object needs to feature a peripheral perforation, and often an elongated form, to be classified as a pendant.

Furthermore, artefacts with a central drilling were also classed as pendants, due to their elongated, asymmetric shape, finished off with a round or elaborate extension. It would be more appropriate to identify these as suspension objects. For the sake of clarity, these too were classed as pendants. The sequence of the objects within this typology is based upon their composition and the amount of elaborate craftwork, ranging from the least elaborate up to the more sophisticated examples. In the end, six different types of pendants could be distinguished, numbered from type 1 to type 6.

These types feature other subdivisions, distinguished by letters in small type starting with a, based on the section, the shape of their projection (if present) and its level of elaboration (pl. 11). The established types can be described as follows:

Type 1: Drop-shaped pendants (cat. 297–298, 592–593) pl. 12, 1–2; 47, 60

Elongated, flattened pendant with an oval section, with a horizontal perforation in its upper portion.

Type 2: Elongated pendants (cat. 299, 594–595) pl. 12, 3; 47; 60

Elongated pendant with a circular section and an inserted neck, surmounted by a cylindrical, horizontal, perforated projection with a square section. At its base is a circular, flattened button. This type might correspond to Hogarth’s type b: »elongated, with a gable top and a pointed base, recalling the form of an oinochoe«657.

Type 3: Bulla-shaped pendants (cat. 300–317, 596–624) pl. 12, 4–6; 47; 60–61

Type 3a: Bulla-shaped pendants with a cylindrical projection (cat. 300–311, 596–608)

Flat pendant with an oval to circular body with an oval section and an inserted neck, surmounted by a horizontal, perforated, cylindrical projection. The section of the projection is either round or square, with rounded corners. Some fragments can be assigned to this group, although they are not completely preserved (cat. 315–317, 611–624).

Type 3b: Bulla-shaped pendants with decorated top (cat. 312–314, 609–610)

Bulla-shaped pendants with a flattened, oval body and an inserted neck, surmounted by a cylindrical, horizontal, perforated projection. The top is variously decorated by three moulded knobs.

656 Kerschner – Konuk 2020, 123–128.
657 Hogarth 1908a, 215. Cat. 299 was included in the typology because of its gable top. If an object of this size features such a projection, it must be included in this group, even though its general body shape does not resemble the elongated shapes of the two upper pendants. Cat. 595 has an additional decoration on the base and was classified as Hogarth’s type b (Strong 1966, 44).
TYPOLOGY OF THE AMBER FINDS FROM THE ARTEMISION

Type 4: Bottle-shaped pendants (cat. 318–319) pl. 12, 7; 48
Round pendant with a flattened oval section and a clearly defined neck, surmounted by a circular projection with a diagonal perforation running from its top to its side. An additional boring in the bottom of the object cat. 318 was aborted.

Type 5: Fruit pendants (cat. 320–345, 625–629) pl. 12, 8–10; 48–49; 62
Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345, 625–627)
Elongated pendant with a circular to oval body, a clearly defined neck, followed by a circular button-top with floral decoration on its lower part, resembling the calyx of a pomegranate. Some specimens (cat. 340–342) show radiating incisions in the lower area, which might call to mind the seed-pods of poppies. A central boring runs along the object’s whole length. Some fragments are assigned to this group although they are not completely preserved (cat. 346–347, 629).

Type 5b: Pomegranate pendants with a horizontal bore-hole (cat. 333–339, 343–344, 628)
Elongated pendant with a circular to oval body and a clearly defined neck, followed by a circular button-top with floral decoration in its lower area, resembling the calyx of a pomegranate. Two horizontal borings are drilled at the base of the object and are connected to one another, forming a semicircle.

Type 6: Wineskin-shaped pendant (cat. 630) pl. 62
Square pendant, its upper part showing two bulges and a horizontal perforated gable with a row of vertical incisions.

Unclassified fragments
Some fragments are very tiny; as their original shape is unclear, they cannot be classified (cat. 348–349, 538).

2.3.3 Distribution of the pendants
In the following paragraphs we will discuss the frequency of each established pendant type within the Ephesian ensemble and their distribution in the Mediterranean. Five maps with the find distribution of each type were included to visualise the various types’ geographic dispersion.

In contrast to the comparative abundance of the Bronze Age, during the Iron Age in Greece, amber artefacts seem rather scarce. Although still highly prized as an item of trade and wealth, amber rarely appeared in graves and only a few sanctuaries yielded greater quantities of the substance. Therefore the Ephesian Artemision stands out in Asia Minor with an exceptional 659 amber artefacts. This is an interesting aspect, also because the results of the Fourier infrared
spectroscopy analysis (FTIR) shows that the provenance of the raw material of the objects has been located in the Baltic area662.

Therefore, the search for comparisons and references for the various object groups of the ensemble is crucial for our understanding of the relations and trade routes which led this material to the different regions of the Mediterranean and Asia Minor and vice versa.

TYPE 1: DROP-SHAPED PENDANTS

Elongated, drop-shaped pendants of type 1 appear four times in the ensemble, with two specimens each coming from the British and Austrian excavations, making this one of the smallest pendant groups. Typically these are roughly worked, shaped into an elongated oval, convex or flat on their front and/or back. In 1908 Hogarth himself classed the drop-shaped pendants as pearls; in his publication the only image of one of these objects is on a string with other pearls663. The second pendant is not pictured at all664. Plain amber pendants of this shape and material seem to have been relatively rare in the eastern region of the Mediterranean during the Iron Age, the best comparisons for this type are found in indigenous burials on the Italian peninsula from the 10th to the 5th century BC (pl. 13,1).

Until now, the northernmost examples for plain drop-shaped pendants have been found in Croatia, in the necropolis of Kompolje. Here, several female burials from the 7th to the 6th century BC included pendants of the type in question665. The wealthy female Tomba degli Ori in Bologna, from the late 7th century BC, yielded valuable objects made from bronze and amber and featured pendants of type 1 as part of a necklace that also included pendants of type 3666. In Vetulonia pendants of this type were found in the Tomba del Tridente and other graves of the 7th century BC667. Further examples can be found in Latium, for example in the Barberi necropolis at Colonna in a grave dating to the 8th century BC668. They also appeared next to other amber artefacts in the Latial cemetery of Osteria dell’Osa, in phase II burials of the necropolis, which dates to the 9th century BC669. Two useful comparisons for pendants with a flattened back (cat. 297) can be cited. The first, in northern Campania, at Cairano, is in female burial IX. Here, a large amber necklace includes 17 plain drop-shaped pendants of this same type670. The second example relates to the indigenous necropolis near Calatia, dating from the late 8th to the early 6th century BC, also in Campania671. The settlement of Longola of Poggiomarino in northern Campania also yielded plain, drop-shaped pendants672. In southern Campania, plain, drop-shaped pendants appeared in the necropolis of Sala Consilina in considerable quantity, mainly in female graves, dating from the late 8th to the early 6th century BC673. Furthermore, numerous pendants of this type were found

662 See below, chap. 3.
663 Hogarth 1908a, 215 pl. 47, 23.
664 Later on, both were defined as pendants, but the one conserved in the British Museum is not mentioned in Strong’s publication and the catalogue of the Department of Greek and Roman Antiquities reports »amber pendant« as a description.
666 Morigi Govi 1971, 229 pl. 50, 2.
667 Tomba del Tridente: Cygielman – Pagnini 2006, 120 f. pl. 15, d.–e. Further graves in Vetulonia: Massaro 1943, tipo 7a, 41 pl. 2, no. 16.
668 The female burial in grave 3, dated around 800–750 BC, also yielded a necklace with components of glass and amber, including plain drop-shaped pendants: Angele et al. 2002, 59 f. no. 23 fig. 12, 23.
669 Osteria dell’Osa: Bietti Sestieri 1992, graves 214 (770 fig. 3 a, 430.13–15), 217 (768 fig. 3 a, 426.11), 328 (707 fig. 3 a, 311.30–34), 458 (665 f. fig. 3 a, 230.10–11), 519 (683 f. fig. 3 a, 262.12.), 537 (727 fig. 3 a, 354.14) 559 (723 f. fig. 3 a, 345.7), 561 (727 f. fig. 3 a, 352.32–36) and 563 (725 f. fig. 3 a, 349.8e, 8h, 8m).
670 Cairano, grave IX, 2nd half of the 6th cent. BC: Baiolo Modesti 1980, 156 no. 33 pls. 77–78.
672 Cesaroni – Bellintani 2012, 170 f.
673 Sala Consilina: graves 360, 367 and 3 (M. Romito in: Ambre 2007, 224 f. no. III.231; 227 no. III.235; 230 f. no.
in Basilicata, which is famous for its abundance of amber artefacts during the Orientalising period. Plain, drop-shaped pendants also appear at Latronico and Chiaromonte. The southernmost and the oldest examples come from the necropolis of Torre Galli in Calabria, where they form part of necklaces in male and female burials dating from the 10th to the 9th century BC.

It seems as if plain forms like these did not spread far in the Mediterranean and the specimens from Ephesos are the only ones in the Aegean.

Type 2: Elongated pendants

The items labelled as type 2 elongated pendants appear twice within the upper deposit of the Green Schist Basis excavated in 1905. One is a relatively simple pendant with a horizontal perforated projection with a square section and an elongated body at the top, and a plain button at the bottom and the other, similar to the first regarding its shape, is more elaborate, showing a rosette button on its base. This kind of pendant seems to correspond with the type b of the pendants described by Hogarth as »elongated, with a gable top and a pointed base, recalling the form of an oinochoē«. Although both objects lack a gable-top projection, they both have a pointed base with a button at its end. Strong also classified at least one of the two pendants as type b after Hogarth. There seem to have been more pendants of this kind. At least two more were pictured by Hogarth, but none of these pendants is among the documented pieces. As an additional object in this category, we should mention a fragmented projection of a pendant. It features a horizontal perforation as well as a triangular section. Maybe this object is to be counted among the gable-top pendants mentioned above.

Examples of amber pendants appeared mostly in the Aegean, in the sanctuary of Hera at Perachora and in Ithaca. In both locations pendants were made from bone and date from around the 7th century BC. Further west, comparable examples have been located in Cumae, dating to approximately 500 BC (pl. 13, 1).

Type 3: Bulla-shaped pendants

Type 3, the so-called bulla-shaped pendants, are a popular form of jewellery all around the Aegean and Mediterranean from the Late Geometric to the Archaic period. The shape of these pendants varies from round to oval. All objects show an oval section with a pronounced projection on its top, which is usually perforated horizontally. The type is presumed to have originated in the Near East. Here, at Sendschirli in Syria, comparable pendants made of silver and gold were found in the destruction layer of the north-west palace, dating to the turn of the 8th to the 7th century BC. From the Near East, the pendant form itself subsequently spread throughout the entire Mediterranean. Pendants were usually made from precious materials such as gold, silver, electron, ivory
and amber. These objects formed part of votive deposits and offerings in various sanctuaries both in the Aegean and in Ionia. Pendants also appear among the contents of rich tombs in the Italian peninsula. The variety of amber works enjoyed quite a long lifespan, stretching from the late 8th to the early 4th century BC.

In total, the Ephesian Artemision contained 46 pieces of this type of amber pendant. Twenty-nine were found during the British excavations and seventeen during the Austrian mission. In his 1908 report, Hogarth described three types of amber pendants. One is described as »Squat, with a simple ring neck and no base, recalling a flattened aryballos or pilgrim bottle«. It can most likely be assimilated to the bulla-shaped pendants. He believed pendants of this kind were a sort of amulet, strung together as necklaces that formed part of the parure of the goddess686. Regarding the way in which these necklaces were worn, we can cite several references. First of all, some clay and stone statuettes from Lindos dating to the end of the Geometric period687, as well as two younger examples from Cales in northern Campania688 and Enkomi on Cyprus689. The pendants were probably worn in two ways: in the statue from Cales, several bulla-shaped pendants are strung together in a row on one string, while the necklaces from Lindos and Enkomi show several tubular beads with one rather large bulla-shaped pendant in the centre.

The type 3 pendants made from amber in the Artemision constitute a rare case in Asia Minor and the rest of the Aegean. Pendants of this kind were usually made from bone or ivory690, gold691, silver692 or rock crystal693. Type 3 pendants made from silver and bone were also found in the early phases of the Ephesian Artemision694. In the region, only a few comparable examples of bulla-shaped amber pendants are known, and these come from Kato Phana on Chios695 and the sanctuary of Hera at Perachora696. Furthermore, we can mention a fragmentary pendant from the sanctuary at Kytinos697 (pl. 13, 2).

The best comparisons for the bulla-shaped amber pendants from Ephesos are found in the Italian peninsula. The southern regions, i.e. Campania, Basilicata, Calabria and Puglia, offer large quantities of high-quality amber artefacts. In Calabria, comparable pendants were located in two indigenous Early Iron Age necropolises near the Ionian coast. At Francavilla Marittima three female burials from the 8th century BC featured large amber necklaces, also including bulla-shaped amber pendants697, while at Amendolara near Cosenza, this shape appears from the 7th to the 6th century BC, in rich as well as in simple inhumations as part of composite necklaces, either as single or multiple elements698. Two other sites with bulla-shaped amber pendants were identified in southern Campania in the Vallo di Diano at Sala Consilina and Padula. The necropolis of Sala Consilina featured female burials dating from the late 8th to the ear-

686 Hogarth 1908a, 215. 237.
687 Blinkenberg 1931, 421. 428. 436 pls. 68, nos. 1674–1675; 70, no.1720.
688 A female votive statue from Cales dated to 375–350 BC: Hofter 2010, 72 fig. 6, 3 (Antikensammlung Berlin, inv. TC 1347).
689 Enkomi, 6th cent. BC: Murray 1900, 4 fig. 3.
691 In the tumulus burial at Duwanli, Plowdiw in Thrace, two necklaces of golden bulla-shaped pendants from female burials, 6th–5th cent. BC: Gold 1979, 88 f. 92. 96.
692 See several pendants made from gold and silver in the so-called Lydian Hoard: Özgen – Öztürk 1996, 189.
693 See bulla-shaped rock-crystal pendants, Early Archaic: Blinkenberg 1931, 100 pl. 10, 197.
694 Hogarth 1908a, 118 pl. 12, no. 10 (silver); 189 pl. 37, nos. 14–15 (bone).
695 Lamb 1934/1935, 154 f. fig. 11, 14.
696 Dunbabin 1962, 520–523 fig. 195. Probably other amber artefacts of this kind existed in Greece. Unfortunately, however, the excavation reports, including the ones above, often do not show appropriate images.
697 Amber votive pendants from this site are mentioned in preliminary reports: Koukoulidou et al. 2017, 241 fig. 138 a (lower row, third from left); see also Mazarakis Ainian 2019, 106.
698 Francavilla Marittima, graves 60 (Zancani Montuoro 1984, 30 f. nos. 18–19 fig. 6), 63 (34 f. no. 12 fig. 8), 88 (103 nos. 10–20 fig. 34), 89 (105 no. 4 fig. 35).
699 Amendolara, graves 10 (de La Genière 2012, 19 no. 7), 99 (44 no. 7), 144 (71 no. 6), 176 (99 no. 5), 220 (135 no. 8), 226 (139 no. 5), 254 (143 no. 3), 277bis (160 no. 3) and 279 (164 no. 14).
ly 6th century BC with rich amber ornaments such as large composite necklaces containing, amongst other adornments, bulla-shaped amber pendants. Further amber objects were found near Padula as components of composite fibulae, beads and type 3 amber pendants. Unfortunately, no clear statement can be made regarding the circumstances of the find. The ensemble is believed to date from the 6th to the 5th century BC. In Basilicata, an actual concentration of amber bulla-shaped pendants is recorded, especially in the area between the rivers Agri, Sinni and Bradano. One of the most prominent ensembles was found in the graves of Chiaromonte, again mostly female burials furnished with rich personal ornaments, such as earrings and fibulae, partly made from amber. These rich burials date from the 7th to the 6th century BC. Type 3 amber pendants appeared here as parts of necklaces and girdles, including several other amber components like round pearls, triangles and bird-shaped spacers, offering a valuable comparison for amber artefacts from the Artemision of Ephesos. Another concentration of amber pendants of type 3 in various sizes is in a richly equipped grave at Latronico, dating to the early 7th century BC. Further north, interesting examples appear in the necropolis in Guardia Perticara, from the late 8th to the early 6th century BC, as well as in the necropolis of Alianello from the 7th century BC. Together with a remarkable number of bulla-shaped pendants, the female graves also contained other personal ornaments, including several bronze bracelets, composite fibulae and necklaces with amber beads and shells. Furthermore, twenty pendants of the shape in question dating to the 8th to 7th centuries BC, acquired on the art market by Sir William Turtle for the British Museum at the end of the 19th century, are believed to originate from graves in the vicinity of Armento (province of Potenza). The Daunian necropolis of Minervino Murge as well as the princess’s grave from Cupola Beccarini near Manfredonia (province of Foggia) offer some comparable bulla-shaped amber pendants, which date from the 7th to the 6th/5th century BC. Furthermore, pendants of type 3 made from gold, bronze and glass were found in various regions of Italy, sometimes combined with those made from amber.

Also in Central Italy, examples of the bulla-shaped pendants appear in the necropolis of Satrium in Latium vetus, in the rich grave VI, dating to 650–640 BC. The grave contained over 500 amber objects – an extraordinary quantity – including figured pendants, pearls of various sizes and shapes and a considerable number of pendants of type 3, which were part of several necklaces. In the cemetery of Osteria dell’Osia, amber pendants of this kind mostly appear in female

703 On spacers see below, chap. 2.4.
709 Minervino Murge, grave 1/1992, late 6th–5th cent. BC contained Greek and Daunian pottery, artefacts made from gold, silver and bronze, as well as an amber necklace, including bulla-shaped pendants: Montanaro 2012, 47–49.
710 The ornaments also included six bulla-shaped pendants belonging to a necklace, dating to the 7th cent. BC: Montanaro 2010, 25 no. 16 pl. 10.
711 In Central Italy in Sabina at Colle del Forno, tomb XI: Santoro 1977, 267 fig. 71 no. 31.
713 In North-eastern Italy at Este in Veneto: Capuis – Chieco Bianchi 2006, graves 92 (169 no. 21 pl. 80, 21), 104 (210 no. 9 pl. 104, 9) and 110 (227 no. 35 pl. 114, 35).
715 Waarsenburg 1995, 409 f. See below, chap. 2.4, n. 807.
graves from the 8th to the 7th century BC716, although not in the same abundance as in the burials in Campania or Basilicata. Other examples of this type of pendant are again found in the British Museum, where two necklaces with components of glass, faience and amber beads are preserved, and supposedly come from a tomb near Praeneste. The necklaces are believed to date to the 7th century BC717. Further examples of this type of pendant were found in Etruria in the necropolis of Quattro Fontanili in Veii mostly in phase 1c, which approximately dates to 730–720 BC718. In the necropolis of Vetulonia bulla-shaped pendants have been found in several burials, dating to the late 8th/early 7th century BC719. A female burial in Genua from the second half of the 5th century BC yielded a necklace with 58 amber elements including three bulla-shaped pendants, attesting the last appearance of this shape720. Further examples of this type of pendant were found in graves at Aleria in Corsica, dating to the 5th and 4th centuries BC721.

In Emilia-Romagna, bulla-shaped amber pendants of type 3 were found at Verucchio, dating from the 8th to the 7th century BC722 and at Bologna in the Tomba degli Ori from the late 7th century BC723.

Further south along the Adriatic coast and its hinterland, five additional cemeteries dating from the 8th to the 5th century BC contained necklaces with bulla-shaped pendants in female graves, namely Belmonte Piceno in Marche724, Campovalano725, Fossa726, Scurcola Marsicana727 and Alfedena728 in Abruzzo.

The northernmost examples of bulla-shaped amber pendants so far appear in Slovenia. Here, type 3 pendants with a plain as well as a ridged projection were found in the necropolis of Stična in Mound 48, dating to the late 7th century BC729. Also, at Magdalenska Gora necklaces with several pendants with a round shape, a pronounced, elongated neck and a horizontally perforated cylindrical projection were discovered730.

Further to the east, sites in the Balkans yielded other bulla-shaped pendants made from amber. The necropolis of Kompolje in Croatia included several graves containing amber pendants of this shape, dating between the 7th and the 6th century BC731. Also further south, in Kosovo, the necropolis of Romaja included comparable pendants within their amber ensembles, dating to the

716 Bietti Sestieri 1992, grave 204 (834 f. no. 23 fig. 3 c, 33.23), and tomb 62 (866 f. no. PA 1–23 fig. 3 c, 102).
717 Praeneste: Strong 1966, 52 f. nos. 21–22 pl. 8.
718 See the grave Quattro Fontanili Yα: Ward-Perkins – Falconi Amorelli 1970, 266 no. 68 fig. 52 and Guidi 1993, 72 no. 212 and p. 90–92. 99 f. for the chronology of the phase. Carved amber pendants from Etruria show horizontal grooves on the top and a vertical through-boring as typical characteristics.
719 Massaro 1943, 40 type 7; four bulla-shaped pendants from the Tomba del Tridente – Fossa B, male burial, early 7th cent. BC (Cygielman – Pagnini 2006, 120 no. 335 pl. 15 a). Etruscan specimens can have horizontal grooves on the top.
720 Genua, grave 30: P. Melli in: Ambre 2007, 159 no. III.98.
721 Aleria graves 92 and 167, probably both female burials: Yon 1977, graves 92 (591–593 no. N 2419 c/1, 595 no. N 2419 c/14) and 167 (605 no. N 3513).
722 Verucchio, Lippi, grave XVIII: Gentili 2003, 134 no. 19 pls. 59 and CXVI; Boiardi et al. 2006, 1596–1598.
723 Bologna, tomba degli Ori, female burial containing a necklace of 58 pieces of amber, three of which can be classified as bulla-shaped pendants: Morigi Govi 1971, 228 f.
724 Belmonte Piceno, grave 86, necklace with 23 pieces containing several bulla-shaped pendants: Biocco 2001.
725 Campovalano, grave 176, female burial including two necklaces containing in total 22 bulla-shaped pendants: A. Martellone in: Ambre 2007, 182 nos. III.144–145.
726 Fossa: d’Ercole – Benelli 2004, graves 36 (21 pl. 7, no. 18), 47 (28 pl. 11, no. 13) and 550 (228 pl. 188, no. 4); Fossa, grave 198: Cosentino et al. 2001a, 116 pl. 40, no. 2.
727 In grave 19 at Scurcola Marsicana a necklace was also found with seven bulla-shaped pendants which all showed a perforation running horizontally through their cylindrical projection and another blind bore-hole running vertically through the object: Cosentino et al. 2001b, 107 s. v. collana, pl. 7.
728 In grave 30 at Alfedena, dating to the 5th cent. BC, an amber necklace including six bulla-shaped pendants was also found: M. Ruggeri in: Ambre 2007, 181 no. III.143.
729 Stična, graves 1 and 98: Gabrovec et al. 2006, 14. 16. 75 f.; Gabrovec – Teržan 2010, 290 f.
730 Magdalenska Gora, tumulus 13, graves 97 and 163 (Tecco Hvala et al. 2004, 154 pl. 100, 13; 162 pl. 123, 4).
731 See graves I, II, 172B, 13, 81, 182: Hiller 1991, 204 fig. 49 C–E.
6th to 5th centuries BC732. Further examples could be cited in Bosnia at Glasinac, where three type 3 pendants appeared in Warrior Burial 1, dating approximately to the second half of the 5th century BC733. The easternmost comparable example is located in the necropolis of Kargovite Trali-Te-polno near Katrishtë in the Kyustendil region in ancient southern Thrace (Bulgaria). Here the two burials 16 and 17 contained several amber beads of various shapes, including a bulla-shaped pendant in grave 17, found along with a \textit{\textgreater}cage à oiseaux\textless, which offers direct references to Southern Europe and Italy. Grave 17 dates from the late 7th to the early 6th century BC734.

In addition to the bulla-shaped pendants with a smooth cylindrical projection, we can cite a type with elaborate projections, type 3b, identified in the Austrian and British excavations. Of these, the item \textbf{cat. 610} is a pendant with a projection defined by four vertical grooves. It is the only one for which comparable pendants are recorded in Italy. Similar works come from Verucchio735, Bologna736, Vetulonia737, Scurcola Marsicana738 and Satrium739, Aleria in Corsica740 and Stična in Slovenia741. The vertical grooves may be a reference to the twisted wire which forms the projection of bulla-shaped pendants made from metal.

The bulla-shaped pendants are the largest group of pendants in the Artemision, and amount to over 40 pieces. In the debate over the so-called breasts of the Ephesian Artemis, these ambers have been cited because of their shape and appearance. Ephesian Artemis is usually shown with multiple rows of rounded elements covering the figure’s torso. They are most commonly interpreted as multiple breasts, which reinforces the deity’s role as a kind of mother and/or fertility goddess742. Over the years, an increasing number of objections have been raised regarding this interpretation, and new explanations have been suggested743. S. Morris interprets the objects covering the bust of the Ephesian Artemis as a continuance of a Hittite cult object called \textit{kuršaš}, a leather bag made of the hides of sheep, goats or lambs. These objects would thus symbolise fertility, wealth and prosperity in the cults and myths of Anatolia, almost an equivalent of the Greek cornucopia. A relationship between the Hittite word \textit{kuršaš} and the Greek \textit{aegis}744 has been suggested in linguistic studies745. It is possible that this cult practice might have survived up to the time when Ephesian Artemis became popular.

Nevertheless, a clear designation of the true nature of these attributes of the goddess remains unknown. A closer analogy may be drawn between this form (pendants type 3) and the myth of Phaeton. After losing control of the chariot of his father Helios, the hero fell into the river Eridanos and died. His sisters, the Heliades, grieved and cried on the banks of the river until they turned into poplar trees and their tears became amber. It may be possible to use the myth of Phaeton to explain the shape of the bulla-shaped pendants and the ambers belonging to type 1.

732 Palavestra 1997, 28–30 pl. 7, 15.
733 Arareva gromila, grave 1: Benac – Čović 1957, 79 f. pl. 41, nos. 10–12.
734 Ivanova – Kuleff 2009, 31 fig. 5.
735 Grave Lippi XVIII: Gentili 2003, 132–135 pl. 59.
736 Morigi Govi 1971, 228 f. pl. 50.
737 Cygielman – Pagnini 2006, 120 f. pl. 15.
738 Grave 19: Cosentino et al. 2001b, 107 pl. 7.
739 Waarsenburg 1995, 400–409.
740 Yon 1977, 591–593. 605 figs. 1, N2419c/1; 2, N2419c/14.
741 Gabrovce et al. 2006, 75 f. pl. 55, 17.
742 Morris 2001a, 140; Morris 2008, 58 f.
743 Morris 2001a, 149; Morris 2008, 241.
744 Goat hide, metal shield or cloak, used in Greek mythology by Athena, Zeus and occasionally Apollo to create thunder and lightning to evoke human fear, but also used for protection: Parker 2014 <http://referenceworks.brillonline.com/entries/brill-s-new-pauly/aegis-e109870> (accessed 12. 06. 2020).
745 Morris 2001a, 146–148; Morris 2008, 59.
2.3 Pendants

Type 4: Bottle-shaped pendants

Type 4 represents the so-called bottle-shaped pendants. This kind of pendant shows similarities with the bulla-shaped varieties. However, the section and shape are somewhat rounded in this type. It also features a round button-top as a projection, while a slanted or horizontal perforation runs through the neck. Two pieces of this type were discovered in the Austrian excavations. Of these two, one is round and rather flat, perforated through the neck and vertically through its whole body. The other type is a globular pendant with a round button-top, with a slanted perforation running from its top to its side.

Pendants of this kind, made from various materials, seem to have been popular in the Aegean and further west, in the Balkan peninsula, and sporadically in Italy. They appear, for example, at Kythnos, where they are made from rock crystal, as an offering from the 7th century BC746, as well as in the sanctuary of Hera Limenia near Perachora, where they are made from ivory, stone, gold, coral and amber747. So far, in the Italian peninsula a single necklace with bottle-shaped pendants has been recorded and is now in the British Museum in London. It contains sixteen pieces, two with slanted perforations, and the remaining fourteen showing neck perforations. They are presumed to originate from a grave in the vicinity of Armento in Basilicata, although no clear statement can be made regarding the circumstances of the find748. The pendants probably date to the 7th/6th century BC. One other example was recorded in Southern Italy, at Braida di Vaglio and concerned the burial of a young girl from the 7th century BC. It featured about 40 silver fibulae and a remarkable 300 amber artefacts, a considerable portion of which consisted of bottle-shaped type 3 amber pendants (pl. 15)749.

The greatest concentration of type 4 amber artefacts comes from the Balkan peninsula. Here they appeared in the princely graves of Novi Pazar750 and Atenica751, as well as in one example in the necropolis of Skara near the village of Romaja752, all three dating to the 6th and 5th centuries BC. Also, a rich male burial dating to the 7th century BC near Aivasil (Republic of Northern Macedonia)753 yielded a pendant comparable to the bottle-shaped pendants (pl. 14, 1).

This type of pendant seems to have had the same apotropaic function as the bulla-shaped pendants discussed above, with which they share a similar shape. They seem to have originated on the coast of Asia Minor and subsequently spread to the Balkan peninsula754, where they were widespread.

Type 5: Fruit pendants

After the bulla-shaped pendants, the second largest group of pendants within the two deposits of Naos 1a and Naos 2 is made up of 29 pendants designated as type 5. Ornaments of this kind show an elongated oval form with a round section and round button-top, either plain, or defined as a rosette, or showing radiating incisions. They can be perforated either by two horizontal or slightly slanted drill holes that intersect each other, or by a single drilling, which either runs horizontally through its rounded base, or lengthwise through the whole object. They appear five times in the British excavations, where four are perforated vertically and one has a horizontal intersecting perforation. In the Austrian excavations, this type occurs twenty-five times: here 19 items show a

746 Mazarakis Ainian 2010, 35–38 pl. 20, 4.
748 Strong 1966, 84 pl.32, 89 a. b.
750 68 bottle-shaped pendants of various types, with a slanted perforation through their button-top: Palavestra – Krstić 2006, 221–239; Krstić 2007, 48. 89.
751 13 bottle-shaped pendants, mostly from the central mound II, with a slanted perforation through their button-top: Dimitrić 2006, 325–327.
753 Strong 1966, 46 pl. 2, 9.
perforation, thrice with a horizontal drilling or intersecting drill holes. They are partially designat-
ed as pomegranate pendants, based on the similarity of these objects with fruits, for their rosette
button seems to resemble the calyx of a pomegranate or an apple. Additionally, the objects with
round projections with radiating incisions could be geometric-style renderings of the seed-pods of
poppies755. We can imagine pendants with a vertical perforation suspended with their button-tops
facing upwards or downwards. Due to convincing comparisons from Southern Italy, we can imag-
ine their button-tops pointing downwards, but the opposite is also possible.

Objects of this kind and designation were fairly popular in the Aegean from the 7th to the
5th century BC. They are made from various materials like gold, bronze and bone or ivory, and
are used either upside down as pendants or as pinheads with the elaborate button-top pointing
upwards. Pendants in this form may have originated from Mycenae varieties from around
1500 BC, where they appeared as components of necklaces in some of the shaft graves at Myce-
nae756. Later on, they reappeared in the Geometric and Archaic periods in various sanctuaries all
around the Aegean. For example, items made from bronze following somewhat geometric shapes
appear in the sanctuaries of Athena Ithonia in Philia (Karditsa, Thessaly), of Athena Alea at Tegea
(Arcadia) and of Artemis Orthia at Sparta (Laconia), as well as at the sites of Valanida in Thessaly
and Ithaka on Cephalonia757. Other objects with the same shape came to light in the sanctuary of Artemis Orthia, within the 8th- and 7th-centuries BC layers. They were made from bone, and
functioned as pinheads758. Pinheads of this kind, also made of ivory, were found in a grave near
Enkomi on Cyprus759. Pomegranate-shaped artefacts made from gold appeared as pendants in the
sanctuary of a supposed, and as yet unidentified, goddess on Kythnos in the western Cyclades760
as well as on Rhodes as decorations of plates of gold foil and other jewels761. Further small pen-
dants in the shape of pomegranates were found in graves dating to the 7th and 6th centuries BC
near Sardis762. Also, in the so-called Lydian Hoard, probably from Uşak, Western Türkiye, some
specimens made of gold occurred763. Here the pendants were attached to tiaras and other suspend-
ed ornaments.

However, pomegranate pendants made from amber are comparatively scarce (pl. 14, 2). They
appear in the Aegean only on Chios in the sanctuary of Kato Phana, combined with other forms of
amber pendants like bulla-shaped varieties764 (see above). Further examples were observed in the
Balkans, in the necropolises of Zaton near Nin, presumably used as pendants and roughly dating
to the 8th century BC765. Comparable examples, however, are found in Basilicata, in Chiaromonte.
Here in several female burials dating from the late 8th to the late 6th century BC, pendants of this
kind appeared as components of necklaces and girdles that were made entirely from amber pieces
of various shapes766.

These pendants are elongated, with a round, seemingly plain button-top at the lower end. Never-
theless, regarding their shape and size, they look like exact replicas of the Ephesian varieties.

755 Kilian-Dirlmeier 1979, 123; Özgen – Öztürk 1996, 60; Ondřejová 2011, 375.
756 Higgins 1961, xvi. 77 pl. 6 b; Kilian-Dirlmeier 1979, 126.
757 Kilian-Dirlmeier 1979, 123–125.
758 Dawkins 1929, 226 f. pl. 136, 4.
759 Murray 1900, 15 fig. 24.
760 Mazarakis Ainian 2010, 40 f. pl. 24, 1.
761 Laffineur 1978, 192 no. 3 pl. 1, 3; 200 no. 43 pl. 5, 3; 202 f. no. 56 pls. 5, 2 and 7, 6; 203 no. 58 pl. 7, 5; 209 no. 91
pl. 11, 1; 210 no. 96 pl. 10, 3; 210 f. nos. 98–99 pl. 12, 1–2; 213 nos. 111–112 pl. 14, 1; 213 no. 114 pl. 14, 3; 230
no. 198–199 pl. 23, 1–2.
762 Curtis 1925, 26 no. 51.
763 Özgen – Öztürk 1996, 186 fig. 135.
764 Within the Geometric and Archaic period deposits, 8th–6th cent. BC: Lamb 1934/1935, 154 f. fig. 11 nos. 7. 10.
765 Nin, grave 3, late 6th cent. BC, vertically perforated: Hiller 1991, 387 f. pl. 47, 479.
766 Chiaromonte, graves 152, 91, 96, 156, 732: S. Bianco in: Ambre 2007, 239–242 nos. III.250–III.269; Bianco 2020,
111 figs. 14–16 (respectively graves Chiaromonte 156 and 152, late 8th–early 7th cent. BC) and 122 fig. 22 (grave
Chiaromonte 96, early 6th cent. BC).
The pendants feature either two intersecting drill holes or a single vertical one, which perforates the whole object – another resemblance to the ones from Ephesos. This resemblance to Ephesos is further reinforced by the fact that the ensemble includes one example with a plain button-top as one end (cat. 345). Another example of pomegranate-shaped pendants made from gold was located in the mentioned burial at Braida di Vaglio. Here, eight globular suspensions with round rosette buttons at their bases were used to decorate a diadem of laminated gold, decorated with zoomorphic and floral motives (pl. 15).

For artefacts described as fruit-shaped, pomegranates or the like, not all of which are made of amber, we can suggest a range of uses. It seems reasonable to see the ones with two intersecting drill holes as pendants for necklaces, also because of comparable examples from Italy and the Aegean. Their function as girdle pendants is also a possibility, based on comparable finds from Southern Italy. A clear purpose is difficult to establish for the pendants with a vertical drilling running through the entire object. Hogarth classifies the amber pendants, positing that, in addition to type a (here type 3) and type b (here type 2), there are pendants of a third type, which he describes as »elongated, without base, but with round button-top, incised rosette pattern above«. According to Strong, the five objects in question from the upper deposit are pinheads. There are also some comparable varieties within the ivory finds of the Artemision from the British excavation. Therefore, a designation of the fruit-shaped artefacts with a vertical drilling in both ways seems possible.

Type 6: Wineskin-shaped pendant

A single square pendant is the sole member of the sixth group. It features an elaborate upper section, showing two grooves and a horizontal, perforated gable top with a row of vertical incisions. This specimen was discovered in the British excavation and is so far unique. With a length of almost 3 cm, it represents the largest pendant within the ensemble. It was probably worn as a central piece in a composite necklace, along with other elements made from amber and/or other precious materials.

Comparable objects were observed only at Ithaca, made from ivory and bone, dating to the 7th century BC. However, they appear less elaborate than the one made from amber in the Artemision.

To date, the best comparisons for this pendant type can be found in the Balkan peninsula in the 6th century BC. They are referred to as »heart-shaped« pendants/bullae, »large bullae«, »craters without handles« or more commonly as »wineskin-shaped« pendants. Here the amber is shaped as big pendants with a plain, cursorily worked body and an elaborate upper body with vertical, horizontal and/or intersecting decorative incisions. According to A. Palavestra the wineskin pendants represent a characteristic shape typical of the Central Balkans, where they appeared from the late 6th to the early 5th century BC in various necropolises in different varieties. For the wine-skinned pendant of Ephesos, the most adequate comparisons according to their shape and elaboration were found at Novi Pazar and in rich female burials of Pećka Bonja, Rogovo-Fuše,
Romaja778, Atenica779 and Lisjevo Polje780. Furthermore, amber wineskin pendants with a horizontally perforated projection, decorated with horizontal grooves and a button at the base, have been found in warriors’ graves in the necropolis of Trebenishte in today’s Republic of Northern Macedonia781 (pl. 16, 1).

Female clay statuettes and busts, such as one from Lavinio in Latium vetus, dating to the 5th century BC782, and three from Spain, dating to the 4th and 3rd centuries BC783, testify to the long life of pendants of this shape, which are reproduced in sophisticated and elaborate parures together with other adornments. However, it must remain questionable whether the real pendants were made from amber, gold, silver or other precious materials.

2.3.4 Conclusions

The amber pendants of the Artemision at Ephesos feature one of the largest artefact groups, deposited in several hoards as a foundation deposit in the second half of the 7th century BC. The pendants themselves were divided into six groups (types 1–6), which are characteristic of different diffusion periods and areas all over the eastern half of the Mediterranean.

Types 1 and 3 represent the amber pendant types with the longest lifespans in the Ephesian ensemble. They appeared from the 10th to the 5th century and from the 8th to the 4th century BC, respectively. Both types reached their maximum diffusion in the Italian peninsula, particularly in the southern regions. Furthermore, the bulla-shaped type 3 pendants were highly popular in the entire Eastern Mediterranean, where they were made from various materials such as gold, silver, bronze, bone, and amber. By contrast, it is, however, interesting to note that these pendants were rare in the Balkans, where other varieties of amber pendants seem to be more widely distributed. In this region, they only appear at Stična and Magdalenska Gora in Slovenia and Kompolje in Croatia. Also, the pendants of type 5 show a long distribution span. Presumed to originate in the Middle Bronze Age in the context of Mycenaean jewellery, they reappeared from the 7th to the 5th century BC, mostly in the Aegean and in several sites in Asia Minor. They are believed to be shaped in the likenesses of fruits such as apples, pomegranates and poppies, and might possibly refer to beliefs connected to fertility.

They were used as pendants, suspensions for pectorals, girdles and diadems, as well as pinheads, represented by the pinhead types 1 and 2 (see below, chap. 2.7). However, in the Aegean, varieties of these pendants and pinheads were frequently made from precious metals, rarely from amber. Also, while several more geometric varieties of type 5 amber objects appeared in Southern Italy, this shape is represented in Ephesos only once. The remaining types 2, 4 and 6 of the ensemble show a limited lifespan and distribution area. The elongated pendant of type 2 with a button at its end seems to be primarily distributed from the 8th to the 6th century BC. Comparisons occur mostly in the Aegean and are only scarcely attested in Italy. Several comparable examples for type 4 appear in the Aegean on Kythnos and at Perachora, as well as in Italy, at Armento in Basilicata, all three sites dating to around the 7th century BC. Type 6 features only one comparison in the Aegean, namely on Ithaca and made from bone, also dating to the 7th century BC. However, types 4 and 6 find their best comparisons in the later princely graves in the Balkans dating to the 6th to 5th centuries BC.

This summary of the distribution of the various pendant types from the Ephesian Artemision highlights the various connections and relations between the different regions of the Archaic Mediterranean. However, it is difficult to reconstruct and assess the full extent and nature of these contacts and their subsequent influences. For example, on the one hand, a connection between South-
ern Italy and Ionia is well documented through the Greek foundations in Italy: Greek settlers were in touch with Oenotrian people, who produced a great variety of amber ornaments. Furthermore, of the six established pendant types, four show clear and numerous comparisons in the Italian peninsula in general and its southern half in particular. Also, these sites mainly date to a similar time frame as the Artemision deposit. These observations might indicate a development of similar tastes in jewellery between the Greek settlers and the local population. They might account for the rich supply of amber objects at the Ephesian Artemision. On the other hand, comparable pendants also appear within the rich princely graves on the Balkans, which would also indicate contacts between Asia Minor and the regions adjoining the northern border of the Greek world. This is an especially interesting aspect. Except for the main areas of Greek influence, this is the only area in which we find comparisons for pendants of types 4 and 6. However, the sites in which these types appear mainly date significantly later than the Artemision amber deposit. Therefore, apart from the possibility of local and independent innovation, it seems that impulses to import or create these kinds of ornaments originated within the Greek world and only reached the northern regions after a considerable amount of time. Regrettably this explanation is not entirely satisfactory: we agree with Hogarth, who so fittingly stated that this class of jewellery is »notoriously difficult to ascribe to definite periods, since articles of personal ornament usually continue long in use, and are handed down as heirlooms through many generations«.

To conclude, we can affirm that in the Archaic period, throughout the Mediterranean, pendants made from amber represent important components of jewellery, mostly worn by women, presumably for their apotropaic, magical and healing properties. Either as part of lavish necklaces, pectorals or girdles, the six different pendant types appear in different regions and over different time spans. They seem to feature a broad spectrum of influences from different regions, from Central Anatolia to the west coast of the Aegean, ranging from the Balkans and the Italian peninsula and to the shores of Corsica. Nevertheless, these contacts were unlikely to be one-sided, but rather worked in both directions over a considerable period of time.

Caroline Posch

2.4 SPACERS (CAT. 350–488. 631–634)

2.4.1 Introduction

Spacers are amber plates of various shapes which show parallel through-borings drilled from side to side through their thickness. The purpose of the spacer-plates is to act as intermediary pieces and separate the different strings of beads of a suspended ornament, such as a necklace, collar, pectoral, girdle, etc. In such cases, spacers can be used as end-pieces, to collect the strings together and keep them in order. The spacer-plates acquired particular value, because they implied the ownership of a large number of beads.

Amber spacer-plate necklaces of various shapes are documented in the Late Neolithic and the Copper Age in Central Europe during the Funnel Beaker Culture and the Passage Grave Culture. They become more frequent from the Early Bronze Age onwards in several European regions, corresponding to modern-day Latvia, Bohemia, Germany, France, Austria, Switzerland, Greece and Crete; recent finds also document their distribution in Northern Italy. We know that during the Early Bronze Age the Wessex Culture witnessed a particular flourishing of spacer-plate necklaces.

784 Hogarth 1908a, 240.
785 The position of the through-borings, drilled side by side through the depth of the amber, is crucial to define a spacer and to distinguish it from carved ambers stitched on dresses, which have frontal through-borings.
787 Marzatico 1997 (Cles, dated to the Middle Bronze Age, 16th–15th cent. BC) and Salzani et al. 2006, 1608 f. fig. 1 (grave Olmo di Nogara 122, dated to the Late Bronze Age, »età del bronzo recente«).
necklaces in Great Britain. A careful review of the geographic distribution and chronology of the Bronze Age spacers allowed C. du Gardin to presume that in this period each centre had its workshop and that possibly the earliest Central European examples inspired the spacers in Great Britain and Greece. By contrast, C. Gaslain suggested a Mediterranean origin for the ornaments and J. Maran classified the spacers from Wessex as earlier attestations, which could have influenced firstly the Mycenaean contexts in the Aegean and secondly the specimens in the Central European area.

In the Early Iron Age, from the 8th century BC onwards, spacer-plates and multiple necklaces of amber are widely documented, especially in Italy. Rectangular-shaped spacer-plates with rounded corners have been found in female graves in Veneto and Emilia-Romagna at Brescello, Bologna and Verucchio. In Central Italy they are known in Etruria at Vetulonia and Emilia-Romagna at Brescello, Bologna and Verucchio. In Italy they are known in Etruria at Vetulonia and Emilia-Romagna at Brescello, Bologna and Verucchio.

Rectangular-shaped spacers with six, eight and nine through-borings on the short sides have been found in the Circus of the Tridente, dated to the early 7th cent. BC: Cygielman – Pagnini 2006, 117 f. nos. 315–319 fig. 33 c. e. i pl. 23, r. s. t. u; colour photo in: Cygielman – Spaziani – Rafanelli 2009, nos. 5 a–e. Other spacers from Vetulonia are mentioned by Colombi 2018, 173 n. 1959.

Rectangular-shaped spacers: Cavallotti Batchvarova 1965, grave HH 11–12, 132 no. gg 3 fig. 52 (with three holes); Bartolini – Pandolfini 1972, grave PQ 4 a, 309 no. 10 fig. 76 (with five holes); Fabbricotti 1975, grave EF 13, 94 no. 27 fig. 18 (with four holes).

Satricum, tomb VI, 650–640 BC: Waarsenburg 1995, 411 f. 473 nos. 6, 63–66 (trapezoidal); 6, 67–72 (rectangular) pl. 87 (four specimens with three borings and one specimen with six borings). Ostia dell’Osa: Bietti Sestieri – De Santis 1992, 437 type no. 90a–c pl. 44 (rectangular, with two, three and four borings, from several tombs).

Macellari 2014, 100, includes literature for rectangular spacers from cemeteries of Novilara, Ripatransone and Colli del Tronto, dated to the 8th–7th cent. BC. For Metelica see E. Biocco in: Potere 2008, 71 no. 50 (rectangular, with seven borings through the short side intersecting with two other borings drilled in the long side), from the grave Crocifisso 108 belonging to the late 8th–early 7th cent. BC.

Tortoreto, cemetery of Colle Badetta: Arbace – Belfiore 2018, 58 f. (with eight borings), early 8th cent. BC (colour photo, without information), belonging to a necklace. Information about the unpublished finds from Colle Badetta is given in Iezzi 2006, Lapenna 2010 and Papi 2022.

Cumae: Borriello 2007, 211 no. III.189 (with five borings); for Longola di Poggiomarino: Cicirelli 2007, 217 no. III.209 (with five borings).

Two spacers with seven through-borings have been found at Carlantino (province of Foggia), Santo Venditti, grave 11 (6th cent. BC): De Benedittis – Santone 2006, 53 no. 5.

Benedetti – Cardosa 2006, 1579 fig. 3 (tiny, for two and three strands).

Outside of Italy, rectangular amber spacer-plates occur in Early Iron Age burials in Southern Germany, Austria and Switzerland from the 7th to the 5th century BC801. Amber spacers are documented in Slovenia at Most na Soči, Magdalenka Gora and Novo mesto, in Serbia at Novi Pazar, from the 7th to the 5th century BC and the 6th to the 5th century BC802 respectively.

In Ionia outside Ephesos, square amber spacer-plates are rare; some still unpublished specimens dated to the 7th century BC have been found at Miletos803. In modern-day Greece no specimen of square amber spacer-plates dating to the 7th century BC has been identified.

There is ample evidence to prove that from the early 7th century BC the same suspended ornament could often include beads and spacers of different colours and materials – amber, bone, glass, clay and so on. The contrast between the different colours of the materials, such as the white bone and the red amber, was decisive in the final assemblage of the ornaments804.

Finds from female burials dated mostly in the 8th and 7th centuries BC from Verucchio and other Italian sites show clearly that bone spacers were put to another functional use. These objects were connected to the weaving process, and in particular to the tablets employed in producing the borders of precious textiles. Small narrow pieces keep the threads apart to avoid entanglement805. The bone spacers used in the weaving process are flat, pierced by several holes, and generally associated with spools and spindle-whorls. As these features do not apply for any of the Artemision finds, a possible function of the Ephesian spacers as weaving tools seems very unlikely.

2.4.2 Typology

The spacers from the Artemision can be assigned to eight main shapes (pl. 17).

TYPE 1: TRIANGULAR-SHAPED END SPACER-PLATES (CAT. 350–351) (WITH FIVE BORINGS)

Pls. 18, 1. 2; 49

Spacers of triangular or trapezoidal shape are documented already in the Middle Bronze Age in France and Germany. They are characteristic end-pieces of multiple-row necklaces and were used

801 Kossack 1959, 115–117 fig. 18 C (distribution in South Bavaria and Hallstatt) pl. 109, 5 (rectangular spacer-plate with six through-borings); Kromer 1959, 145 pl. 123, nos. 4–5 (Hallstatt grave 694); Tischer 1994, 34 f. pl. 26, no. 12 (rectangular spacer-plate with nine sets of V-shaped borings); Stahl 2006, 27 listed other artefacts; Primas 1965/1966, 194 fig. 3, 8 and Volotolini 2016, 47 f. fig. 3 (Pianezzo, South Switzerland, 5th cent. BC).

802 A. Crismani in: Ambre 2007, 120 no. III.8 (Most na Soči, grave 3070, late 7th–early 6th cent. BC); Tecco Hvala 2012, 283 fig. 105 no. 6 (Magdalenka Gora, grave Preloge 13/117, 6th–5th cent. BC); Križ – Turk 2003, 94 no. 42 = Križ 2017, 130 no. 5 (Novo mesto, 5th–4th cent. BC); Palavestra – Krstić 2006, 276 f. and Palavestra 2009 (Novi Pazar). Later amber spacers are reported from Novo mesto: Križ 2017, 48 and 133 no. 13 (4th cent. BC).

803 Small amber rectangular spacers (inv. Z.09.73.273 and some additional fragments) have been found in the bothros of the Aphrodite sanctuary at Zeytintepe. They have been dated to the 7th cent. BC (von Graeve 2013; von Graeve 2017). In the summer of 2012, Prof. V. von Graeve and Dr. G. Günay von Graeve kindly showed me the Milesian amber finds.

804 Bone spacer-plates and amber beads or, by contrast, amber spacer-plates and glass or clay beads are documented in several interments in Italy: a comprehensive list lies outside the purposes of this research. For bone spacers see the following note.

805 Gleba 2008, 152 f. figs. 98. 104–105 collected and discussed the finds of bone spacers from Italy; another bone spacer from a rich grave in San Giovanni in Persiceto (province of Bologna) has been published by Christiansen and Petersen 2017, 478 no. II.21 (Copenhagen, Ny Carlsberg Glyptotek, inv. HI 353). Unpublished finds have been identified in graves 25/1984 (6th cent. BC) and 55/2000 (7th cent. BC) of the cemetery Mossa at Fermo, and in grave 14 of the cemetery at Pitino (commune of San Severino Marche, province of Macerata), dated to ca. 600 BC. Among the finds listed by M. Gleba, the specimens from the Oenotrian cemetery of Incoronata (commune of Pisticci, province of Matera) in the hinterland of Metaponto play a different role. These objects are made of bronze and are part of female ornaments (Chiartano 1994, 50 f.); they were probably used as rattles and meant to produce sound (Pacciarelli 2007, 119; Saltini Semerari 2019, 35).
to collect together all the strings of one ornament. Usually, triangular spacers have parallel borings; the number of borings can vary from 2–7 or even more. In the 7th century BC spacers were adopted in Central Italy at Satricum in the rich tomb VI, which belongs to the most extensive amber contexts in the Mediterranean, totalling over 500 objects. The rich female Oenotrian graves explored in Southern Italy in modern-day Basilicata yielded very elaborate parures of amber ornaments still in their original position. These include necklaces but also other suspended ornaments, such as pectorals and girdles, all in the same burial.

Triangular and trapezoidal spacer-plates are less common than rectangular ones. The striking similarities between the two examples from Ephesos (cat. 350–351) with regard to their respective find-spots, size and number of borings, show that both might belong to the ends of the same ornament, deposited during the infilling of Naos 1 in the building phase called Naos 1a (see below).

Type 2: Rectangular-shaped spacer-plates (cat. 352–353. 356. 633–634) Pls. 49. 62

Spacers of rectangular shape are intermediary pieces, which may belong to necklaces if they were meant for a vertical position, or to pendants if they were supposed to hang in a horizontal position. In spacer-plates of rectangular shape, the through-borings are generally drilled on the long side through the short side. Both in the Bronze and in the Iron Age, some rectangular spacers can have simple parallel or more complex borings in different combinations, such as V-shaped and Y-shaped borings. The rectangular spacers from Ephesos (cat. 352–353. 633–634) have different numbers of parallel borings. The spacers (cat. 356 and 631) show several borings through the short sides intersecting one boring, which runs lengthwise through the centre of the object. The vertical perforation was probably destined to hang up a pendant. It belonged to the lower row of the ornament.

Rectangular-shaped spacer-plates can be used with the long sides in a vertical position in necklaces and girdles or with the long sides in a horizontal position in extremely elaborate pendants, as testified by some pendant-pectorals found in female graves dated to the 6th and 5th centuries BC from Veneto, Slovenia and Switzerland.

Regarding the rectangular-shaped spacer-plates, the different sizes and the find-spots mean they can all be assigned to different suspended ornaments, which have not yet been reassembled, including also (cat. 634), which is characterised by horizontal and vertical borings. These ornaments were deposited in foundation deposits both in the >Hortfund< in Naos 1a (cat. 352–353. 356) and in Naos 2 in the Green Schist Basis (cat. 631. 633–634), which yielded beads of various materials, including amber. Suspended ornaments may contain amber beads together with bone, ivory, rock-crystal and glass beads.

806 See du Gardin 2003, 181 fig. 4, 1–3.
807 Waarsenburg 1995, 411 f. 473 nos. 6, 63–66 pl. 87. Tomb VI of Satricum yielded at least six triangular-trapezoidal end-spacers, belonging to a minimum original number of three amber suspended ornaments such as diadems, necklaces, pectorals, or girdles. The ornaments have not been precisely identified in the publication. This is due to the poor state of conservation and the lack of information concerning the exact find-spot in the tomb, which yielded a remarkable quantity of pendants.
809 Both end-spacers were found in the same metrical unit (870352).
810 A close comparison for the combination of vertical and horizontal borings on the same spacer is provided by a rectangular spacer from the grave Crocefisso 108 at Matelica. It shows seven borings on the long side and two on the short side, and is dated to the late 8th–early 7th cent. BC: E. Biocco in: Potere 2008, 71 no. 50.
811 For the pectorals from Pieve d’Alpago, dated around 550 BC, and Pianezzo, dated in the 5th cent. BC, respectively, see Voltolini 2016, 47 f. fig. 3, with previous literature. Another example occurs at Most na Soči in the grave 3070 (625–575 BC): A. Crismani in: Ambre 2007, 120 no. III.8.
2.4 Spacers

The two spacer-plates have the same unusual shape, adapted to a double-row ornament. Although roughly comparable to spacers in the form of a dumbbell documented during the Bronze Age in Central Europe, they find a fair comparison in Iron Age contexts only in Central Italy, at Satricum, in the rich tomb VI. In the harbour sanctuary at Chios, a similar amber ornament has also been found, but it is drilled longitudinally. Their precise role is not clear. It is hard to understand the original position of these spacers and to determine if they belonged to a necklace or a pendant: the tiny dimensions are suitable for a small two-row pendant. The rare shape is probably due to a local development for a specific (multi-material?) ornament, which has not yet been identified.

Types 4–6: Bird-shaped spacers (cat. 357–417) plls. 18, 3; 50; 51

It is well known that during the Early Iron Age various types of birds took on a religious meaning and became a popular motif in several materials and classes of objects in the Aegean, and Central-Eastern Europe. In the 8th century BC the symbolic meaning is stressed by amber pendants carved as the double protome of a bird; these occur in burials at Torano Castello and Crichi, in modern-day Calabria in Southern Italy, at Nin and Osovo on the Eastern Adriatic coast, in modern-day Croatia and in Bosnia. To the third quarter of the 8th century BC date three amber spacers carved as double protomes of birds and recalling the tradition of the sun ship: they were found in the very rich female burial 74 explored in southern Campania at Montevetrano near Pontecagnano. The leading role played in Etruria by the amber workshops of Veii is stressed by a single pendant in the shape of a bird found in a rich female grave, which is dated to the third quarter of the 8th century BC.

The origin of amber bird-shaped spacers can be traced back to Southern Italy, to an area of modern-day Calabria. Finds are documented there, at Francavilla Marittima in the Oenotrian cemetery at Macchiabate, in female burials dated around 750 BC. Other still unpublished finds from Francavilla Marittima, such as carved ambers from the graves Temparella 39 and 84, have been found at Francavilla Marittima in the Oenotrian cemetery at Macchiabate, in female burials dated around 750 BC.

813 See du Gardin 2003, 191 fig. 9, 7 (Unetice). A three-boring specimen from Kakovatos dated to the Late Bronze Age has a similar shape (du Gardin 2003, 191 fig. 9, 6), but it is flat (Sgouritsa Polychnakou – Nikolentzos 2016, 251 C fig. 2).
815 Boardman 1967, 240 no. 262 fig. 162.
817 Kilian 1970, 244 f. 288–290 with a bibliography for Southern Italy. Negroni Catacchio 1975/1976, 34; Negroni Catacchio 1978, 181 and Spada 2004, 91 (Crichi); de La Genière 1977, 404, 86 (Torano Castello). Similar finds from Tiriolo have only been mentioned (de La Genière 1972, 237 f.): an expert connoisseur of Calabrian finds such as R. Spadea is not aware of any bird-shaped amber pendant from Tiriolo (R. Spadea, personal communication). A (probably) similar pendant has been found in Southern Campania in the necropolis of Sala Consilina in the female grave 278, dated to the early 7th cent. BC (mentioned by Roncoroni 2006, 56, 58 f.; Romito 2019, 622).
819 de La Genière 1972, 237 f. with references. For: Negroni Catacchio 1975/1976, 34; Negroni Catacchio 1978, 180 fig. 8. The pendant probably belongs to a suspended ornament together with other amber objects from the same burial.
820 de La Genière 1972, 237 f. with references; Zancani Montuoro 1976, grave S 60, 24 f. fig. 7; Zancani Montuoro 1979, grave U(liveto) 16, 72 fig. 25 h; S. Bianco in: Magie 2005, 91; Benedetti – Cardosa 2006, 1583 fig. 4 (below), classified as a button; Cossalter 2009, 347 (mention). Similar finds from Sybaris are mentioned: Negroni Catacchio 1978, 180 (referring to a personal communication by P. Zancani Montuoro).
date to the third quarter of the 8th century BC and include bird-shaped amber spacers of various sizes.

As already mentioned (above, chap. 2.4.1) the inhumation burials of the Oenotrian cemeteries revealed several types of multi-wire female amber ornaments, such as necklaces, pectorals and girdles, which contained bird-shaped spacers. The funerary interments are still unpublished in their entirety. However, the amber ornaments have been published in preliminary reports and the related graves have been dated from the late 8th to the early 7th century BC. In particular, the necklaces and the girdles from the rich graves Latronico 83, Chiaromonte 156 and Chiaromonte 140 offer comparisons to identify the amber spacers from Ephesos as bird-shaped spacers, and to clarify their original functions.

Among the amber finds from the Artemision at Ephesos, two types of bird-shaped spacers are documented, each showing two different perforation systems, which were probably used in the same ornament, which in turn was meant to be used for two different functions. The different shape of the spacers does not seem to play as important a role as the one played by the different perforation systems. According to this system, therefore, spacers will be assigned to one of two types, based on the number of perforations rather than on the shape. Except for the differences in the bore-hole systems, all bird-shaped spacers from the Artemision form a homogeneous group and very likely belong to the same ornament.

Type 4: Bird-shaped spacers with three borings (cat. 357–361. 368. 370. 373–381. 387–389. 393–394. 405–406. 411. 414) pls. 18, 3; 50; 51

Bird-shaped spacers with three borings may have a triangular (cat. 357–361. 397–403. 405–406. 414) or a rectangular-shaped base (cat. 368. 370. 373–381. 387–389. 393–394 and 411) or curved (cat. 397–406). The variation in frontal borings probably depends on the shape and size of each spacer – one needs well-defined corners to drill V-shaped borings – while the front is often rounded and only allows curved borings. T-shaped borings occur on the smallest pieces, where the size of the piece only allows for one boring in the middle, connected to the frontal, transversal boring.

Bird-shaped spacers with three borings (type 4) are thicker than bird-shaped spacers with two borings (type 5). Those with three borings (type 4) have been used to connect two horizontal rows of the ornament and to sustain a vertical row of pendants on the front of the ornament. They were originally placed on the ornament's lower row.

822 Dr. F. Quondam (Rome, Vienna) kindly showed me the drawings of still unpublished finds from some graves at Francavilla Marittima (Temparella 39, Temparella 84 and Uliveto 16), consisting of several bird-shaped spacers and furnished the related information. He will soon comprehensively publish the funerary interments of the cemetery (Quondam [forthcoming]).

824 60 amber bird-shaped spacers were concentrated in the metrical units 870232 (18 items), 870246 (27 items), 870281 (9 items) and 870352 (6 items), as M. Kerschner noted for the contexts of carved ambers found in the Artemision in the 1987 excavation season (Kerschner 2005, 138 n. 88). For additional observations about the provenience of the spacers inside the Artemision see above, chap. 1.1 and below, chap. 5.5.

825 The spacers cat. 368. 370. 373–374. 376 belong to the bird-shaped spacers type 1, although they actually have two borings, because they are not entirely preserved and some parts are missing.
2.4 Spacers

Bird-shaped spacers with two borings have a quite irregular, rectangular base, which in some exemplars tends to become almost trapezoidal. These spacers are flat and thin; the borings run transversally from face to face on the front and back. Bird-shaped spacers with two borings (type 5) have been used to connect the components of a single row of a girdle horizontally. They formed the central rows in the ornament.

Type 6: **Bird-shaped spacer, special shape** (cat. 409) pl. 51

This spacer stands out on account of its large size, (H 1.4 cm against 0.5–0.6 cm) and for the unique boring system, having three through-borings, one horizontal through the base and two vertical. Probably, having been broken during the working process, it was adapted for a special purpose. It was meant either to connect the interior rows of the ornament or to hang up a pendant, as attested by the presence of vertical borings. As it constitutes a unique piece, it is actually impossible to determine its approximate original position in the ornament.

Type 7: **Triangular spacer-plates** (cat. 418–472) pl. 18, 4; 51; 52

Small geometrical spacer-plates are quite rare as stand-alone amber ornaments as they are usually used to connect single elements or pendants of different shapes. They occur in Italy, mostly in Oenotrian graves from the early 7th century BC and in Picenian graves from the 6th century BC, and are always combined in several rows of similar elements; in the late 6th to the 5th century BC they also appear in the Central Balkans. Regarding Southern Italy, one can repeat the description offered regarding the bird-shaped spacers: the inhumation burials of the Oenotrian cemeteries of Latronico and Chiaromonte yielded several types of multi-wire female amber ornaments, particularly girdles and pectorals, including triangular, square and lozenge-shaped spacers. Publication of the funerary interments in their entirety has yet to be undertaken. However, the amber ornaments have been published in preliminary reports, and the related graves have been dated from the late 8th (graves Chiaromonte 152 and 156) to the early 7th century BC (grave Latronico 83). The girdles from these three rich Oenotrian graves offer useful comparisons to help identify the functions of the triangular-shaped spacers from the Artemision at Ephesos. Other suspended amber ornaments constituted of several rows of beads, and including square spacers, have been found in a burial remarkably rich in amber artefacts (more than 500), namely, tomb VI at Satrium in Latium vetus, dated 650–640 BC. Suspended amber ornaments of unknown destination (diadems [?], pectorals [?], girdles [?]), composed of triangular and square spacers, are reported in female depositions in modern-day Abruzzo, as in grave 75 in the cemetery of Campovalano (commune of Campoli, province of Teramo), dated to the first half of the 6th century BC, and in

826 The spacers cat. 363, 365, 367, 369 and 372 actually feature only one transversal boring on the frontal side, but they are not entirely preserved.

827 The Picenian grave Moie di Pollenza 4, dated to the 8th cent. BC also comprises a chain composed of two rows of triangular pendants (Percossi – Frapiccini 2004, 85 unnumbered figure).

grave 5 in the cemetery explored near the abbey of San Clemente at Casauria (commune of Tocco Casauria, province of Pescara), dated to the first half of the 5th century BC. A suspended ornament composed of rows of square and triangular plates, similar to the Oenotrian ornaments, has been identified in the incredibly rich female grave «tomba della Regina» in Numana, dated to the end of the 6th century BC. The grave yielded more than 3,000 carved ambers, which makes this one of the richest burials not only in Central Italy but in the whole of the Mediterranean.

The sequence from Numana, a harbour site closely connected to the opposite shore, directly across the eastern Adriatic, allows us to understand the presence of similar objects found in the Central Balkans. According to A. Palavestra, these are probably linked to the spread of Italian models and dated to the turn of the 6th to the 5th century BC.

Based on the perforations of triangular and square spacers, Palavestra identified a suspended ornament in the funerary context explored at Novi Pazar and suggested the hypothetical reconstruction of a necklace. The Serbian scholar also published similar finds from other Central Balkan localities.

The small triangular spacer-plates from Ephesos are all very similar: each has three borings drilled, on in each corner from face to face. Except for 12 examples (cat. 418. 420–429 and 439), all other 43 spacers (cat. 419. 430–438. 440–472) show a frontal engraving of a circle enclosing a central point. All spacers are very similar to each other in shape and size, and all are accurately polished on both sides, so it is highly likely they all belonged to the same object. Their respective find-spots confirm this hypothesis, as the triangular spacer-plates were found in the 1987 campaign in the same four metrical units, lying side by side. The evidence offered by Oenotrian girdles mentioned above suggests that the triangles originally formed two different horizontal strings, which hung opposite each other by their apexes. The lack of a vertical boring indicates that the two rows of triangular spacer-plates were originally placed towards the top of the ornament to which they belonged.

Type 8: Round spacer-plates (cat. 473–488. 632)

By classing the ambers according to the perforation systems, the 16 spacers can be divided into three subtypes, the ones with one boring (type 8a, cat. 473), those with two connected borings (type 8b, cat. 474–475) and those with two unconnected borings (type 8c, cat. 476–488). Spacers of the third type, cat. 476–482, 484–485, show a circle with a central point engraved on one side. Except for the differences in the borings, the round spacers are very similar: they are quite flat, thin and well polished on both sides.

The round spacer-plates form a group essentially similar to the triangular spacers as they share the same ornamentation. The unadorned round spacers (cat. 473–475) are slightly larger than, or similar to the decorated ones (cat. 483. 486–488). It is likely that they all belonged to the same

830 Campovalano grave 75, 14 trapezoidal-shaped spacers with vertical and horizontal perforations: P. Boccolini in: Chiarammonte Treré – d’Ercole 2003, 58 no. 36 pl. 65, no. 8; 149 for the chronology. Tocco Casauria, grave 5, triangular- and square-shaped spacers with vertical and horizontal borings: Terrosi Zanco 1975, 245 f. (only mentioned); Papi 1979, 80–83 fig. 22 pl. 15, 7.

831 The grave as a whole is still unpublished: main preliminary reports see Landolfi 1997; M. Landolfi in: Piceni 2001, 350–365; and especially focusing on amber, M. Landolfi in: Ambre 2007, 174–178. The girdle is exhibited in the museum in Numana, no. 92975 and is still unpublished, but mentioned by Bardelli 2021, 13 fig. 7. Dr. G. Bardelli (Naples) is working on the grave’s furnishings to publish them comprehensively.

832 Palavestra 2003, 221 fig. 9; Palavestra – Krstić 2006, 276 f. fig. 68 with a full description of finds from other Central Balkan sites; Palavestra 2009, 167–169 fig. 3.

833 Fifty-five triangular amber spacers were concentrated in the metrical units 870232 (9 items), 870246 (19 items), 870281 (4 items), 870352 (23 items), as M. Kerschner noted for the contexts of carved ambers found in the Artemision in the 1987 excavation season (Kerschner 2005, 138 n. 88). For additional observations about the provenience of the spacers inside the Artemision see below, chap. 5.5.
ornament. They were found in the »Hortfund« in Naos 1a.

Comparisons for round spacers outside of Ephesos cannot be established. Probably they must be considered as a special shape developed in the Artemision at Ephesos for a particular purpose. They have been tentatively associated in the reconstruction of a single suspended ornament (see below).

2.4.3 Conclusions

Except for a few pieces, the spacers were mostly found in the »Hortfund« in Naos 1a, which indicates that they probably originally belonged to the same, multi-row suspended ornament.

The shape of type 1 end-spacers immediately points to the original presence of one suspended ornament, to which both these pieces belonged.

Type 2 spacers may belong to necklaces and to pendants, but in both cases, the original ornament remains unidentified; this is also the case for the two spacers of type 3, probably a locally developed shape.

Type 4 and 5 bird-shaped spacers show the same style, and they belonged to the same ornament. The total number of the two types of bird-shaped spacers are quite similar (32 examples for type 4 and 28 for type 5), indicating that the original ornament probably had two rows of spacers, each composed of roughly 30 pieces. The bird-shaped spacers of type 5 were placed in the upper or in the middle part of the ornament and the bird-shaped spacers of type 4 occupied the lowest row, sustaining other suspended pendants thanks to their vertical boring.

The bird-shaped spacer of type 6 is a unique piece, probably the result of a reworking of broken amber, which was reused as it was made of a precious substance.

Type 7 triangular-shaped spacers form a homogeneous group of 55 items and they belonged to the same ornament: in colour and style they are very similar to the bird-shaped spacers (types 4 and 5, 60 pieces in all) and they show the same engraved ornamentation, a circle with a central point. Sharing a similar aspect and their respective find-spot being located within the same metrical units, it is highly probable that all 115 bird-shaped and triangular spacers belonged to the same suspended multi-row ornament. Their pertinence to the same ornament is confirmed by the find-spot: the »Hortfund« in Naos 1a, particularly for both end-spacers of type 1 and round spacer-plates of type 8.

It is highly likely that small and perishable components were lost when the filling layer under the central base of the Artemision was infiltrated by groundwater over an extended period of time or during the modern excavation (see above, chap. 1). One can conclude that the total number of bird-shaped spacers of types 4 and 5 (60 pieces) corresponds roughly to the total quantity of the triangular spacers of type 7 (55 pieces) and that both constitute only a part of the elements originally offered to the deity.

Based on comparisons with amber ornaments from Southern Italy and the role of girdles as a votive offering to Artemis in Ephesos, it is very likely that the suspended ornament was a girdle composed of hundreds of carved ambers (for the reconstruction and the discussion see below, chaps. 5.5–6).

\[\textit{Alessandro Naso}\]

15 carved spacers were found in 870232 (2 items), 870246 (10 items), 870281 (1 item) and 870352 (2 items), respectively. Another round spacer was found in a different metrical unit 870146.

Except two pieces found in 1990 (900146) and in 1994 (940486), 136 carved spacers of the types 1–8 were found in 1987 in the »Hortfund« in Naos 1a, in the metrical units 870232 (30 items), 870246 (56 items), 870281 (15 items) and 870352 (35 items).
2.5 FIBULAE (CAT. 489–523, 635–652)

2.5.1 Introduction

Amber fibulae can be categorised as a subclass of polymateric ornaments, whose sophisticated construction combines both organic and inorganic materials. The definition »amber fibula« refers to a fibula which combines a metal framework (bronze, gold, silver and iron) and organic components used for decoration (amber, ivory) and assembly (vegetable fibres, wax, natural glue).

Amber fibulae were used to fasten and embellish clothing. However, in addition to their practical use, they formed part of the female funerary costume836, as elements of strong symbolic value. They are documented already from the end of the 9th or early 8th century BC, with the highest presence from the second half of the 8th to the early 6th century BC in rich female grave sets. Fibulae are mostly found in Italy, a few specimens come from Croatia; only sporadically do they appear in Greece, Türkiye and Central Europe. A comparison of depositions in funerary and sacred contexts underscores the differences between Greece and Italy. Amber fibulae are more common in Italy, where they appear in rich female graves displaying the wealth and social class of a woman; far less often, they appear as votive offerings in the sanctuaries in the Aegean837.

Since the first publication by D. G. Hogarth, several triangular, elongated and irregularly shaped beads have been classified as »Embellishments of fibulae, or of other metal objects«838. The amber artefacts from the sanctuary of Artemis at Ephesos include 51 amber items assigned to fibulae: 17 specimens are in the Archaeological Museum in Istanbul, one is preserved in the British Museum in London and 33 are in Archaeological Museum in Selçuk.

A careful technical evaluation and comparison with other specimens can help gain a better understanding of the origin, the meaning and the use of amber fibulae in the Artemision.

2.5.2 Technical features and typology

As the fibulae comprise a metal framework and an organic implanted decoration, every type is a combination of parts created using completely different manufacturing techniques and subject to different damage and deterioration processes. The nomenclature and classification usually applied to amber fibulae are based on: decoration details and additional organic materials components, the shape and thickness of the rod, the length and shape of the catch-plate, the bend of the bow, the number of the spiral’s turns, and finally features of the fastening system (pl. 19, 1). The relationship between the length of the bow and the size of a fibula’s amber coating also helps to determine its assignation to a specific type. For example, a big flat amber bead could be mounted on a bow of equal or greater length. In the first case the fibula will have a massive aspect; in the second case the fibula will be well-balanced. Suppose the bow is longer than the amber coating. In that case, inserted elements become more likely: these can include decorative parts such as cone-shaped bone, which are characteristic of a type widespread in Southern Italy.

The bronze fibulae from the Artemision have been edited by G. Klebinder-Gauß, but none of them can be related to fibulae with amber revetments839. In most cases we lack essential categorical and chronological criteria to assign the amber coatings to specific types. Only the specimens cat. 521 and 522 show remains of bronze wires840.

836 In Verucchio, whose graves are remarkably rich in amber artefacts, fibulae with amber decoration have also been found in male graves (von Eles 2015).
837 Strøm 1992 noted some differences between Italian and Greek contexts regarding the deposition of luxury goods.
838 Hogarth 1908, 214 f.
839 Klebinder-Gauß 2007, 21–70.
840 Hogarth 1908, 214 pl. 47, no. 10 described remains of bronze wire in the amber bead with four longitudinal borings.
Taking into account all the constraints, the typological determination proceeds on the basis of the shape, component materials, and size. The fibulae from the Artemision can be classified under three types (pl. 19, 2):

Type 1: With amber and bone segments, inlaid with amber
Type 2: With amber segments and bone or ivory discs
Type 3: With an oval-shaped amber bead on the bow.

TYPE 1: FIBULAE WITH AMBER AND BONE SEGMENTS INLAID WITH AMBER (CAT. 489–490)
PLS. 19, 3; 53

In these fibulae, bone segments become the supporting base for precious amber inlays, varying in shape:

a. circular with flat support surface and external convex surface;
b. ring shape with flat surfaces;
c. round shape with both flat surfaces;
d. rectangular shape with flat and convex surfaces;
e. rectangular shape with underlying decoration applied on a thin sheet of tin, visible due to the transparency.

The bone parts can be combined with bone discs, amber segments, and cone-shaped end-beads.

The two fibulae from the Artemision belong to a peculiar type, defined by a thicker central bone segment, carved to insert a rectangular amber tile on the upper surface, and two round amber inlays on lateral surfaces. Fibula cat. 489 still preserves one round amber inlay and the upper rectangular tile on the central bone segment, which is joined with four amber segments interposed between four thin bone discs (pl. 20, 1).

Firstly, comparisons should be established with composite fibulae found in Greece. In the Aegean, one can mention an inlaid bone fragment from the sanctuary of Athena at Lindos on Rhodes\(^{841}\), and well-preserved fibulae with long catch-plates from Perachora\(^{842}\). A fibula from Perachora shows the same construction, with a central bone segment with carved round cavities and rectangular setting on the top for rectangular amber inlay\(^{843}\), as in the fibulae from Ephesos. The popularity of fibulae also influenced the sanctuary of Artemis Enodia at Pherai (Thessaly), whose votive record also includes badly preserved bow fibulae ending with lateral cone-shaped bone pieces\(^{844}\). Remains of fibulae in bone and amber from the sanctuary of Athena Itonia at Philia, which are contemporary to those from Pithekoussai described below, may refer to this type\(^{845}\).

The comparison with composite fibulae from Sparta\(^{846}\) and Eleutherna (Crete)\(^{847}\) reveals striking similarities in both cases. The published pictures of the fibulae from the sanctuary of Artemis Orthia show the structure of a larger central bone segment, with round cavities on two sides and a rectangular cavity on the upper side, as in the fibulae from Ephesos. The only difference is that the fibulae from Sparta are flanked by thinner bone segments carved with a sequence of round cavities. An unpublished fibula from the Orthi Petra necropolis of Eleutherna is an extraordinarily well-preserved example: its rectangular cavity on the upper side of the central bone inlaid segment

\(^{841}\) Blinkenberg 1931, 86–88 nos. 103a–b pl. 8; Sapouna Sakellarakis 1978, 116 f. pl. 49 no. 1581.

\(^{844}\) Kilian 1975, 101–103 pl. 43, nos. 1250–1252; pl. 44, nos. 1266–1267. Only the no. 1250 still has a fragment of the central bone piece with a round cavity.

\(^{846}\) Droop 1929, 196–202 no. 224, pl. 83, no. i.

\(^{847}\) The fibula was found in the Orthi Petra necropolis and is preserved in the Archaeological Museum in Rethymnon (inv. O 089). I owe this mention to the late Dr. A. Bedini (formerly Soprintendenza Archeologica Roma).
is underlined by a frame. The fibulae from Greece848 mentioned above mostly belong to the 7th century BC and can be related to the composite fibulae from Italy and especially from Southern Italy849, where the long catch-plate becomes popular from 750–730 BC onwards after developments in manufacturing techniques. In Southern Italy the composite fibulae have a tapered shape and cone-shaped bone end-pieces are inserted at the sides of the central bone segment. A parallel may be established between the fibulae cat. 489–490 and specimens from Southern Italy, and especially those from Pontecagnano and Pithekoussai in Campania. These last two are the areas in which the highest concentration of this type of fibula is found. The Pontecagnano fibulae are widespread mostly in Early Iron Age (phases IB–II) contexts, and sporadically in ancient Orientalising graves850. A close parallel may be drawn with the bronze fibula with a long catch-plate from grave 489851 (pl. 20, 1). The majority of composite fibulae with amber inlays are found at Pithekoussai. They belong to an Italian tradition with a long lifespan, present not only in Campania, but also in most of the peninsula. At Pithekoussai, the type, classified as type 172 by F. Lo Schiavo, can be dated between LG I (grave 599852) and LG II (graves 653853 and 422854).

In the cemeteries of Verucchio many types and varieties of fibulae with amber inlays appeared in the late 8th century BC. The fibulae at Verucchio make up 30 % of the entire local evidence for amber. They offer the most varied and sophisticated examples in this class of ornaments855. The Ephesian pair cat. 489–490 is very close to the type of Verucchio 72, varieties A856 and B857. The Ephesian fibulae are strikingly similar to a pair of fibulae of variety A from the grave Lippi 40/2006858 (pl. 20, 1). In Verucchio metal remnants are rarely preserved; however, in the fibula from the grave Lippi 127/1972 remains of a short catch-plate have survived859.

Type 2: Composite fibulae with amber segments (cat. 491–502. 635–646)

pls. 20, 2–5; 53–54; 63

Composite fibulae with amber segments and bone or ivory discs, graded by size and shape, form a large class of amber fibulae. The group includes fibulae coated with amber segments and bone or ivory discs, which can vary in number from three up to eighteen860. The bone or ivory discs are extremely thin and placed singularly or in groups between the amber segments.

848 To the list can be added a fibula of uncertain provenance (Thebes [?]), formerly in the collection Gabriel von Max and now preserved in the Ludwig Maximilian University of Munich: Donder 1994, pl. 7, no. 34.

849 As an example of similarity, we can cite two fibulae from Perachora (Dunbabin 1962, pl. 187, no. A 240) and from the acropolis of Polizzeto (province of Caltanissetta) in Sicily (Sole 2005), respectively.

851 Cinquantaquattro 2001, 44. 161 pl. 24, no. 14 (grave Casella 4898).

852 Buchner – Ridgway 1993, 588 f. no. 3 pl. 173; Lo Schiavo 2010 pl. 208, no. 2859.

853 Buchner – Ridgway 1993, 637 no. 11; Lo Schiavo 2010 pl. 208, no. 2861.

854 Buchner – Ridgway 1993, 440 no. 3; Lo Schiavo 2010 pl. 208, no. 2864.

855 Amber fibulae from Verucchio have been classified by A. Boiardi and P. von Eles (Boiardi – von Eles 2003; Boiardi et al. 2006; von Eles 2015).

858 von Eles 2015, type 72 variety C, pl. 121, no. 1238 and type 72 variety A, pl. 121, no. 1239.

859 von Eles 2015, 70 f. pl. 122, no. 1245.

860 Verucchio, grave Lippi XV/1970 (von Eles 2015, 66, type 71 variety A, pl. 112, no. 1159).
fibulae could be of iron or bronze with a short, symmetric, occasionally disc-shaped catch-plate and a long asymmetric catch-plate. Frequently the segments are joined together by a complex system of very small piercings (1 mm diameter) up or around the central bow boring. The final result depends on the structure and decoration and the colour effects created by the combination of bone and amber. Amber segments of a composite fibula can be distinguished from amber beads of necklaces on the basis of several criteria: 1. the shape of an amber segment for a fibula derives from a section of a ring shape characterised by a gradual tapering of its thickness; 2. every segment has a circular or an oval-shaped centre section; 3. the sides are cut to form two flat surfaces; 4. the through-boring is usually larger in fibulae than in beads. 5. the thickness and shape reveal the position of the segments on the bow, because conical-shaped segments are placed laterally and central segments have symmetrical sheer surfaces. The boring of the central segment is exactly in the centre, while the boring of the external segments is slightly off-centre.

Cat. 491 and 494 are similar to each other as regards colour (red amber) and size, very probably forming the central discs of two similar fibulae. They are characterised by a peculiar upper expansion of a typical composite fibula with a markedly angular outline. Fibulae from central Italy have this same shape861. The rhomboid-shaped fibulae develop into larger shapes and the segments are enriched by small borings placed around the central one. Proper composite fibulae with amber segments also occur sporadically in Central and Northern Europe, in Slovakia862, the Czech Republic863 and Poland864, and are interpreted as exotic imports from Italy865. Cat. 493, the biggest one, seems to be worn-out and cannot be related to other segments.

Some segments (cat. 497–500) could belong to the same fibula. Cat. 497 and 498, both in orange amber, whose sides match each other, are two segments of the same amber coating. The two segments match a bone disc, probably placed between them. Also items cat. 499 and 500 probably belong to the same fibula. The four amber segments and the bone disc were found in the same metrical unit866. Cat. 501–502 are the same size and may belong to the same fibula, and their shape indicates that they could have occupied a lateral position. Cat. 635 and 642 had central positions in two different fibulae. The badly scraped surfaces and slightly tapering thickness of cat. 641 cast uncertainty over its classification as a fibula amber segment.

These fibulae may belong to the type with a short symmetric or elongated catch-plate with amber segments pierced with one boring and separated by bone discs. This shape appears earlier than types featuring a long catch-plate and includes amber segments with a large central boring and surrounding small blind borings867. Unfortunately, the fact that most parts of the fibulae have not survived makes this hypothesis impossible to verify. Moreover, it cannot be excluded that some amber segments originally formed part of composite fibulae with amber inlays of type 1 already described.

861 Narce, La Petrina A, grave 30 (XXV): Tabolli 2013, 122 no. 27 pl. 32, no. 27; p. 322 type 85g2c fig. 4, 75 for the chronology and the distribution.

862 A fibula with a broken catch-plate and two bone cones without amber covering from Špačince (grave 2) dated to Ha D1 and ones with a long catch-plate, bone cones and remains of amber decoration from Smolenice »Molpir« (Haus 17) dated to Ha C2: Novotná 2001, 67 pl. 17, nos, 156–157.

863 Three broken catch-plates with remains of the bow’s tips including bone cone-shaped elements presumably belonging to this type come from Brno, Dobročkovice and Prace: Ríhovský 1993, 83 f. pl. 14, nos. 131–133.

864 Gedl 2004, 93 pl. 264, no. 266.

865 Specimens found in Ephesos are different from the fibulae shapes of Northern Italy in the Este and Golasecca cultures, north of the Alps in Austria (Hallstatt) and Slovenia between 7th and 6th cent. BC. See Saldalamacchia (forthcoming).

866 The metrical unit 870232 lay in Naos 1a and was one of the richest contexts in amber finds. The bone disc is excavation inv. ART 870232.180, AMS inv. 15.2.99.

867 The fibulae from the necropolis of Osteria dell’Osa (province of Rome) dated from the second periods of the Latial culture (9th cent. BC) onwards are among the earliest specimens: Bietti Sestieri 1992, 370–372, type 39.
The rare items documented in Greece refer typologically to the fibulae with a carved central bone element suitable for amber inlays and cone-shaped end-pieces. Composite fibulae with amber segments pierced with one boring, and ivory or bone discs with a short catch-plate are relatively well documented in Italy in several Early Iron Age contexts, especially in Emilia-Romagna. Regarding the size and shape, the segments from Ephesos are comparable to fibulae from Emilia-Romagna and Bologna. Some specimens are documented at Verucchio in the type 71 varieties called A and B, which began in the local phase II and developed in the following phases. Other parallels can be found in Etruria, especially at Veii, Cerveteri, Tarquinia and Vulci, then in Ager Faliscus and Latium vetus. Furthermore, the fibulae of this type were very common between 750–650 BC in Campania. A comparison with the earliest fibulae with a short catch-plate and one central boring can be established with some specimens from Pontecagnano, Sala Consilina and two other sites in Campania and Calabria.

Bone discs belonging to bronze fibulae have been found in Pherai (Kilian 1975, pl. 23, nos. 1250. 1252) and Kato Phana at Chios (Lamb 1934/1935, 154 f.).

San Giovanni in Galilea (province of Forlì-Cesena): Orsini 2013, 225 pl. 4–5 (amber segments of two fibulae without catch-plate). Castelfranco Emilia (province of Modena): Orsini 2010, 208 pl. 2 (the catch-plate is not preserved, remains of the amber central segment and thin bone discs survive).

Fibulae with a short catch-plate from Bologna: Frey – Gabrovček 1971, 194 nos. 15–16 (grave Benacci 56); pl. 7, no. 10 (grave Benacci 888); pl. 6, no. 11 (grave Melzenzani 7, three borings and smaller surrounding piercings on the amber coating); Dore 2010, 94 no. 12 (grave Melanzani 64, 750–720 BC). Müller-Karpe 1959, pl. 69 A, no. 2 (grave San Vitale 735); pl. 69 C (unnumbered grave); pl. 70 M (grave San Vitale 612). Grave Malvasia Tortorelli 2: Marchesi 2011, pl. 17, no. 46 (only amber segments). Similar fibulae from the Benacci Caprara cemetery: Tovoli 1989, 267 f., type 102 variety A (small size) and variety A (large size).

von Eles 2015, 66, type 71 variety A. To the variety A belong the following fibulae: von Eles 2015, pl. 111, nos. 1155–1158 (grave Le Pegge 5/1970); pl. 112, no. 1159 (grave Lippi XV/1970); nos. 1160–1162 (grave Lippi 46/1972); nos. 1163–1165 (grave Lippi 111/1972); no. 1166 (grave Lippi 120/1972); no. 1167 (grave Lippi 121/1972); no. 1168 (grave Lippi 13/2005, R 7); no. 1169 (no context).

The fibulae with a short or disc-shaped catch-plate from Veii, identified by Close-Brooks 1965, 63 fig. 5, types 4 and 30, have been attributed to phases Veii II B2–IIIC (Guidi 1993, 52, type 110).

Pohl 1972, 221 fig. 87, nos. 9–10 (grave Sorbo 6); Pohl 1972, 223 pl. 203, nos. 2–3 (grave Sorbo 93); Pohl 1972, 253 fig. 251, nos. 3–3bis (grave Sorbo 340).

Hencken 1968, 76 fig. 62c (grave Selicatiello Sopra 150, phase Villanovan IB).

Fibulae with a long catch-plate from the cemetery of Osteria dell’Osa: Bietti Sestieri 1992, pl. 3 c, 35–36 nos. 12 and 17, nos. 24–25 (group A grave 116, phase IV A1); Bietti Sestieri 1992, pl. 3 c, 9 no. 26 (grave 178/F3).

Sala Consilina: Lo Schiavo 2010, 281 f. pl. 137, nos. 1695 (grave E14). 1704 (grave E2) and 1708 (grave Sant’Antonio 119).

San Marzano sul Sarno, grave 18: d’Agostino 1970, 616 pl. 18, nos. 1–2. Fibulae with alternating amber segments and bone discs, fastened laterally with two bone cones have been found at Longola di Poggiomarino in graves of the Early Iron Age–Early Orientalising period: C. Cicirelli in: Ambre 2007, 216 f. nos. III.200, dated to the Early Orientalising period.

Janchina: Orsi 1926, 267 fig. 188; Sundwall 1943, 198 no. G Iab 7 fig. 319; Lo Schiavo 2010 pl. 183, no. 2469; Canale: Sundwall 1943, 198 no. G Iab 8; Lo Schiavo 2010 pl. 183, no. 2467.
Type 3: Fibulae with an amber bead on the bow (cat. 503–523, 647–652)

This group stands out because of the unique, large amber coating, which varies in shape and section. The shape and size are strictly connected to the morphological characteristics of the raw amber lump and the manufacturing practices adapted to it. Every bead was shaped with a flatter surface coming into contact with the tissues and an opposite convex side facing outwards. However, the final overall shape is regular, symmetrical, and for some types has a contour similar to the leech-shaped fibula.

The craftsman needed to secure the amber decoration with fastening applications. The application of external fastenings might consist of structural modifications of the arch, such as a flattened or swollen, progressively tapering short section, or bronze spirals. Often the amber bead is cut laterally to fit with further elements which are rarely preserved, such as cone-shaped amber or bone/ivory end-pieces, placed next to the spiral and the catch-plate. The bow is slightly thickened just above the amber bead to avoid slippage and fractures of the amber decoration.

Generally, the diameter of the central boring of the amber bead is larger than necessary, if compared to the size of the bow’s rod. This made it easier to insert and curve the bow, which was covered with wooden fibres and glue. Usually it has a thickness of 1.5–2.5 mm, so the central boring of the amber coating can be estimated at 3.5–6 mm. In this research this criterium has been followed, namely, to distinguish between amber beads or pendants related to necklaces and amber beads originally belonging to fibulae.

The specimens from the Artemision whose characteristics are coherent with those of the fibulae, such as the shape and central boring diameter of more than 3.5 mm, are cat. 510–511, 514–516, 520, 523, 647, 649–650, and these may fall into the group of amber fibulae. They are characterised by oval and elongated shapes and oval sections: the longest margins are straight, parallel and rounded, while the shortest margins are truncated, presumably for the insertion of amber or bone/ivory segments. The beads cat. 512, 517–518 and 650 have a big central hole, but are too fragmentary to allow a clear classification.

The specimens cat. 503–508, 517 and 519, in orange and yellow amber, are triangular and show rounded edges. At the Artemision, almost all the ambers have rounded edges, which is mostly due to the action of polishing or groundwater. The size of the central diameter boring measuring between 3 and 3.5 mm is at the limit of the range identified as characteristic for fibulae. Cat. 508 and 519 are probably broken and do not preserve the original shape. Cat. 504–507 and 509 have two flattened surfaces, different from the shape of amber beads meant for fibulae. Cat. 509 and 513 have been intentionally cut to obtain a rectangular profile and a section with rounded and polished corners. Cat. 509 preserves a circular concavity on one side to fit with neighbouring beads. Particularly noteworthy are small and irregular line engravings on the surface. The triangular or rectangular shapes may be related to square beads (see chap. 2.2, beads type 7). Cat. 651 shows a larger rounded part and a smaller part on the top, both broken on one side, similar to pendants in the form of a bulla, which are always smaller than cat. 651. The section is flat and convex and its profile, showing parallel sides, has no comparable exemplars. The sequence of linear engravings may be interpreted as a residual result of the working technique – it seems to be an unfinished product, comparable to raw amber (see below, chap. 2.8).

The coatings of three fibulae from Ephesos have three borings (cat. 521–523), and one (cat. 652) shows four borings. Amber coatings of fibulae can have multiple lengthwise perforations, and frequently have three borings, a larger central one for insertion on the bow, and two smaller parallel borings. They could be meant to fit the central bow and thinner bronze rods or might be
meant to be filled with an internal solution such as wood fibres and special glues. The perforations served a double purpose, as they kept the bow coating in place and increased the chromatic effects created by the amber’s natural transparency.

Cat. 521 is an oval-shaped amber bead with three parallel borings running lengthwise, where the larger bore-hole in the centre still shows remains of the bronze bow. **Cat. 522** and **523** are almost rectangular shaped and the latter still shows part of a second smaller parallel boring next to the fracture. It might be suggested that it was the central of three piercings. **Cat. 652** is an elongated amber bead pierced lengthwise with four parallel borings, of which three smaller ones are set above and one larger one below. In the lower boring meant for the bow, remains of the bronze bow were detected, but have not survived.

The very same **cat. 521** fibula with three borings is comparable to type 76, variety A of the fibulae from Verucchio. Several fibulae from Verucchio show many varieties of amber coatings on the bow, mostly with a central bead flanked by surviving lateral amber segments. Truncated ends of amber beads, like, for example, **cat. 515** and **521**, are indicative of the fact that the coating of the two fibulae was completed by amber segments or cone-shaped end-pieces made of bone or ivory. A setting for cone-shaped bone inserts distinguishes several fibulae with an oval-shaped amber bead from the sanctuary of Hera at Perachora. These were found associated with Proto-Corinthian pottery in the lowest stratum of that deposit, which, according to T. J. Dunbabin, may belong to the late 8th century BC. Fibulae of this type ended with the cone-shaped bone elements. Other fibulae with inlays have been found in the sanctuary of Artemis Orthia at Sparta, where spectacle fibulae, of the type documented by one specimen in the Artemision at Ephesos, were recovered in the deposit of the Geometric period. This is a remarkable parallel for the fibulae from Ephesos, the earliest of which date to the late 7th century BC. Further bronze fibulae with remains of cone-shaped end-pieces have been found in the sanctuary of Athena at Ialysos on Rhodes.

Fibulae characterised by cone-shaped end-pieces made of bone and a long catchplate belong to types of amber fibulae very common in Southern Italy between the second half of the 8th and the 7th century BC especially in Campania from several cemeteries at Capua, Nola, San Marzano sul Sarno, Suessula, Calatia, Pontecagnano, Piazza...

884 Results of analyses carried out on cone-shaped end-pieces of amber fibulae from Pithekousai indicated that the rod was coated with the shaft of a chicken’s feather: Buchner – Ridgway 1993, 381 n. 3.
885 Hogarth 1908, 214, no. XIVII.10: »lentoid bead, red; L. 0.30, broken at ends: pierced with four longitudinal bores, in one of which a piece of flat bronze wire still remains«.
888 Dunbabin 1962, 439 f. pls. 187. 194, nos. A239–A244, are fibulae with a long catch-plate and bone cone-shaped end-pieces described as »leech shaped fibula« (type A) or with a trapezoidal bow (type B) with amber, and ivory segments inlaid with amber. Some specimens come from the Argive Heraion (Dunbabin 1962, 439).
889 Dawkins 1929, 224 pl. 82, nos. a. b. e. f.
890 Sparta: Dawkins 1929, 224 pl. 82, nos. d. b. m. s; Ephesos: Klebinder-Gauß 2007, 237 no. 217 pls. 16. 107.
891 Droop 1929, 198: »None of the examples was found outside the limits marked by the presence of Proto-Corinthian pottery.«
892 Blinkenberg 1931, pl. 8, no.103; Sapoua Sakellarakis 1978, pl. 48, nos. 1571. 1573–1574.
897 Cinquantaquattro 2001, 44. 161 pl. 24, no. 13 (grave Casella 4898). Pontecagnano, western necropolis of Piazza...
2.5 Fibulae

Arenosola\(^{899}\), Sala Consilina\(^{900}\) and elsewhere in Magna Graecia\(^{901}\). A large number of their amber components are pierced several times, often three times, like cat. 521–523. Examples of fibulae with the central amber bead with multiple perforations come from Cumae\(^{902}\), Torre Annunziata\(^{903}\), Capua\(^{904}\) and Santa Maria delle Galazze\(^{905}\) in Campania and Alianello\(^{906}\), Chiaromonte\(^{907}\), Serra di Vaglio\(^{908}\) and Armento\(^{909}\) in Basilicata. A few specimens are recorded from Calabria and Sicily\(^{910}\). In some fibulae from the necropolis of Calatia in northern Campania, the amber beads have a ribbed decoration on the upper side\(^{911}\).

Bronze and iron fibulae with a bow covered by an amber bead are also distributed in the Picenian culture, in the Italian regions overlooking the Adriatic; they appear during the Picenian phase I at the end of the 9th century BC and are broadly documented in the 8th century BC (Picenian phase II)\(^{912}\). Among fibulae from Picenum, the fibulae from Ephesus are comparable with some bronze fibulae with a short catch-plate and oval-shaped amber from Ascoli Piceno and Fermo\(^{913}\). Among the several fibulae from the Balkans dated from the 8th to the end of the 6th century BC, fibulae similar in shape and size have been found in Nin and Prozor\(^{914}\).

Sabbato, grave 45 dated between 700–650 BC (unpublished, in the Museo Archeologico Nazionale di Pontecagnano Faiano, inv. 5–8).

\(^{901}\) For a typology of fibulae from Southern Italy and Sicily: Lo Schiavo 2010, 279–285 type 130 (I Fe 2a–early I Fe 2B); 358–360 type 168 (between I Fe 2A and 2B and until early I Fe 2 B); 360–371 type 169 (phase I Fe 2 B and has a long production during the 8th cent. BC); 371–387 type 170, 388–390 type 171; 390 f. type 172.1; 392 f. type 173. Guzzo 1982, 57–59 suggested comparisons among fibulae from Campania, Calabria and Sicily.
\(^{902}\) Cumae: Lo Schiavo 2010, pl. 198, no. 2729.
\(^{903}\) Fibulae with several piercings formerly in the Temple collection and now in the British Museum, have been recovered at Torre Annunziata: Strong 1966, 47 pl. 2, no. 10.
\(^{904}\) Capua, grave 511: Lo Schiavo 2010, pl. 198, no. 2732.
\(^{905}\) Lo Schiavo 2010, 367 pls. 189–190, nos. 2578–2579 (grave A); 377 pl. 196, no. 2689 (grave 29); 378 pl. 196, no. 2702 (grave 38); 383 pl. 201, nos. 2779–2780 (graves 159 and 104); 385 no. 2784 (grave 104).
\(^{908}\) Serra di Vaglio: Lo Schiavo 2010, 367 pl. 190, no. 2580.
\(^{909}\) Three amber beads, one with three borings and two with ten borings, said to be from Armento, are preserved in the British Museum, inv. 1856.12–26.1476: Strong 1966, 59 pl. 13, nos. 29a–c.
\(^{910}\) In Calabria, at Francavilla Marittima: Lo Schiavo 2010, 367 f. pl. 190, no. 2589. The votive deposit of the sanctuary explored in the ancient Temesa in modern-day Amantea (province of Cosenza) also yielded 15 bronze fibulae. Two have several thin amber segments and another has a central amber bead with three borings and bone cones: La Torre 2000, 646 pl. 2 a. Further fibulae have been found in eastern Sicily, in the province of Siracusa at Lentini in the grave Sant’Eligio 18, early phase I Fe 2 B (Lo Schiavo 2010, 368 pl. 191, no. 2598) and at Villasmundo (Lo Schiavo 2010, 368 pl. 191, no. 2599).
\(^{911}\) Fourteen fibulae with a long catch-plate and ribbed amber bead have been found in the rich female grave 201 of the southwestern necropolis of Calatia, dated to 750–700 BC: M. R. Borriello in: Ambre 2007, 198–200 nos. III.164–III.166. For further similar fibulae from Calatia: Laforgia 2003, pl. 144, nos. 139–142 (grave 284); Saldalamacchia 2016a; Saldalamacchia 2016b. Two ribbed beads for fibulae have been found at Ithaca (Heurtley – Robertson 1948, 117 pl. 48, nos. D3–D4).

\(^{912}\) A fibula with a short catch-plate and amber bead on the bow from grave 18 at Matelica is considered the earliest and dated to the Picenian phase I (900–800 BC: Potere 2008, 59 no. 4).

\(^{913}\) Some unpublished examples are preserved in the Archaeological Museum in Ascoli Piceno, inv. 6212. 20053. K 1132. K 1147. Other comparable specimens have been found at Fermo and are preserved in the Archaeological National Museum in Ancona, inv. 19940. 20032. 20033. Bronze fibulae with a short catch-plate coated by a para-bolically shaped bead are peculiar to the Picenian culture.

\(^{914}\) For Nin: Glogović 2003, pl. 37, no. 272 (grave 45); pl. 37, no. 263 (grave 88); pl. 37, no. 273 (grave 32). For Prozor, see a fibula preserved in the Naturhistorisches Museum in Vienna (inv. A.30.2.4–19790).
2.5.3 Conclusions
To summarise, all amber fibulae from Ephesos consist exclusively of the organic parts, and are made of amber and bone. Among the amber beads from fibulae belonging to type 1 and on the basis of cat. 521–522, it is assumed that the metal parts were made of bronze. The pair of fibulae (cat. 489–490) of type 3 from the Artemision is very similar to composite fibulae with amber inlays from Emilia-Romagna (Verucchio) and Campania (Pontecagnano and Pithekoussai). They undoubtedly recall specimens from other Greek sanctuaries, which are directly comparable to those found in Southern Italy. The amber beads certainly ascribable to fibulae are quite small, have a length not exceeding 4 cm and one boring to fix them on the bow. Their shape, size and perforation mean they are comparable to several examples from Italy, especially from Emilia-Romagna. The specimens with more than one boring are also similar to fibulae common in Southern Italy. Composite fibulae with amber segments of type 2 are completely disassembled and it is possible to identify some amber segments belonging to the same fibula only in one case (cat. 497–500). There are no significant traces of metals, but a bone disc usually positioned between two amber segments has survived. The segments are characterised by a round shape, small size and one central boring. It is difficult to find pertinent parallels because of their very poor state of preservation, but they appear to be comparable to early shapes of fibulae with a short catch-plate. As very fine and prestigious weaving implements commissioned by high-ranking people, amber fibulae were used to fix and adorn ceremonial and funeral costumes. Consequently, they were also suitable as votive offerings for female deities. This use is well documented in Greece in the sanctuaries of female divinities like Athena at Ialysos on Rhodes or Hera at Perachora. The fibulae were probably related to the offering of perishable and organic items such as precious fabrics and clothing accessories which have not survived. In the iconographic evidence, fibulae and pinheads have been used with a wide range of garments such as the peplos, chiton, himation and chlamys in the Greek sphere

It may be argued that the origin of the fashion for coated fibulae travelled along the same channels as luxury goods, which in turn benefitted from the movement of people across the Mediterranean and was likely to increase with the establishment of Greek foundations in Italy. The fibulae could be interpreted both as imports or as local products, the result of the circulation of common models. Indeed, one can assume that single craftsmen from major amber-working centres such as Verucchio may have played an important role in the production and the circulation of these luxurious items, if they were able to reach the distant sanctuary of Artemis at Ephesos or to inspire local imitations. Raw materials and unfinished products of ivory and amber (cat. 535 and 651) point to the presence of a carving workshop in the sanctuary.

Nunzia Laura Saldalamacchia

2.6 INLAYS (CAT. 524–533, 653–655)

2.6.1 Introduction
Inlays are carvings destined to be visible only on one side, having a well-polished outer surface, usually rounded, while the opposite side is usually rough and flattened. Once they were carved into a certain shape, the inlays were applied to a base provided with matching blind cavities, where the inlays could be fixed in various ways, depending on the materials composing the base. Inlays have a long history: the remains of one of the earliest items of ivory furniture known, a gilded chair dated to the early 2nd millennium BC from Acemhöyük in Anatolia, date back to the Middle Bronze Age. It also includes four sphinxes, whose eyes were originally inlaid with discs,

915 See the review in Brøns 2014; Brøns 2017.
now lost, which are thought to have been made of faience. In the Late Bronze Age in the Near East, the custom of decorating wooden furniture with ivory inlays was developed further. One of the earliest archaeologically attested ivory beds was found in Syria at Ras Shamra, the ancient Ugarit, and it is dated to the 13th century BC.

After the appearance of early furniture of the Late Bronze Age, several Iron Age sites in the Near East yielded thrones and beds with ivory inlays, which are mentioned in the annals of Assyrian kings as booty or tribute. A beautiful set of Phoenician carved ivories, belonging to the late 9th/early 8th century BC, included decorated pieces of luxury furniture, which were discovered in a building «Bâtiment aux ivoires» of the palace at Arslan Tash, the ancient Hadatu, in Northern Syria. These and other finds from Near Eastern sites show that from the first half of the 8th century BC, skilled workers used gold leaf, paint, coloured pastes and especially glass inlays on Phoenician ivories to increase the polychromy of the carved artefacts.

During the Orientalising period, Near Eastern items spread into the Mediterranean Far West. This meant that the custom of polychromy also reached Central Italy. A critical context is the Bernardini tomb at Praeneste, closed in the second quarter of the 7th century BC and full of imports from several areas. Among the Bernardini ivories, F. Canciani was able to distinguish stylistically different types. On the one hand, there were ivories bearing glass inlays, which were assigned to Syrian-Phoenician carvers. On the other hand were ivories with amber inlays showing a Phoenician influence. Unfortunately, the Bernardini ivories are no longer part of the objects they originally decorated. The wooden items are not identified with any certainty. Baltic amber as a raw material was relatively uncommon in the Near East but by contrast, was largely available in Central Italy: here Near Eastern carvers and their (local) apprentices used and appreciated amber to increase the polychromy of ivories and bone artefacts. Amber also acquires a special meaning for modern scholars, because it allows them to assign such artefacts to the local activity of skilled workers and not to consider them as imported items.

In the course of the 8th to 7th centuries BC, amber inlays were mostly used in Central Italy to enrich not just ivory and wooden artefacts, but sometimes also luxury objects meant for various purposes, such as polymeric sceptres, bronze fibulae, metal swords, gold jewels and single items such as bronze and iron axes, coated with ivory, and encrusted with amber, and an ivory musical horn.

916 Simpson 2013 suggested the reconstruction of the ivory chair from Acemhöyük.
917 Gruber 2004 collected and analysed Near Eastern ivory inlays.
918 For the ivories of Ras-Shamra see Gachet-Bizollon 2007, 135–146. 275–281 and Baughan 2013, 211 f. fig. 142.
919 Beds with ivory inlays are mentioned in the inventory of the properties of Ahatmilkou, daughter of the king of Soumour, as reported by Gubel 2009, 223 with previous literature.
920 On the ivories from Arslan Tash see Fontan 2014 and more extensively Fontan – Affanni 2018.
921 For a general view see Lightfoot 1991, 68; for single sites see Araz – de Lapérouse 2014, 150 (Nimrud) and Fontan 2014, 156 (Arslan Tash).
922 The carved ivories from the Bernardini tomb have been critically reviewed by F. Canciani in: Canciani – von Hase 1979, 7 f. 65 nos. 108–110 (with glass inlays). 68 no.120 (with amber inlay).
923 Nine bronze fibulae with amber inlays have been found at Falerii Veteres in the grave Montarano NNE 2 (late 8th century BC): G. Ligabue in: Arancio – Massimi 2012, 67 no. II.13.
924 Amber pommel on a silver sword from the Bernardini tomb at Praeneste, closed in the 2nd quarter of the 7th century BC: F. Canciani in: Canciani – von Hase 1979, 9. 44 no. 39; R. Zaccagnini in: Arancio – Massimi 2012, 81 no. II.31 with other literature. An iron sword from Veii with amber inlays is mentioned, but it is now lost (Naso 2006b, 362 f.).
925 See, for instance, the gold pectorals from female burials in Etruria and Latium, recently discussed by Ambrosini 2015, 57–64 no. 14 (early 7th century BC).
926 From Chiusi, grave Rione Carducci, early 7th century BC: Minetti 2004, 110 no. 27.2.
927 The elephant tusk worked as a musical horn shows amber triangular inlays and was found at Praeneste in the Barberini tomb, closed in the 2nd quarter of the 7th century BC: R. Zaccagnini in: Arancio – Massimi 2012, 83 f. no. II.32.
The workshops at Verucchio play a very special role in the use of amber during the 8th to 7th centuries BC: here, amber inlays were applied to bronze and iron items, meant for both male and female use, such as horse bits, swords, knives, girdles, pectorals, bronze and clay vases. The extensive range of commodities produced here characterises Verucchio as one of the finest amber-working sites, if not the finest, not in Italy alone, but in the whole of the Mediterranean until the 650s BC. In the Adriatic area after the decline of Verucchio, the central amber-working district shifted to Picenum, an area corresponding to the southern part of modern-day Marche; significantly, 6th-century BC amber inlays are not so widely attested as before in Italy and are confined to very select items, particularly in the Marche, as shown by two bone statuettes and a recently found ivory box, both from Belmonte Piceno, and probably by a couple of female sandals from Numana.

It is generally acknowledged that amber, ivory and bone inlays are documented earlier in Italy than in the Aegean and that these elements originally belonged to wood furniture whose shapes are clearly identifiable only in a handful of cases. In the Italian peninsula amber, ivory and bone inlays have been recovered in northern Etruria, in tombs dated to the 7th century BC at Quinto Fiorentino and Chiusi, and to the early 6th century BC at Cortona, Castelnuovo Berardenga, in the Giglio wreck and in unknown sites. Triangular ivory and amber inlays related to boxes or furniture have recently been identified at Caere in a princely tomb dated to the first half of the 7th century BC, probably to 675–650 BC. A workshop was identified at Poggio Civitate, which was active in the second half of 7th century BC and specialised in carving bone and ivory. Its remains also included unfinished finds, which have been partially published. In Latium vetus, amber inlays are reported from tomb VI at Satricum, dated to 650–640 BC, and probably in

928 Boiardi et al. 2006 give an overview of the extensive use of amber to decorate a range of objects, such as the clay kantharoi from the graves Lippi 30/1972 and Moroni 1969/A (Boiardi et al. 2006, fig. 4).

930 Graves of Belmonte Piceno yielded two female bone statuettes which originally had the faces inserted as amber inlays (grave 83) and recently an astonishing ivory box with figured amber inlays (grave 1/2018), both examined by Weidig 2021. Bone plates with amber inlays are reported for the female polymateric sandals found in the grave »della Regina« at Numana, dated to 520–500 BC: M. Landolfi in: Piceni 2001, 359 no. 131.

931 The tholos tomb Montagnola, built in the mid 7th cent. BC (3rd quarter (?) and probably still used until the early 6th cent. BC yielded ivory sherds with amber inlays, presented in Caputo 1989/1990, 49–55 and Mastrocinque 1991b; other bibliography of the tomb and the funerary interments is in Esposito et al. 2015 and Maggiani 2020.

932 Two bone eyes with amber inlays have been found in the chamber tomb of Poggio alla Sala, 630–620 BC: Minetti 2004, 161 no. 36.17; 392–394 for the chronology.

933 The Tomb Melone del Sodo I, dated to the late 7th–early 6th cent. BC (Bruschetti 1992; Zamarchi Grassi 2005) also yielded a beautiful ivory handle with amber inlays in the shape of a palmette with volutes, assigned to the lid of a pyxis (A. M. Esposito in: Arezzo 1984, 122 f. no. 70; A. M. Esposito in: Saarbrücken 1986, 79 and 232 no. 1; Bruschetti 1992, 182).

935 For the ivory or bone inlays from the Giglio wreck: Bound 1991a, 236 fig. 87. For amber from the Giglio wreck see below 3.8, Raw and unfinished amber. The wreck also yielded a wooden leg of a kline, decorated with glass and bone discs, which has been tentatively connected to the inlays: Bound 1991a, 235 f. fig. 86; Cristofani 1995, 131–138; Colonna 2006, 658; Baughan 2013, 64.

936 Twenty-five square amber inlays of different sizes belonging to an unknown item from Etruria are preserved in the Metropolitan Museum of Art, inv. 1992.11.48; De Puma 2013, 278 no. 7.62.

937 Rizzo 2015, 26, 68–70 nos. I. 26–I. 33 (ivory); 71 f. no. I. 34 (amber).

938 The carving finds from the workshop at Poggio Civitate have been reviewed by Nielsen 1984a, Nielsen 1984b and Nielsen 1995. For the chronology of the related building see Winter 2019, 82–84.

939 A set of amber inlays comprising round (15 exx.), rectangular (5), triangular (11), trapezoidal (2) and crescent (1) inlays not assigned to any object has been discovered at Satricum in tomb VI: Waarsenburg 1995, 473 nos. 6.73–6.80 pl. 86.
In the 6th century BC at the sanctuary near the church of Sant’Omobono in Rome\(^{940}\). In the Marche, the unique finds from Belmonte Piceno mentioned earlier are followed by amber, ivory and bone inlays relating to wooden objects at Numana and San Severino Marche dating to the late 6th century BC\(^{941}\). In Sicily some graves and the sanctuary of Athena at Syracuse dating to the 7th and 6th centuries BC yielded finds\(^{942}\); a very fine inlay of amber and ivory originally belonging to a leg of furniture has been found in the indigenous sanctuary at Polizzello, dated to the mid 6th century BC\(^{943}\) (pl. 21, 1, 1) The round amber inlays recovered in some Greek graves at Metaponto belong to the first half of the 6th century BC\(^{944}\).

In modern-day Greece ivory, bone and amber inlays related to wood *klinai* have been found at Athens in the Kerameikos cemetery in four graves, dating from ca. 560 to 540 BC. The shaft grave in Mound G, from around 560 BC, yielded some ivory and amber inlays. However, the most famous kline of the series, accurately discussed by U. Knigge and recently reviewed by E. Baughan, was discovered in shaft grave 3 (HW87) of the South Mound, dated to ca. 540 BC\(^{945}\). The elaborate inlay ornament of the kline includes petals, rays of stars, discs and other elements, which form palmettes, volute capitals with amber eyes and other motifs, systematically alternating bone and amber inlays for chromatic effect. Thanks to the conservation of its inlay ornaments, the kline from grave 3 (HW87) constitutes the critical monument for the study of Greek wooden furniture with inlays. The kline belongs to type B, according to the typology established by H. Kyrieleis following earlier classifications, and its inlaid ornamentation has been classified as Eastern Greek work (pl. 21, 1, 2)\(^{946}\).

Using the *kline* from Athens as the main comparison, U. Fischer was able to suggest a reconstruction as a furniture leg ornament for the amber, bone and ivory inlays which came to light in the Hallstatt D2–D3 (late 6th–early 5th cent. BC) Celtic grave of Grafenbühl at Asperg in the Heuneburg district in the heart of south-western Germany (pl. 21, 1, 3). In the same region, two other graves yielded similar inlays in small quantities (pl. 21, 2)\(^{947}\). In the case of the Grafenbühl

\(^{940}\) The inlays are mentioned and illustrated, but not described (Pisani Sartorio 1977, 56 f. fig. 18; Virgili 1989, 53 f. fig. 28).

\(^{941}\) Both pieces are unpublished: the inlays from the kline of the grave della Regina at Numana are briefly mentioned (Landolfi 1997, 234; M. Landolfi, in Ambre 2007, 172). A single bone or ivory petal from the Picenian settlement of Pitino (commune of San Severino Marche, province of Macerata) is on display in the Museo Archeologico at San Severino Marche, without inv. no. For a preliminary report of the excavation see Lollini 1965.

\(^{942}\) Syracuse, sanctuary of Athena: Orsi 1919, 499 fig. 91; Syracuse, Fusco cemetery: Orsi 1893, grave XXVIII, 456 f. and Verger 2019, 390 and 394 (twice the same grave XXVIII); Syracuse, Giardino Spagna cemetery: Cultera 1943, grave 1, 43 no. 4 (together with red-figured pottery); grave XIX, 58 no. 5 (together with Etruscan bucchero kantharoi of type Rasmussen 3e, 600–550 BC); grave XLVI, 73 no. 5. The inlays from Syracuse are often associated with bronze nails, probably showing a local peculiarity in the ornamentation of the *klinai*, also partly documented at Metaponto (Bottini – Vullo 2019, graves 590 and 595, discussed by Verger 2019, loc. cit.).

\(^{943}\) Polizzello, sacello B, mid 6th cent. BC: Perna 2005; Naso 2007, 26–28; Panvini 2008, 212, 218 fig. 2; Palermo 2008, 266 fig. 13; Tanasi 2009, 44 fig. 59; 86 no. 166: Baughan 2013, 61 (dated to the 1st half of the 6th cent. BC).

\(^{944}\) Bottini – Vullo 2019, 69 no. 10 (grave 566, early 6th cent. BC); 99 no. 13 (grave 590); 102 no. 5 (grave 595, both dated to the 1st half of the 6th cent. BC); 156 for the chronology.

\(^{945}\) Knigge 1976, 7. 60–83 (*kline*); 80 f. (other inlays); 84 f. no. 3 pl. 18 (grave and funerary interments); Kunze-Götte et al. 1999, 6 no. 5 for amber inlays from Shaft Grave 2. Baughan 2013, 60–64 reviews the remains of inlays on *klinai* from the Kerameikos graves.

\(^{946}\) For *klinai* types A and B see Kyrieleis 1969 and Baughan 2013, 15 with additional literature. In the 19th cent. O. Rayet presumed an Eastern Greek role in the *klinai* production, which was then analysed by W. K. Pritchett in the 20th cent. (Pritchett 1956, 227–230). Later beds with bronze linings in Greek tombs and sanctuaries have been mentioned by Touloumtzidou 2017, 214 f.

\(^{947}\) The inlays from the Grafenbühl, near Asperg, were discussed and assigned to the leg of a kline by Fischer in 1990. However, they were later considered to belong to a throne by Jung 2007, with a few convincing hypotheses, as noted by E. Baughan (Baughan 2013, 64). Other amber inlays from Celtic graves in the Heuneburg district, like those from Hundersingen and Ludwigsburg, are discussed in Zürn 1970, 14 f. fig. 6, 1–7 (Hundersingen: three rectangular panels, an eye and three petals) and 6, 8–9 (Ludwigsburg: two petals). Although their shapes fit well in the repertoire of inlaid furniture, they are too scarce to identify the objects to which they belonged.
grave, earlier inlaid objects have also been recovered: in particular, two sphinxes made of ivory and deer antler, respectively, the second having a human face carved from amber and belonging stylistically to the 600s BC. The two fittings were initially applied to an as yet unidentified wooden item; some gilded bronze rivets, surely not originally part of the original furniture, show that the sphinxes were reused for a new purpose in the Celtic settlement. A passage of the lexicon by Patriarch Photios (ca. AD 810–893) mentions sphinxes with amber eyes applied on klinai. It seems to match the findings of the Grafenbühl grave and could indicate the reuse of sphinxes as ornaments on the kline.

Finally, ivory inlays belonging to Classical and Late Classical klinai came to light on the northern coast of the Black Sea, on the Kerch peninsula at Kul'-Oba in a grave belonging to the late 5th to mid-4th century BC, as well as in another burial on the opposite Taman peninsula, and at Olbia Pontica.

Wooden klinai, thrones, and coffins depicted on Athenian red-figured vases often include double volutes, palmettes, rosettes and other ornaments painted in dark colours, which can all be interpreted as reproducing polymateric inlays, including amber.

These finds on the northern coast of the Black Sea are closely connected to the Greek foundations in the region. The colonists originally came from Ionia and particularly from Miletos: the search for ivory inlays on wooden furniture in Ionia can identify only scanty finds. Examples for Ionia are found in the Artemision at Ephesos, in the »Löwengrab« at Miletos, around 550 BC (pl. 21, 3) and in a sanctuary at Mykale. Furthermore, ivory inlays have been found in Mound II at Gordian in Phrygia, dated to ca. 600 BC, and have been assigned by the excavators to a wooden sarcophagus. Some amber inlays have been found in the harbour sanctuary at Chios and in the sanctuary of Apollo at Eretria; in continental Greece, some finds in Thessaly from the sanctuary of Athena Ionia at Philia deserve to be mentioned. Seven ivory inlays forming straight and rounded petals have been found at Metaponto in Basilicata, in the grave 610.

948 Literary sources are collected by Mastrocinque 1991b and also discussed by Naso 2007, 21. The scepticism expressed by E. Baughan about the presumed pertinence of the sphinxes to the kline as reuses seems inspired by a purely Greek view. It appears slightly excessive if applied to Central Europe (Baughan 2013, 64). Baughan does not consider either the non-Greek cultural environment of the Heuneburg district or the Celtic tradition of restoring Mediterranean imports, which included changing their original destination.

949 I was not able to find an exhaustive study of the remains of the kline in the literature about the famous grave of Kul'-Oba, as kindly confirmed by D. Zhuravlev (Moscow): Sokolskiy 1971, 89–92; Knigge 1976, 82; Firsov – Zhuravlev 2007, 276–282. Wood klinai with inlays have been found in the Taman peninsula (Maximova 1979, 95–98) and at Olbia Pontica (Zhuravlev 2002, 75 no. 288).

950 Naso 2007, 15 (coffins). 17 (klinai) and 32 fig. 13 (thrones). For an extensive collection of images of klinai on Greek, mostly Athenian, vase paintings see Baughan 2013, 30–33. 44–49 fig. 32 (type A legs). 49–60 figs. 35–36 (type B legs).

951 Hogarth 1908, 192 pl. 35, no. 23 (round); 196 pl. 40, nos. 9–10 (rounded petals or pointed buds); 13 (elongated triangle) and 15–16 (buds), mentioned by Knigge 1976, 70; Naso 2007, 29 and Baughan 2013, 64. The dimensions range from 3.5 cm (no. 16) to 5 cm (no. 13). Pointed buds and elongated triangles, once made up into a lotus star, alternated with one another.

952 Several inlays are reported, and the one reproduced consists of a bone rosette containing a bone disc and an amber eye: Forbeck – Heres 1997, 31 f. fig. 28; Naso 2007, 15 fig. 1. The finds are lost. Other round amber inlays have been found in the bothros of the Aphrodite sanctuary at Zeytintepe, possibly connected to bone and ivory astragali, also recovered in that bothros. For the chronology of the bothros, still closed in the 7th cent. BC, see von Graeve 2013, von Graeve 2017 and von Graeve 2019.

953 Lohmann 2012, 103 reported briefly the finds of ivory inlays.

954 Körte – Körte 1904, 110–117; Knigge 1976, 70. One can invoke a modern reworking of the Gordian finds to assess the old interpretations critically, following E. Simpson’s similar remarks about some wooden furniture from Mound III of Gordion (Simpson 1996, 188 f. 201).

957 Kilian-Dirlmeier 2002, 74 nos. 1147–1149 pl. 72 (round eyes).

958 Bottini – Vullo 2019, 76 no. 17 figs. 18 and 94 (grave 610, 1st half of the 6th cent. BC).
Unfortunately, the small quantities of inlays yielded by Ionian sites are not enough to identify the objects to which they belonged. It is uncertain whether the amber inlays were meant for klinai, thrones or coffins, although a wooden kline would likely be in a chamber tomb without beds cut out in the rock, as in the case of the »Löwengrab« at Miletos. The sanctuary of Zeus at Olympia also yielded some amber inlays, but they are related to figured bronzes\(^959\). The existence of lyres inlaid with ivory and amber is documented in Late Classical Athens, in both literary and epigraphic sources\(^960\).

Finally, an ivory furniture panel was found at Kerkenes Dağ, in the mountains of Central Anatolia. It was carved in relief, showing a frieze of five animals, having gilding and amber insets. It had once belonged to a chair. E. Dusinberre classified it as a Western Anatolian or Lydian work and dated it to 580–570 BC\(^961\). It must be noted that no stylistic relationship can be established between the amber inlays from the Ionian site and the panel from Kerkenes Dağ, inspired by a Near Eastern style.

2.6.2 Shapes of the inlays

All the inlays from the Artemision (pl. 22, 1) repeat shapes documented by the inlays mentioned above, but the closest comparisons are with the type B furniture leg ornaments from Polizzello, Athens grave 3 (HW87) and the Grafenbühl tomb near Asperg (pl. 21, 1).

EYES (cat. 524–528, 533) pls. 21, 1; 57

Except for cat. 524–528 and 533 are round inlays, with a diameter ranging from 0.8–1.2 cm. Cat. 524 is flat on both sides, cat. 525–526, 528 and 533 show an upper side that is convex, rounded and polished. Such eyes are included in every type of design on wooden furniture inspired by early Greek architecture. For instance, in the kline from the Kerameikos grave 3, eyes form part of several compositions, ranging from the volutes of the palmettes and the Ionic-style feet on both legs, to the larger volutes of the capital at the headboard end\(^962\). Cat. 528 shows a surviving bone disc inlay like the one mentioned from the so-called Löwengrab at Miletos, which is now lost and was constituted by an amber rosette, a bone disc and an amber eye (pl. 21, 3). Cat. 533 shows remains of a horizontal blind hole on the lower side, the perforation probably being due to a prior destination, as it was probably first used as a bead. Reuse is quite common for a rare material such as amber was in Ionia, and indicates that carving could have been carried out in the Artemision itself.

The five eyes mentioned above were found scattered around the site. Cat. 527 does not belong to this series and is slightly larger and thicker than the other pieces. It shows a slight cavity on both faces, each containing the remains of metals. These have been identified by a fluorescence analysis as iron and copper in a ratio of 4 : 1, with traces of silver and lead (see cat. 527). It is uncertain to which object cat. 527 may belong. This object was deposed on the floor in Naos 1a in the »Hortfund«.

\(^{959}\) See the descriptions in Furtwängler 1890, 208. The generic reference by Strong 1966, 23 to amber finds from the Heraion of Samos (Walter – Vierneisel 1959, 27) probably refers to the amber inlays which, according to D. Ohly, were used for the filling of the eyes in the exceptional ivory statuette of the »Jüngling«. This work is dated to the 2nd half of the 7th cent. BC (Walter 1959; Ohly 1959, 55): but, in my opinion, the eyes were more likely to be made of glass or faience.

\(^{961}\) Dusinberre 2002.

\(^{962}\) Knigge 1976, fig. 22.
Petals (cat. 529–530) pls. 21, 1; 57

The two pieces have different shapes: cat. 529 is straight, cat. 530 is larger and more rounded. Unfortunately, cat. 529 is missing its lower end. It is uncertain whether it was a petal, perhaps belonging to a palmette, or a rosette, as a petal. It may have been meant as a bud of a lotus star, in which petals are truncated at the end, and buds are pointed. The last of these possibilities seems more likely because of the small size of the inlay. Cat. 530 represented a rounded petal and belonged to the base of a palmette or possibly to the top of a volute capital, as documented for the Athenian kline (pl. 21, 1, 2).

Rectangular panel (cat. 531) pls. 22, 1, 4; 57

Four rectangular panels, larger but of the same proportions as cat. 531, were originally placed in the abacus on the top of each leg in the Kerameikos kline and in the Grafenbühl furniture leg (pl. 21, 2, 3).

Astragalus (cat. 532) pl. 57

Ivory, artificial astragali with amber inlays will be illustrated only through the new find cat. 532. The work belongs to a series of objects primarily documented in the Artemision in the British excavations. D. G. Hogarth called them artificial astragali to distinguish them from natural astragali (in English, »knucklebones«). A number of natural astragali have also been found in the Artemision. The English excavations yielded 99 complete, and 35 partly preserved halves of ivory artificial astragali. The different types have been classified by Hogarth. Other pieces have been recovered in the Austrian excavations.

Cat. 532 is an artificial bone astragalus. It shows a close similarity to some ivory pieces, as well as to some round amber inlays. It bears an incised ornamentation on one face, to distinguish one face from another, according to the use of astragali as dice to throw. Astragali may have several functions. According to D. G. Hogarth, »… our astragali are specimens used for divination in the Artemision, and, in the majority of cases, at any rate, dedicated thereafter to the Goddess«. A. Greaves reviewed the finds of astragali in Greek sanctuaries. He explored the possible use of both natural and artificial astragali in divination. He focused in particular on the finds from the sanctuary of Apollo at Didyma, the most famous oracle site in Ionia, and on those from the Artemision at Ephesos. Among the astragali from Greek sanctuaries, a colossal (27.9 × 39 × 24.5 cm) bronze inscribed knucklebone, weighing 93.07 kg – equivalent to 220 Milesian minas – and dated around the third quarter of the 6th century BC plays a unique role. It was found on the acropolis at Susa in Persia and is now preserved in the Musée du Louvre. It bears an inscription mentioning Apollo and two Milesian offerers. Scholars believe it was once a votive offering in the sanctuary at Didyma. It was then looted by the Persian army in 494 BC during the sacking of Miletos and Didyma, and brought to Susa. Astragali can have several meanings as votive offerings to a deity, particularly if the find-spot is not associated with divination. According to their gaming and gambling function, they can express gratitude for successful gambling which

965 Hogarth 1908a, 190–192 pl. 36, 1–40 (artificial astragali) and 192 pl. 36, 41–44 (natural astragali). The specimens from the Austrian excavations are unpublished. Klebinder-Gaul 2007, 184 f. provided an overview of the finds of astragali in the Artemision of Ephesos.

964 The quote is from Hogarth 1908a, 191. The large presence of astragali oracles in sanctuaries in Greece and Asia minor is stressed by Greaves 2012, 183–192 and Greaves 2013, 511–513 for the finds from the Artemision. Further bone and ivory astragali (see inv. Z.08.477.110) have been found in the bothros of the Aphrodite sanctuary at Zeytintepe, still closed in the 7th cent. BC, according to von Graeve 2013, von Graeve 2017 and von Graeve 2019.

965 Paris, Musée du Louvre, inv. Sb 2719. The Greek inscription from Susa has been commented and translated by Eidinow 2013, 54 f.
the oracle had been asked to grant, and they can also become amulets. More recently B. Carè has opened a new perspective regarding metal replicas of astragali; by connecting them to a value, rather than a functional use in games and divination, this researcher considers them as substitutes for sacrificed animals\(^{966}\).

DISCS (cat. 653–655)

The three discs are classified as inlays because all show a convex upper face and a flat back. They have one horizontal (cat. 653), five (cat. 654) and three (cat. 655) vertical through-borings, respectively, and cat. 655 has another horizontal through-hole. Both cat. 654 and cat. 655 are quite thick, and the holes are large enough to hold pins of various materials (ivory [?], bone [?], wood [?]) connecting each disc to one or more other items, resulting in a composite polymateric object. Cat. 654 in particular might be the base of a composite object, the central bore-hole being larger than the other four, thus revealing two different functions for the different-sized holes. A similar amber bead with five vertical through-holes has been found in a rich female grave, Preloge 13/117, in Magdalenska Gora. The bead is dated to the Certosa phase (6th–5th cent. BC) and was found with other amber ornaments, also comprising a five-row necklace\(^{967}\).

2.6.3 Conclusions

The review of the archaeological record shows that amber was a western peculiarity. Also, amber inlays were mostly applied to ivory and bone objects in the Mediterranean, firstly in western areas, and later in the eastern regions.

The amber inlays from the Artemision belong to two different series, one comprising the item cat. 532 and the other, the remaining specimens. As cat. 532 is an artificial astragalus; it is a special inlay, belonging to a well-documented series of votive offerings from the sanctuary of Artemis at Ephesos, and it was probably meant for several purposes.

As single elements in the Artemision, all the other amber inlays completely conform with the geometrical style of the Eastern Greek furniture tradition, as evidenced by the close comparisons with the type B furniture leg ornaments from Polizzello, Athens and the Grafenbühl tomb near Asperg: the eyes cat. 524–526, 528 and 533; petals or buds cat. 529–530; and rectangular panel cat. 531 may once have belonged to volutes, palmettes, rosettes or lotus stars (pl. 21, 1). In the pieces of furniture examined, however, amber inlays were less abundant than bone and ivory inlays. U. Knigge clearly stated this in the edition of the most complete kline from the Kerameikos grave 3 (HW87). The lack of amber among the ivory inlays from the British excavations in the Artemision also proves the point\(^{968}\). A systematic search for ivory and bone inlays has not been carried out among the Artemision finds. A single piece was identified, which very probably belonged to the same ornament as the amber inlays, i.e. a burnt leaf-shaped ivory filler inlay, which was once placed between the two diverging volutes of a capital (pl. 22, 2)\(^{969}\). The piece from the Artemision is flat on both sides and was burnished, probably to imitate the dark colour of amber, a substance quite rare in Ionia, and thus substitute amber in the leg of an unidentified object. It is noteworthy that both the described ivory inlay and the amber inlay cat. 533 come from a secondary deposition in a layer explored in the area east of

\(^{966}\) For metal replicas of astragali see the detailed review of Carè 2019, with additional literature for several aspects of the topic. A book on the astragali is announced (Carè [forthcoming]).

\(^{967}\) Tecco Hvala 2012, 283 fig. 105 no. 9: 305 for the chronology.

\(^{968}\) The composition of the Kerameikos kline is commented by Knigge 1976, 63. For the already mentioned finds from the Artemision see Hogarth 1908a, 192 pl. 35, no. 23; 196 pl. 40, nos. 9–10. 13. 15–16.

\(^{969}\) Excavation inv. ART 940260.1: Naso 2013, 270 fig. 27 (lower row, first on the left). For some comparisons see Knigge 1976, 65 f. fig. 23 (amber inlay); Baughan 2013, 54 figs. 35 c and 36 b (Athenian vase paintings).
the Sekos 2 wall. This layer has been interpreted as filling for the floor level of Limestone Basis B, and dated around 600 BC.

Amber inlays were scattered throughout the sanctuary of Artemis, and no particular concentration can be identified. Some have been found in layers also containing precious votive offerings and remains of sacrifices. The amber petal or bud cat. 529 was found in the area east of Limestone Basis D in an ashy layer with animal bones and votive offerings, also including remains of gold and two electrum coins. The rectangular panel cat. 531 was found beneath the south-west corner of Croesus’ temple in a layer also yielding gold dates, found to the late 7th to the early 6th century BC.

The find-spots and the scarcity of inlays, not even enough to compose a single ornament, would indicate that these are the remains of carving activity, carried out in or in the immediate surroundings of the sanctuary of Artemis, as was common in major Greek sanctuaries. The sanctuaries of Artemis Orthia at Sparta, Apollo at Delos and Hera at Perachora yielded both ivories and bone objects. These consisted mostly of fibulae, with amber inlays and unfinished pieces of amber, ivory and bone proving the existence of local carving workshops. In the Artemision at Ephesos a remarkable number of unpublished pieces, scattered throughout the sanctuary, document every stage of the work in the production chain for both ivory (pl. 23) and bone (pl. 24), from the collecting of natural animal bones to the unfinished pieces left at various work stages, including also test-pieces. These finds are too many and too tiny to be votive offerings or sacrificial residues. They are workshop remains and constitute valuable proof of the existence of a carving workshop for bone and ivory in the sanctuary of Artemis at Ephesos, a hypothesis already reached for gold jewels and bronze ornaments. The rich ivory artefacts gifted as votive offerings in the Artemision show the long tradition of carving activity in the area, which can also include inlaid items. Regarding amber, the local carving is documented by several reworked items and by two lumps of raw, only partly worked amber (catalogue cat. 535 and 641; see below, chap. 2.8).

Stylistically the amber inlays from the Artemision are rooted in the Eastern Greek traditional ornaments for wooden furniture. They constitute precious proof of the existence of local carving workshops, activity which would have been maintained for at least two centuries, but which is not yet systematically documented. The remains of a bone workshop, including several unfinished objects stylistically dated to the 5th cent. BC, have been recovered in the centre of modern-day Taranto (Dell’Aglio – Lippolis 1995, 105; Dell’Aglio 2002, 192 f.; Dell’Aglio – Masiello 2019).

The research on unfinished ivory and bone pieces in the Artemision finds is far from systematic, but the related pieces are enough to prove the existence of a locally well-established carving activity.

Klebinder-Gauß 2007, 204 f. and Pülz 2009, 23 with literature for the hypothesis of metal workshops in the Artemision. Here I wish to mention the presence, in a layer datable not later than the late 7th cent. BC, identified by means of sherds of fine local painted pottery, of the fragmentary lower part of a coarse ware crucible (excavation no. ART 820175.1), still containing consistent remains of metals, which have been identified by a fluorescence analysis as copper and iron with traces of tin. I would like to thank Prof. Dr. Manfred Schreiner and Dr. Michael Melcher, Institute for Natural Sciences and Technology in the Art at the Academy of Fine Arts, Vienna for the spontaneous collaboration and the execution of the analysis at Selçuk.

A complete review of the carving ivories from the Artemision is missing: the pieces found in the British excavations have been edited by C. Smith and D. G. Hogarth (Hogarth 1908a, 155–185. 186–198), and a selection of the later finds has been published in an exhibition catalogue (Seipel 2008, 159–186). The role played by local skilled carvers at Ephesos in the late 7th cent. BC has been stressed by T. Şare (Şare 2010).

In the Artemision several bronze nails originally belonging to furniture have been found (Klebinder-Gauß 2007, 204 f.) and several remains of gold jewellery have been recovered in the fillings of the central part of the sanctuary, also including remains of electrum coins. For the stratigraphy of the area see Weißl 2002, 333 f. fig. 13 and Pülz 2009, 152 plan 1. For the gold finds see Pülz 2009, 293 no. 343 (appliqué). 309 no. 411 (miniaturistic vase). sheets (328 no. 515; 332 no. 544; 343 no. 624) and the refuse from the workshop (354 nos. 699–700).

Amber petal or bud cat. 529 was found in the area east of Limestone Basis D in an ashy layer with animal bones and votive offerings, also including remains of gold and two electrum coins. The rectangular panel cat. 531 was found beneath the south-west corner of Croesus’ temple in a layer also yielding gold dates, found to the late 7th to the early 6th century BC.

The find-spots and the scarcity of inlays, not even enough to compose a single ornament, would indicate that these are the remains of carving activity, carried out in or in the immediate surroundings of the sanctuary of Artemis, as was common in major Greek sanctuaries. The sanctuaries of Artemis Orthia at Sparta, Apollo at Delos and Hera at Perachora yielded both ivories and bone objects. These consisted mostly of fibulae, with amber inlays and unfinished pieces of amber, ivory and bone proving the existence of local carving workshops. In the Artemision at Ephesos a remarkable number of unpublished pieces, scattered throughout the sanctuary, document every stage of the work in the production chain for both ivory (pl. 23) and bone (pl. 24), from the collecting of natural animal bones to the unfinished pieces left at various work stages, including also test-pieces. These finds are too many and too tiny to be votive offerings or sacrificial residues. They are workshop remains and constitute valuable proof of the existence of a carving workshop for bone and ivory in the sanctuary of Artemis at Ephesos, a hypothesis already reached for gold jewels and bronze ornaments. The rich ivory artefacts gifted as votive offerings in the Artemision show the long tradition of carving activity in the area, which can also include inlaid items. Regarding amber, the local carving is documented by several reworked items and by two lumps of raw, only partly worked amber (catalogue cat. 535 and 641; see below, chap. 2.8).

Stylistically the amber inlays from the Artemision are rooted in the Eastern Greek traditional ornaments for wooden furniture. They constitute precious proof of the existence of local carving workshops, activity which would have been maintained for at least two centuries, but which is not yet systematically documented. The remains of a bone workshop, including several unfinished objects stylistically dated to the 5th cent. BC, have been recovered in the centre of modern-day Taranto (Dell’Aglio – Lippolis 1995, 105; Dell’Aglio 2002, 192 f.; Dell’Aglio – Masiello 2019).

The research on unfinished ivory and bone pieces in the Artemision finds is far from systematic, but the related pieces are enough to prove the existence of a locally well-established carving activity.

Klebinder-Gauß 2007, 204 f. and Pülz 2009, 23 with literature for the hypothesis of metal workshops in the Artemision. Here I wish to mention the presence, in a layer datable not later than the late 7th cent. BC, identified by means of sherds of fine local painted pottery, of the fragmentary lower part of a coarse ware crucible (excavation no. ART 820175.1), still containing consistent remains of metals, which have been identified by a fluorescence analysis as copper and iron with traces of tin. I would like to thank Prof. Dr. Manfred Schreiner and Dr. Michael Melcher, Institute for Natural Sciences and Technology in the Art at the Academy of Fine Arts, Vienna for the spontaneous collaboration and the execution of the analysis at Selçuk.

A complete review of the carving ivories from the Artemision is missing: the pieces found in the British excavations have been edited by C. Smith and D. G. Hogarth (Hogarth 1908a, 155–185. 186–198), and a selection of the later finds has been published in an exhibition catalogue (Seipel 2008, 159–186). The role played by local skilled carvers at Ephesos in the late 7th cent. BC has been stressed by T. Şare (Şare 2010).

In the Artemision several bronze nails originally belonging to furniture have been found (Klebinder-Gauß 2007,
activity, whose roots can be traced back to the late 7th to the early 6th century BC. We can therefore ascribe to this period the early phases of amber inlays created for wooden furniture in Ionia, partly filling a chronological gap with the earlier finds from the western Mediterranean978.

Alessandro Naso

2.7 PINHEADS (CAT. 534, 656–658)

2.7.1 Introduction

P. Jacobstahl once remarked that the Heraion of Argos and the Artemision of Ephesos had yielded the largest ensembles of pins in the Aegean belonging to the Archaic period. In the Argive Heraion, about 2,800 pins were recovered, which is more than all the pins found in Archaic tombs in Greece. The pins found in this sanctuary were mostly made of ivory and bronze, and no pinheads made from amber were recorded979. At Ephesos, in addition to pins made from electrum, gold, silver, bronze, ivory and bone (almost 280 specimens in the British excavations and almost 100 metal specimens plus fragments in the Austrian ones) one example of an amber head for a pin was found in the Austrian (cat. 534)980 and three examples in the British excavations (cat. 656–658).

2.7.2 Typology

Type 1: Pinhead with rosette button-top (cat. 656)

Globular pinhead with an inserted neck, followed by a circular flattened rosette-shaped button-top. The artefact features a central vertical blind bore-hole.

Type 2: Pinhead with floral button-top (cat. 657)

Globular pinhead with an inserted neck, followed by a circular floral button-top. Its lower section features a cylindrical ending, defined by a bulge and a vertical blind bore-hole.

Type 3: Pinhead with grooves (cat. 658)

Globular pinhead with a grooved surface, followed by an inserted neck and ending with a flattened cylindrical bottom. At its base is a vertical blind bore-hole.

Indeterminable (cat. 534)

Globular head, sustained by a carved ring-shaped relief on the bone pin, which is inserted in a through-hole. The fragment is tentatively classified as a pinhead, but the original object it belongs to is not securely identifiable.

2.7.3 Conclusions

The three items cat. 656–658 are classified as pinheads, because the perforations did not penetrate the whole object. The shape resembles ivory pinheads of the same period from the Artemision itself and the Artemis Orthia sanctuary at Sparta981.

Cat. 656–657 are stored in the British Museum and were defined by the present writer as type 1 and 2. Both have a globular shape, with an inserted neck and a round rosette button-top, and a vertical perforation running about halfway through the body. In form and general appearance, they both resemble the pomegranate pendants of type 5. Both show a bulge and cylindrical finish. A third pinhead (cat. 658), defined as type 3, was recorded in the Archaeological Museum of Istanbul: it has a globular shape; its surface is entirely covered by shallow, horizontal grooves; and it ends with a cylindrical bulge and a vertical blind bore-hole running through its base.

Although Hogarth stated that about 20 amber pinheads appeared in three varieties within the Green Schist Basis, only the three described above could be recorded in the British Museum and the Archaeological Museum in Istanbul. Hogarth noted three varieties:

a) Horizontally fluted spheroids with or without finial tuft
b) orange-shape, plain or with horizontal ribbing
c) conical spheroids plain or horizontally ribbed.

Regarding these descriptions, variety a seems most likely to match our type 1, while 2 and variety b probably correspond to our type 3. The three objects were all found without a needle, so that no clear statement can be made regarding the materials, but it seems likely that the needles were made of bone or ivory982. In other sites which yielded a significant number of comparable pins for types 1 and 2 made of gold, electrum, silver, ivory and bronze, like Perachora, Sparta983, Delos, Corinth and Aphaia, no amber pinheads have come to light. Comparable »vase-shaped« amber pinheads have been identified only at Kato Phana on Chios984.

Caroline Posch

2.8 RAW AMBER AND UNFINISHED PIECES (CAT. 535. 651) PLS. 25, 3; 63

The raw amber lump cat. 535 from the Artemision was only partially worked; however, its uneven colour was revealed when it was cut, showing large, random yellow patches, so work was suspended, and probably the lump was never used again. It can be considered as a workshop’s reject and can be considered as precious as two gold cast residues from the same find-spot985, as it constitutes valuable evidence of local amber cutting activity. Another unfinished piece is cat. 651, whose blind holes and short lines allow us to suppose its function as a test-piece. From this perspective, it also constitutes evidence of local working in the Artemision (pl. 25, 3).

Raw amber nodules are quite rare and, if broken, are not easy for archaeologists to identify. Some finds from Miletus and Chios can be mentioned, and some comparisons from Italian contexts dating from the 9th to the 6th century BC are known. Regarding the Greek world and Ionia, a few amber pieces, apparently without traces of working, have been found in the bothros of the Aphrodite sanctuary at Zeytintepe explored at Miletos, sealed as early as the 7th century BC: the small pieces are in a very poor state of conservation, and the identification as raw amber is questionable986.

981 Hogarth 1908a, 187 pl. 33, nos. 1. 6; Dawkins 1929, pl. 136, 4.
982 Strong 1966, 44.
983 Dawkins 1929, pl. 136, 4.
984 Lamb 1934/1935, 154 f.
In the early 20th century K. Kourouniotes mentioned unworked amber lumps at Phanai on Chios, but these are unpublished\(^987\).

In Southern Italy at least two Early Iron Age find-spots should be mentioned. Grave 206 of the Torre Galli cemetery in Calabria, a rich male burial belonging to the first half of the 9th century BC, also yielded a piece of uncut amber, identified by IR (Infrared) analysis as Sicilian amber or simette\(^988\). Several pieces of uncut amber have been found in northern Campania in the Early Iron Age and Orientalising settlement of Poggiomarino, in layers dated from the 9th to the early 7th century BC. These lumps and the original shapes of amber beads and fibulae coated with amber slices, dating from the 9th to the early 7th century BC, indicate that amber was carved locally. DRIFT (diffuse reflectance for infrared Fourier spectroscopy) analysis revealed the samples from Poggiomarino were of both Baltic and non-Baltic origin, the latter remaining unspecified\(^989\).

In Central Italy raw amber nodules have been found in at least two graves at Vetulonia in Etruria, dated to the first half of the 8th century BC\(^990\). The archaic votive deposit explored in Latium vetus at the acropolis of Satricum also includes at least six nodules of raw amber\(^991\).

Two, possibly three, small pieces of uncut amber have been found in the Archaic wreck off Giglio island (Tuscany), trapped in a thick layer of pine pitch. The wreck excavators presumed that originally the vessel carried more amber, but this floated away or was washed away by underwater currents when the ship sank. The cargo of the Giglio-Campese ship consisted of fine wares from several factories in Greece and Etruria; Etruscan and Greek trade amphorae made from various materials containing olive oil, wine, pine pitch and olives; metal ingots of iron, copper and lead; and other wares, which allowed dating of the wreck to around 580–570 BC\(^992\).

Usually, raw amber has been interpreted as evidence of local cutting and working in the area of each find-spot. M. Bound raised another interesting perspective, relating to the finds from the Giglio wreck: the British scholar presumed the amber pieces could be used as currency for trading aboard ship, as for some copper nuggets yielded by the same wreck (aes rude)\(^993\). It is hard to find a comparison for this stimulating hypothesis because the actual archaeological record is mostly based on evidence from contexts of a different nature, such as burials and sanctuaries. It may be difficult to imagine the raw lump (cat. 535) from the Artemision being used as currency – after all, this was an expensive, exotic import which had proved disappointingly defective and was consequently rejected.

Both unfinished amber pieces from the Artemision indicate the activity of local carvers. It is well known that major Greek sanctuaries hosted handicraft workshops, meant to satisfy the demand for votive offerings: apart from bone, ivory and amber carvers, bronzesmiths and goldsmiths were also active in the Artemision, as posited by G. Klebinder-Gauß and A. M. Pülz respectively\(^994\).

\[\textit{Alessandro Naso}\]
3 INFRARED SPECTROSCOPY OF AMBER SAMPLES FROM EPHESOS

3.1 INTRODUCTION

The archaeological investigation of the Artemision at Ephesos (present-day Selçuk in Türkiye) dates back to 1864 when J. T. Wood was recruited by the British Museum to excavate the region and he discovered the Artemision site in 1870. D. G. Hogarth continued work on the excavation during 1904–1905 and discovered additional floors of earlier periods of the Artemision temple; in 1908 he published his report995. The finds from these excavations are divided between the Archaeological Museum in Istanbul and the British Museum in London. Subsequent excavations by the Austrian Archaeological Institute have unearthed a large number of ambers, which are believed to be votive offerings.

The provenance of amber samples found in archaeological sites in Italy is of interest for understanding the practice of trade and the value of amber in early cultures. The substitution of Baltic amber for Sicilian amber has been documented, along with importation of amber from other countries over the past three centuries. Amber found in Italy has been identified to a number of sources, which include copal (a semi-fossil material), Baltic, local simetite, imitation amber and, in more recent years, red Dominican amber996. Two amber samples from tomb 3 of the Eneolithic necropolis at Laterza (province Taranto) were determined to be Sicilian ambers997, which indicated that local amber was used in early Italian culture before the arrival of Baltic amber from Northern Europe.

In this investigation, samples from Ephesos were studied by FTIR spectroscopy to determine if they were Baltic amber, or of other types.

3.2 METHOD OF ANALYSIS

The amber samples were analysed by Fourier transform infrared (FTIR) spectroscopy using a KBr pellet; 1 mg of amber sample was finely ground with 0.1 gm of dried KBr and pressed into a pellet in vacuum under high pressure. The FTIR instrument used was ThermoNicolet model Nexus 670. The samples were analysed immediately after preparation to minimise uptake of water under ambient conditions.

3.3 PHYSICAL DESCRIPTION OF THE AMBER SAMPLES FROM EPHESOS

A total of 30 samples were received for analysis from Dr. Alessandro Naso998. E1–E7, E9–E31 are samples from beads, pendants, inserts or raw material collected from the temple of Artemis in Ephesos. These artefacts are dated to the late 7th century BC, and believed to be used as votive offerings.

995 Hogarth 1908a.
998 The export of amber samples was thankfully permitted through the authorisation by the General Direction of the Antiquities in Ankara and occurred as part of the sample export through the Austrian Archaeological Institute, whom we together with Alessandro Naso sincerely thank.
3.4 RESULTS AND DISCUSSION

FTIR spectroscopy was successfully applied to characterise samples E1–E7, E9–E31. All the samples were organic based and contained several peaks that are commonly found in fossilised resins (hydroxyl, saturated CH stretches and bends, carbonyl group and C–O). The Baltic ambers were identified based on the characteristic pattern in the region of the vibrational stretch of the C–O bond; Baltic ambers show an absorption peak at about 1,160 cm⁻¹, which is preceded by a broad flat shoulder found between 1,175–1,250 cm⁻¹ (referred to as the »Baltic shoulder«). This shoulder is not seen in any other type of European fossil resin, and is believed to arise from the presence of succinic esters. Another feature that is also typically observed in Baltic ambers is a small peak at 890 cm⁻¹ (molecular vibrations of exocyclic C = CH₂ groups) and points to a labdane skeleton that is expected for Baltic amber. This exocyclic C = CH₂ group is consumed in the conversion of resin to amber, and consequently only detected as a small peak.

The list of amber samples studied by FTIR spectroscopy is tabulated in table 5, which lists the FTIR spectrum number, sample identification, inventory number, type of sample, archaeological location, and type of amber samples as determined by FTIR spectroscopy and comparison to our infrared database.

Table 5 Results of FTIR Spectroscopy of E1–E7, E9–E31. All samples are from Ephesos

<table>
<thead>
<tr>
<th>Spectra</th>
<th>Sample</th>
<th>Cat.</th>
<th>Inventory #</th>
<th>Description</th>
<th>Provenience</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR8212</td>
<td>E–1</td>
<td>529</td>
<td>ART 860155</td>
<td>Fragment (Inlay)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8213</td>
<td>E–2</td>
<td>258</td>
<td>ART 860203</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8221</td>
<td>E–3</td>
<td>531</td>
<td>ART 860217</td>
<td>Fragment (Inlay)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8215</td>
<td>E–4</td>
<td>526</td>
<td>ART 870081</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8222</td>
<td>E–5</td>
<td>45</td>
<td>ART 870199</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8223</td>
<td>E–6</td>
<td>47</td>
<td>ART 870246.2</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8229</td>
<td>E–7</td>
<td>57</td>
<td>ART 870349</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8246</td>
<td>E–9</td>
<td>295</td>
<td>ART 870354.4</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8247</td>
<td>E–10</td>
<td>315</td>
<td>ART 870362</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8248</td>
<td>E–11</td>
<td>316</td>
<td>ART 870409</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8244</td>
<td>E–12</td>
<td>349</td>
<td>ART 900374.3</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8249</td>
<td>E–13</td>
<td>536</td>
<td>ART 900380.3</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8250</td>
<td>E–14</td>
<td>537</td>
<td>ART 900380.4</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8230</td>
<td>E–15</td>
<td>61</td>
<td>ART 900402.1</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8251</td>
<td>E–16</td>
<td>299</td>
<td>ART 900402.2</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8231</td>
<td>E–17</td>
<td>62</td>
<td>ART 900434</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8235</td>
<td>E–18</td>
<td>113</td>
<td>ART 900483</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8252</td>
<td>E–19</td>
<td>292</td>
<td>ART 900486.1</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8245</td>
<td>E–20</td>
<td>293</td>
<td>ART 900486.2</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8253</td>
<td>E–21</td>
<td>357</td>
<td>ART 900486.3</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8254</td>
<td>E–22</td>
<td>298</td>
<td>ART 901329</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8255</td>
<td>E–23</td>
<td>199</td>
<td>ART 910496.2</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8236</td>
<td>E–24</td>
<td>82</td>
<td>ART 910584</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
</tbody>
</table>
3.4 Results and discussion

<table>
<thead>
<tr>
<th>Spectra</th>
<th>Sample</th>
<th>Cat.</th>
<th>Inventory #</th>
<th>Description</th>
<th>Provenience</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR8237</td>
<td>E–25</td>
<td>530</td>
<td>ART 910611</td>
<td>Fragment (Inlay)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8239</td>
<td>E–26</td>
<td>259</td>
<td>ART 931010.2</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8240</td>
<td>E–27</td>
<td>63</td>
<td>ART 931289</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8256</td>
<td>E–28</td>
<td>311</td>
<td>ART 940014</td>
<td>Fragment (Pendant)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8241</td>
<td>E–29</td>
<td>260</td>
<td>ART 940110</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8243</td>
<td>E–30</td>
<td>64</td>
<td>ART 940242.4</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
<tr>
<td>IR8242</td>
<td>E–31</td>
<td>533</td>
<td>ART 940268</td>
<td>Fragment (Bead)</td>
<td>Baltic Amber</td>
</tr>
</tbody>
</table>

E1–E7. E9–E31 samples

All the samples in this group are fragments from beads, pendants or inserts and clearly Baltic amber based on the presence of the characteristic pattern in the region of 1,175–1,250 cm\(^{-1}\) by FTIR spectroscopy (see representative spectrum for sample E1 in diagram 1); the characteristic Baltic shoulder for E1 compares closely to the spectrum b for an authentic Baltic amber.

![Diagram 1](image)

Diagram 1 FTIR spectra of a) E1 amber sample and b) authentic Baltic amber sample (© Vassar College)

Acknowledgements

This report is contribution ARL No. 184 from the Amber Research Laboratory, which is supported by Vassar College. We also acknowledge and thank Dr. Alessandro Naso (already University of Innsbruck, now University of Naples Federico II), who submitted the amber samples labelled E1–E7, E9–E31.

Sarjit Kaur, Edith Stout, Tripta Kaur, Vanora Estridge
4 ANCIENT NEAR EASTERN AMBER: AN OVERVIEW OF THE CUNEIFORM SOURCES*

4.1 INTRODUCTION

Our present information on the early circulation and use of amber in pre-Classical literate Western Asia has been revolutionised by the discovery, in 2002, of a beautiful amber lion-headed cup with lid in the Royal Tomb (»Königsgruft«) in Mishrihe (Syria), ancient Qatna, datable to the beginning of the second half of the 2nd millennium BC (pl. 26, 1). This 6 cm-long Qatna masterpiece was carved – probably at Qatna itself – from Baltic amber. This fact is to be considered as a confirmation of the existence of long-distance trade between Northern Europe and the Levant during the Late Bronze age, facilitated by Mycenaean Greece. In the South, this trade included sea voyages, as shown by the amber beads found in the Uluburun shipwreck, off the coast of Southern Türkiye, which sank at the end of the 14th century BC. However, mass and infrared spectroscopy dates, where available, have shown that the amber found in the Near East came not only from the Baltic, but also from Mediterranean areas, including Lebanon, and sometimes from much further afield, for instance East Africa, in the case of the copal pendant from Tell Asmar (Ešnunna) in Mesopotamia, datable to ca. 2400 BC.

It is not the aim of this article to give a complete list of the archaeological evidence for Ancient Near Eastern amber, since our main focus is on the cuneiform textual evidence. Here we wish to provide a very general overview, limiting ourselves to a few remarks.

Amber artefacts from Anatolia predominantly include beads of various shapes and sizes. Though many studies have been published concerning aspects of the foreign relations of Anatolia, to the best of our knowledge a systematic survey of beads and other pieces of amber from Anatolia still remains a desideratum. On the western Anatolian coast, besides the controversial beads from Troy, some Late Bronze Age amber beads, probably of Baltic origin, have been found in Panaztepe. They must have arrived in Panaztepe from Greece, similarly to other objects known from central and southern Anatolian sites. Considering inner Anatolia,

* We thank Alessandro Naso for inviting us to participate in this volume. We are also grateful to Benjamin Foster, Gianni Marchesi, Giovanni Mazzini and Wilfred Watson for their useful suggestions.

Pflüger 2011, 146–149. Besides the lion’s head with its lid and many beads (see below), also a miniature hand in amber has been found, Pflüger 2011, 179 f.

Mukherjee et al. 2008.

Pflüger 2012, 794. For the involvement of the Mycenaeans in the Baltic amber trade see Maran 2013.

Yalçın et al. 2005, 588 f. cat. 94.

On the very probable North European origin of the amber of the two beads from Assur see now Bunnefeld – Martin 2020 and Bunnefeld et al. 2021.

Furthermore, Jörg Adam Becker is currently writing a contribution on this topic, announced in Bunnefeld – Martin 2020, 163 as »Das Gold des Nordens im Alten Orient. Bernsteinfunde des 3. und 2. Jahrtausends v. Chr.«. See now Bunnefeld et al. 2021. For a historical survey of the Mesopotamian amber see Moorey 1999, 79–81 (and also the realistic caveat on pp. 78 f., with literature and discussion of two amber statuettes of unknown origin, representing a standing Assyrian king and a standing god in Neo-Assyrian style, whose authenticity is a matter of debate: for the first see Muscarella 2000, 177 f., and below n. 1240). See also Cultraro 2007, 54–56 and the map of the distribution of the Middle Bronze Age finds in Bunnefeld – Martin 2020.

See Pienižek 2016, 52 f.

See Çınardalı-Karaaslan 2012, 72 fig. 5.
the finding of amber beads is reported among the grave goods of the Early Bronze Age royal tombs of Alaca Höyük\(^{1009}\). However, subsequent studies mention only frit beads, red agate and red chalcedony beads besides gold and rock crystal beads\(^{1010}\). Furthermore, amber from Alaca Höyük is virtually absent from recent publications. Isolated objects were found in Late Bronze Age contexts in another site of Central Anatolia, Alişar Höyük\(^{1011}\), and possibly Külepe\(^{1012}\). Only two amber beads were found in Boğazköy-Ḫattuša during the old excavations\(^{1013}\); they may have arrived there in the period of the Hittite kingdom. To sum up, the sparse evidence recalled above seems to indicate that amber was not very common in Bronze Age Anatolia. Also, in Mesopotamia and Syria the finds of amber objects are relatively limited\(^{1014}\) and mainly consist of beads. Complementing the already mentioned historical survey by Roger Moorey\(^{1015}\), where finds from Ur (Middle Bronze Age), Babylon (Iron Age), Assur (Middle Bronze or Iron Age), Nineveh (Iron Age), Alalakh (Late Bronze Age), Ugarit (Late Bronze Age), Tell Ahhaziv and other sites in Israel (Late Bronze Age) are reported, here we can quote some new discoveries made in recent years. Amber beads have been found in Late Bronze Age levels at Tell Hariri (Mari)\(^{1016}\), Tell Atchana (Alalakh)\(^{1017}\), Tell Afis\(^{1018}\), and above all, at Mishnifeh (Qatna) itself\(^{1019}\).

The new extraordinary finds from Qatna can be seen as one of the two main poles of the current dataset concerning Ancient Near Eastern amber in archaeological and textual sources, the other one being the well-known mention of this material at the beginning of the much later biblical book of Ezekiel (beginning of the 6\(^{th}\) cent. BC and later reworkings). Describing in Ezekiel 1, 26–27 his vision of the chariot of the Lord at the Chebar canal, in Babylonia, the prophet writes that »Above the expanse over their (= the vehicle’s creatures) heads was the semblance of a throne, in appearance like lapis lazuli (eben sappîr); and atop the semblance of the throne there was a gleam as that of amber (ḥašmal) – what looked like a fire encased in a receptacle (kē-marʾē ʾēš bēt lāh sābîb)«\(^{1020}\). Biblical Hebrew ḥašmal is a hapax legomenon and its interpretation has not been univocal: »amber« is only one of its current translations, the other one being »electron«\(^{1021}\), and the same applies to its Greek counterpart in the Septuagint, ἥλεκτρον\(^{1022}\). As we will see below,

\(^{1009}\) See Özgüç 1963, 14.

\(^{1010}\) See, for example, Özgüç – Temizer 1993, especially 624.

\(^{1011}\) See Kozal 2006, 198.

\(^{1012}\) See Özgüç 1953, 73 pl. 58, 640, quoted in Pieniążek 2016, 52.

\(^{1013}\) See Boehmer 1972, 232 pl. 98, nos. 2459–60.

\(^{1014}\) However, it has been noted that the scarcity of the finds of amber in Near Eastern excavations may be due to the inherent difficulty in recognising it in the field, cf. these remarks in Reade 1987, 33 (quoted by Moorey 1999, 79): »The first time I encountered decayed amber [in Sasanian or Early Islamic graves] in northern Iraq, a light brown flaking powdery substance, I was inclined to suppose that it might be glass: decayed glass of c. 1400–1200 BC can look somewhat like this. Fortunately, on that occasion, I had a visitor who was familiar with amber from Scandinavian excavations and was able to identify mine, but I cannot help wondering how often comparable mistakes are made.«

\(^{1015}\) Moorey 1999, 79 f. See also Todd 1985.

\(^{1016}\) See Margueron 2014, 130.

\(^{1017}\) See Pieniążek 2020, 123–125.

\(^{1018}\) See Mazzoni 2006/2007, 28.

\(^{1019}\) In addition to the already mentioned lion vessel, 90 beads of various shapes were found, forming the largest known collection of Late Bronze Age amber beads in the Near East, see Roßberger 2015, 75. 104. 137. 141. 172. 176. 214.

\(^{1020}\) Translation based on Winetzer 2014, 169. Cf. ḥašmal in Ez 1, 4 and 8, 2. See also Aster 2014, 12.

\(^{1021}\) See the survey in Noonan 2019, 106 f., who translates »amber«. One can also note interpretations that over the years have proved to be misleading, such as, e.g., the comparison of ḥašmal with the Akkadian name of colour and coloured stone ḥašmānu(m) and var., cf. the discussion of the Ugaritic attestation in Virolleaud 1940, 259 n. 1 (also Black 2001) and see van Soldt 1991, 344 (»red purple«). In general, see Landsberger 1967, 196 f. n. 2.

\(^{1022}\) On this Greek term see the discussion in Deroy – Halleux 1974, including its occurrences in Homer.
this also applies to Akkadian \textit{elmēšu(m)}, from which Hebrew \textit{hašmal} was borrowed. In turn, this implies a renewed investigation into the meaning and use of *sud'-aḡ, the Sumerian equivalent of \textit{elmēšu(m)}. As for Hittite \textit{ḫušt-}, its identification with »amber« still needs conclusive proof1023.

4.2 THE WRITTEN DOCUMENTATION: ANATOLIA

In 1988, when introducing the written documentation from the Hittite capital Hattuša in the debate on ancient terms for »amber«, Anna Maria Polvani cautiously suggested this meaning1024 for the (then as yet untranslated) Hittite substantive (NA4)*ḫušt-1025, related to Luwian \textit{ḫušți}-1026 and Hurrian \textit{ḫuštî}1027. The term \textit{ḫušt-}, which is very rarely marked with the semantic classifier for »stone« NA₄, is documented in texts mainly dealing with religious rituals where it is drunk or burnt1028. Repeated a few years later1029, Polvani’s hypothesis was based on the general fact that, as later attested for instance by Pliny in his »Naturalis Historia«, amber may be used therapeutically, once powdered and dissolved in potions, and can be burnt, giving off a pleasant smell. The translation »amber« for (NA4)*ḫušt- was soon accepted by Jaan Puhvel1030, who later, in an in-depth 1999 article, discussed connections with other terms of different languages including Akkadian \textit{elmēšu(m)} and Sumerian *sud'-aḡ (on which see below) and suggested an Indo-European etymology, i.e. *Hews-, to burn1031. The identification of \textit{ḫušt-} with amber has been considered possible by other scholars1032. However, in 2002 Volkert Haas put forward an alternative proposal, suggesting that this term rather refers to a sulphur-like substance because it would have the same magical properties as another material used in purification rites, i.e. \textit{kipritt-}, a loanword in Hurrian from...
Akkadian *kibrītu*, »Sulphur«. A further alternative translation of *ḫušt-* refers to »something belonging to honey, wax of honey«. Actually, many scholars still prefer not to translate (NA4) *ḫušt-* as it is to be stressed that there is no other candidate to denote »amber« in cuneiform texts from Anatolia.

A renewed investigation of the contexts where (NA4) *ḫušt-* occurs, allows us to get a better idea of what this term denoted, even if a definitive conclusion on its exact meaning still remains impossible. All in all, as we will see, it turns out that *amber*, given its physical nature and its symbolic meaning, is the most probable translation of (NA4) *ḫušt-*-. However, one can suggest that, more specifically, the (NA4) *ḫušt-* substance used in Hittite ritual practices for its therapeutic, purifying, and protective properties is probably better identified with the semi-fossilised product termed »copal« or »young amber« rather than with »(mature) amber«. Copal, which can barely be distinguished from mature amber with the naked eye, seems in fact more suited to the uses described in Hittite texts because of its physical characteristics (mainly its solubility and melting point). In particular, when burnt, amber produces a steady flame, emitting black smoke, accompanied by a slightly acrid, burnt-resinous odour, whereas, when burnt, copal produces a sputtering flame with whitish smoke, giving off a mostly sweet, lemony odour with a resinous tinge. Furthermore, young amber was easily available in the geographical areas where the traditions with the rituals discussed below belong, i.e. the Syro-Levantine regions, where cedar and tamarisk were also endemic. In the present chapter, (NA4) *ḫušt-* will be translated as »amber« to assist the reader, keeping in mind all the remarks made earlier.

Considering the absence of references to *ḫušt-* in lexical lists, it is convenient to discuss firstly the texts which provide contextual information in some way akin to that in the learned texts where taxonomic principles are at work.

The almost complete Middle Hittite »Ritual of Ammiḫatna from Kizzuwatna against impurity« (CTH 471) documents *ḫušt-* as an ingredient in a therapeutic potion (*waššī-) that the ritual patron (EN.SĪSKUR), i.e. the patient – a person in a consecrated state who has been given adulterated food or polluted substances to eat or drink – must take twice a day for seven days. The term *ḫušt-* is mentioned in two different paragraphs of this text which originated in Kizzuwatna, i.e. classical Cilicia. First it appears in the initial list of the *materia medica* prepared by the ritual practitioner (4–AZU): »a little bit of lapis lazuli, a little bit of carnelian, a little bit of alabaster, and a little bit of amber«, 14 *kappi*-vessels (with) germinated barley, a little bit of tamarisk (and) a little bit of cedar«. Then *ḫušt-* occurs in the description of the preparation of the mixture to

1034 See Ünal 1996, 50 and Ünal 2007, 242; also Çiğ링ir Ceyser 2020, 62 and n. 39 (»stüstü veya temizlik maddesi olarak kullanılan bir mineral veya madde, balmuğu, küükür, süfür«).

1036 Copal is the intermediate state between modern resin and mature amber and may have an age of tens of thousands of years or more, see Poinar 1992, 6–8. 63 f. 235; Langenheim 2003; Solórzano-Kraemer et al. 2020.

1037 See in general Poinar – Milki 2001, 76–84.

1039 KBo V 2, 1:37–39 (»NA4ZA.GÌN te-pu NA4GUG te-pu NA4AŠ.NU,1 GAL te-pu »ḫu-u-uš-ti-ša te-pu 14 kappi-ša šE
be drunk by the patient before lunch: »The ritual practitioner takes 1 kappi-vessel (with) barley; he takes a little bit of lapis lazuli, carnelian (and) alabaster; he takes a little bit of amber, cedar, and tamarisk. He crushes them in the mortar and dissolves it in the ›water of purity‹. The patient steps in front of the Sun-god and drinks this medicine on an empty stomach." Later, during the evening of that same day, while facing the Moon-god and eating (and thus on a full stomach), the patient has to drink the same potion freshly prepared by the ritual practitioner. Interestingly, the ingredients mixed together with ḫušt- in the ›purified water« (şehelliyaş water) are minerals, namely »lapis lazuli« (NAGZA.GIN, »carnelian« (NAGUG), »alabaster« (NAG.AŠ.NU, GAL), and vegetables, namely »barley« (ŞE), »tamarisk« (AŠNING), »cedar« (ANING). One can note that the ingredients are divided into three groups: the »germinated barley« (SE parâ siyatar) is distinguished from the materials qualified by »stone«, NA (lapis lazuli, carnelian, alabaster), as well as from the materials qualified by »wood, plant«, GIŠ (cedar, tamarisk). It is to be noted that in this text ḫušt- is not qualified by NA. If one compares the two lists of raw materials in the two paragraphs, one notes that this term is recorded together with the stones in the initial list of substances, while it rather occurs together with the plants as an ingredient in the actual recipe. One may assume that the first list depends on the place where ḫušt- was stored (together with other (semi-)precious stones and non-perishable substances, in the form of small solid pieces, i.e. pebbles, chunks, grains, slivers), while the sequence of the second list shows the different steps of the inclusion of the various mineral and vegetable ingredients inside the mortar for the preparation of the potion. All this could reflect a rudimentary awareness of the distinction between active ingredients (the stones) and excipients (the vegetables) in a medicine, ḫušt- occupying an intermediate position, possibly being used as a binding agent due to its resinous nature.

Another peculiar feature denoting ḫušt- is that it can be burnt for fumigation together with other substances. This appears in the passage of a Middle Hittite text preserved in copies of the Imperial period, that is the »Ritual of Ḫantitaššu from Ḫurma (CTH 395.1.A)«. Here ḫušt-, without the semantically classifier NA, »stone«, appears at the beginning of the ritual (§ 4) during the preparation of offerings on the roof of the house aimed to attract the Sun-god so that he helps the patient: »Seven thick loaves of fine wheat are placed on top of the soldiers’ breads. Then (there is) one small thick bread for the Deities of Fate: it is placed on top of the soldiers’ breads, but separately. In front of the table, a baked clay container is placed on the floor below. Embers are poured into it. Smoking is done with cedar, clarified butter, honey, (and) amber«. Significant here is the association of...
The Sun-goddess of the Earth (§ 9'), and a scapegoat ritual (§§ 10'–13'). It has been aptly stated that this ritual is performed mainly with animals (different kinds of birds, among them eagles and hawks, and ovines), minerals, and organic substances (including hušt-). This set of ceremonial actions is not always intended to draw evil out into the object that is swung away)«, »to make something rotate (above)«, »to wave over«, »to whirl«. As a matter of fact, this rite is performed with animals (different kinds of birds, among them eagles and hawks, and ovines), minerals, and organic substances (including hušt-). This set of ceremonial actions has been dubbed »Schwenkritus« and considered to be a purification rite. However, notwithstanding many studies – even including cultural comparisons such as that with the Biblical rite of Leviticus 23, 20 – its precise connotation is still largely elusive. Some scholars think that the animals and minerals used in this rite were supposed to behave as absorbent materials helpful in removing the impurities that afflicted the patient. More recently it has been argued that »ser arḫa waḫnu- is not always intended to draw evil out into the object that is swung away)«. Other scholars suggest instead that the practice expressed by (ser) (arḫa) waḫnu- consists in the formation of a kind of magic circle around what must be purified, be it a person, a deity’s statue, or a sacred building. In this type of ritual it is not made explicit whether hušt- is burnt and fumigated or used in its solid state, but many examples show that ser arḫa waḫnu- can also be used to spread the substance’s influence around a space in the same way as can be achieved with a censer.

As a meaningful example of the (ser) (arḫa) waḫnu- rite with the use of hušt-, one can mention first of all a fragmentary Middle Hittite »Birth ritual« (CTH 430.2), a composition concerned with post-parturition activities on behalf of a mother and child within the royal family, seemingly performed by a nurse as the chief ritual practitioner. In an initial paragraph (§ 3) of this text one reads: »[...] in whatever place I shall bring up [the child], [...] the diviner and the augur give. [...] amber (s)he swings overhead repeatedly«. The following paragraphs of the text list other actions devoted to the determination of the fate of the child, along with a mouth-washing ceremony (§ 4), the changing of the mother’s clothes (§ 6), the invocation of the gods1050, and a scapegoat ritual (§§ 10'–13'). It has been aptly stated...
that »the emphasis in the preserved portions of the text is upon purification from both physical uncleanness and evil influences«1055.

Another interesting case occurs in the long purification ritual called itkalzi (CTH 777). Some of its tablets come from Ḫattuša, whilst others have been found at Ortaköy, ancient Šapinuwa, one of the major Hittite religious and administrative centres, situated east of Ḫattuša. They belong to two different series: an original, lengthy Hurrian version comprising 22 tablets (performed for Tuthaliya II and Tadu-Ḫepa in order to assure the well-being of the royal couple and the fertility of the queen), and a shorter Hurro-Hittite recension comprising only 10 tablets (performed for either a male or a female anonymous ritual patron)1056. In a passage in the tenth and last tablet of the shorter series, the ritual practitioner (LÚ AZU) waves an eagle, a falcon, a ḫapupi-bird, amber1057, and a kid around the ritual patron1058. Then, the text continues distinguishing between a male or a female ritual patron: the former shoots an arrow with a bow, whereas the latter only puts her hand on the bow and the ritual practitioner shoots the arrow. Lastly, the LÚ AZU pours the water of purity onto the ritual patron and recites in Hurrian. It is interesting to note that this text has strong resemblances with the above-mentioned »Ritual of Ammiḫatna« (CTH 471), where ḫušt- appears as an ingredient in a therapeutic potion, so that scholars assume that both of these texts derive from a common ritual tradition of Hurrian/North Syrian origin1059.

One of the Hittite texts with Hurrian recitations containing the swinging rite with the purificatory substance ḫušt-, is CTH 490, a ritual performed by an expert called Aštu, the Hurrian Old Woman, and devoted to the treatment of a bewitched patient1060. A similar use of the (ser) (arḫa) waḥnu- rite, but with recitations in Akkadian, not Hurrian, occurs in the second »babilli-Ritual« (CTH 718.2), one of the longer rituals found in Ḫattuša, known in two different and largely parallel redactions of the Imperial period. The main deity to whom this ritual is addressed is the Ištar-type goddess Pirinkir1061. It has been argued that CTH 718 is aimed at »the purification of a member of the royal family from the pollution of sins«1062. In this Hittite composition the incantations spoken by the priest are in Akkadian (actu-
}

1056. For the transmission of the itkalzi ritual, its original recension and the derived »fill in the blanks« editions see de Martino 2016 and de Martino 2017.
1059. Unfortunately, so far, only the beginning of this ritual and parts of its third and fourth tablets have been recovered, see Göcke 2010.
1060. On this deity (and also Ištar and DINGIR GE₇) see Miller 2004, 363–396 and Beckman 2019, 3 f.
the sins.1065 Also, in other Babylonian incantations (including one dated to the first half of the 2nd mill. BC) fish and birds are used as vehicles to carry off and thus counteract evil, be it illness or witchcraft.1064

The specific association of the goddess Ištar with this kind of rite in which ḫuṣṭ- was used is further shown by passages of the »Festival for the warlike Ištar/Šawuška from Šamuḫa« (CTH 712). Some tablets of this festival come from Ḫattuša, whilst recently, another has been found at Kayalıpinar, ancient Šamuḫa, north-east of the Hittite capital. In this text the object of the purification is not a common ritual patron, but the king himself: »The king comes out of the house of the ritual practitioner into the temple to make offerings to Ištar, the ritual practitioner put some »cedar« (GIŠ ERIN) in her hands.«

Also the queen was purified with this substance in another (šer) (arḫa) wahunu-rite, performed during the »Winter festival for the goddess Ištar of Ninive« (CTH 715)1066. In this text one reads:

»The queen arrives at the temple. The queen stands at the gate of the temple. The ritual practitioner swings amber1067 over her at the gate.« The text continues reporting that once the queen entered the temple to make offerings to Ištar, the ritual practitioner put some »cedar« (GIŠ ERIN) in her hands.

A further ritual documenting the importance of a goddess in the (šer) (arḫa) wahunu-rite is the text designated »Ritual for establishing a new temple for the Deity of the Night« (CTH 481. A.). The goddess name is spelled DINGIR GE6 and her nature exhibits similarities with the above-mentioned Ištar-type goddess, Pirinkir. The purpose of this ritual is to evoke the deity to her original temple, calling her to »split« her divinity and to come also into a newly constructed temple, into which she is then evoked and celebrated in similar fashion1070. From § 27 of the almost fully preserved first tablet of this composition we learn that ḫuṣṭ- could also be swung over the statue of a deity: »They give to the deity to eat. Then they carry the cultic ablution, with a chariot he goes to the temple of Šawuška of the Field. As soon as the king […] reaches the temple, the male diviners swing him with a ḪURRI-bird and with [am]ber.«1065

In the manuscript from Ḫattuša the »ritual practitioner« (LUGAL-ESER) replaces the »male diviners« (LUGAL-GE6). One can observe that, as in other cases, the ritual ablation of the king precedes the wahunu-ritual. Furthermore, it seems meaningful that ḫuṣṭ- is used to purify him when he arrives at a temple.1067

Also the queen was purified with this substance in another (šer) (arḫa) wahunu-rite, performed during the »Winter festival for the goddess Ištar of Ninive« (CTH 715)1068. In this text one reads:

»The queen arrives at the temple. The queen stands at the gate of the temple. The ritual practitioner swings amber over her at the gate.« The text continues reporting that once the queen entered the temple to make offerings to Ištar, the ritual practitioner put some »cedar« (GIŠ ERIN) in her hands.

A further ritual documenting the importance of a goddess in the (šer) (arḫa) wahunu-rite is the text designated »Ritual for establishing a new temple for the Deity of the Night« (CTH 481. A.). The goddess name is spelled DINGIR GE6 and her nature exhibits similarities with the above-mentioned Ištar-type goddess, Pirinkir. The purpose of this ritual is to evoke the deity to her original temple, calling her to »split« her divinity and to come also into a newly constructed temple, into which she is then evoked and celebrated in similar fashion1070. From § 27 of the almost fully preserved first tablet of this composition we learn that ḫuṣṭ- could also be swung over the statue of a deity: »They give to the deity to eat. Then they carry the uliḫi into the house of the ritual patron with (the accompaniment of) a harp (and) a drum. And beneath her they scatter sourdough bread, crumbled cheese, and fruits. Then they swing amber over the deity. Then they seat the deity in the storehouse.« It is interesting to note

1063 See Schwemer 2013, 151 f. and Beckman 2019, 68. On the importance of the incantations in order to understand better the (šer) (arḫa) wahunu-rituals see the remarks in Marcuson 2016, 337.
1064 See Wagensonner 2020a, with further references; also Ambos 2012, 99.
1070 On this term, always attested in connection with evoking or moving a deity, see Miller 2004, 409–412 and Beckman 2019, 64 (wa cord or ball of woolos).
1071 See Miller 2004, 259–311 with references to previous editions of the text.
that the use of ḫušt- is attested on the day on which the ritual for the evocation of the new deity into the new temple is performed.

Another example of the use of ḫušt- swung over the statue of a deity occurs in the »Ritual of purapsi-Priests Ammiḫatna, Tulbi and Mati for purification of the temple and the deity« (CTH 472), where one reads: »The deity is swung with an eagle, a falcon, a lamb, a kid, a ḪURRI-bird (and) amber and then they purify the deity with »water of purity«. This attestation provides the rare occurrence of the term ḫušt- spelled with the semantic classifier for »stone«, NA4.

Furthermore, the texts prove that not only cult statues, but also temples were purified with this substance. This is shown by the »Kizzuwatna Ritual« (CTH 479), dating back to the 14th century BC. The ritual was performed over several days. Tablet KUB XXX 31+ records different rites to be performed in case someone had pronounced evil words against the king in the presence of the gods: »In the morning, however, on the 23rd day, one swings the temple of the Weather god, the temple of the goddess Ḫebat, (and) the temple of all the gods with an eagle, a hawk, a ḪAPUPI-bird, a ḪURRI-bird, (and) amber. One purifies with pure water«. The ceremony was performed in Cilicia, at Kizzuwatna and Adaniya, places of residence of the deities that had to be pacified. The purification of a deity and his temple with the ḫušt- used in the swinging rite is also attested in the fragmentary ritual CTH 491.

A last and more complex example of a purification rite using ḫušt- is found in the »Ritual of Allaituralḫḫi« (CTH 780), a text of which two different versions have come down to us, the shorter one (CTH 780.I) almost entirely in Hurrian, the longer one (CTH 780.II) almost entirely in Hittite. A passage in KUB XXVII 29+ 1:45–51 and parallels runs as follows: »They clean out the tent (GIZ.LAM.GAR) in which the Old Woman treated the ritual patron; they sprinkle it and swing ḫuppanni-stone and amber in it and discard them at the doorway. The Old Woman takes the (consecrated) water which remains in the baked clay container and consecrates the house, the inner chambers and the courtyard (with it)«.

Immediately afterwards, the NA4 ḫuppanni-stone and ḫušt- are used in a ritual of the (šer) waḫnu-kind, performed by the female assistants called MUNUS.MEŠHU.R.UR.LAL and intended to cleanse the ritual patron in the house of cultic ablation. In a previous tablet of the same »Ritual of Allaituralḫḫi« it had been specified that the materials called NA4 ḫuppanni- and ḫušt- come from Nineveh. It is difficult to deduce whether the two paired substances have a similar or complementary function in the ritual. The presence of the semantic classifier for »stone« NA only for ḫuppanni- makes the second hypothesis more likely. The important role played by ḫušt- in this ritual is also confirmed by an unfortunately fragmentary, but very peculiar, simile, in which it is said that »as the amber is strong, so he can be strong«. Probably »strong,
ANCIENT NEAR EASTERN AMBER. AN OVERVIEW OF THE CUNEIFORM SOURCES

powerful, mighty« (KALAG.GA) refers to the efficacy of this substance in ritual practices of a medico-magical nature. Because many comparative similes used in Hittite magic can be traced back to empirical observations, one could assume that the power of amber could also refer to its electrostatic properties, i.e. its attractive power: as is well-known, amber can acquire an electric charge by contact and separation or friction with other materials, like wool. This fits very well with the general principle of sympathetic magic used in Hittite ritual practices.

4.3 THE WRITTEN DOCUMENTATION: MESOPOTAMIA

Turning our attention to Mesopotamia, a survey of the terms identified as amber over the last 140 years or so may be of some use. In 1880 Jules Oppert suggested that Ezekiel’s ḥašmal should be translated »ambre« (namely, »ambre jaune«), suspecting that it was a Phoenician word. In 1885 Heinrich Zimmern translated Akkadian elmēšu(m) as »Diamant«. In 1923 Paul Haupt identified Biblical Hebrew ḥašmal with Akkadian elmēšu(m), translating both as »electrum«. In 1936 Reginald Campbell Thompson discussed elmēšu(m), suggesting the translation »brass«. In 1957 Adam Falkenstein reviewed all the occurrences of Sumerian *sù-du-ága known to him, indicating a few cases in which this term refers to a »konkreter Stoff«, and many cases, mainly from literary texts, which are to be understood »mit einem abgewandelten Bedeutungsansatz«: for the former use he adopted the translation »Meteor [...], was dann für das Metall auf einen besonders glänzenden Meteoriten führt«, while for the latter »lassen sich die Belege für den Glanz der Venus, des Mondes und der Göttin Aja als Vergleiche mit dem Glanz eines Meteors auffassen«, thus »Licht, Glanz, [...] »glänzend«; also, for its linguistic analysis, he explained that »sù-ud-ága ist gewiß zusammengesetzt. Da das erste Element kaum mit sud = hamāṭu »brennen« erklärt werden darf, bleibt kaum eine andere Möglichkeit als sud »fern«, was bei ursprünglicher Verwendung von sù-du-ága zur Bezeichnung eines Meteors nicht so abliegend erscheint. Für ága wage ich keinen Vorschlag«. In 1958 the entry in the »Chicago Assyrian Dictionary« (CAD) s. v. elmēšu (ellimešu, ilmešu), »(a precious stone)«, most probably written by Leo Oppenheim, included the following comment: »The passages from literary and especially from Sumerian [... texts show clearly that elmēšu (Sum. sud-ága [...]) refers to a precious stone of characteristic sparkle and brilliancy. [...] The fact that elmēšu appears only rarely with the determinative NA, and that it is not listed in Hh. XVI among the stones but in Hh. XI among dyes of mineral origin, after frit and similar substances, indicates that the e.-stone had a characteristic color, which is also borne out by the use of elmēšu, q. v. [(a grass)], referring to plants bearing flowers of this color. Since no econ. text ever mentions the e.-stone and even the personal name Elmešu becomes very rare after the Old Babylonian period, the word must be taken as referring to a quasi-mythical precious stone of great brilliancy and with a color which one tried to imitate with dyes [...] In this peculiar quality, elmēšu may well be connected with Hebr. ḥašmal [sic] which likewise appears only in similes referring to the extraordinary sheen of a quasi-mythical stone. [...] [in the Irra epic elmēšu] may refer to trees bearing e.-colored flowers«. In 1961 Wolfram von Soden included in his »Akkadische Handwörterbuch« (AHw) the entry »elmēšu(m), illemēšum, ass. *el/
ilmašu (he. hallamiš trockenes, hartes Gestein) wohl ein kostbarer, gelbscheinender Stein\(^\text{1089}\). The same year, reviewing that »AHw« fascicule, Eduard Dhorme remarked that »pour elmēšu [...] le sens de »vermeille« nous semble confirmé par les noms propres Elmešum, femmin Elmešum »Vermeille«. L’hébreu hallamiš a plutôt le sens de »silex\(^\text{1090}\). In 1964 Miguel Civil reviewed again the occurrences of Sumerian *sud-á-ág (considered a foreign word) from the late 3rd millennium cuneiform sources onwards, and, not mentioning Haupt’s proposal, suggested tentatively a meaning »electrum«, defined as »alloys as well as native argentiferous gold ore with 20 to 50 per cent of silver«, adding however that »a change of meaning, or a loss of concrete meaning, in later periods, is quite possible; it must be noted […] that with the evolution of gold metallurgy the use of electrum became progressively more rare, and this evolution is reflected in the words for electrum in some languages, cf. for instance the semantic changes of Egyptian \(\text{Δλικτρον} \) or Greek \(\text{ηλεκτρον}\) This seems to have been also the fate of sù-(du/ud)-ág and elmēšu\(^\text{1091}\). A turning point in the scholarly discussion on these topics was marked by the study Benno Landsberger devoted in 1967, at the very end of his career, to Akkadian elmēšu(m): here, also giving a resumé of previous interpretations\(^\text{1092}\), he showed why this term, as well as Biblical Hebrew hašmal, must be translated as »amber«, against inter alia his own previous views. In 1969, independently, Claus Wilcke translated sud-rá-ág as »Bernstein«\(^\text{1093}\). Landsberger’s skirmish with Oppenheim on this topic, implied by how the 1958 entry elmēšu of the »Chicago Assyrian Dictionary« had been written and published\(^\text{1094}\), continued in 1970 when the latter wrote that »the interpretation of el-mēšu and its Sumerian correspondences sù.ud.á.gá, etc., as rock crystal or any other crystalline mineral suitable for ornaments, decoration and small objects, fits all the passages assembled sub elmēšu in the CAD and AHw\(^\text{1095}\). In 1977 the Estonian philosopher, poet, and folklorist Uku Masing argued that Akkadian elmēšu(m) can be related to modern Estonian helmes, »bead« \(< \text{scil. Leo Oppenheim}\) eindeutig vorgeschlagen und begründet; er hat aber, durch bittre Erfahrungen gewitzigt, Vorsicht walten lassen, wobei wohl die […] »anachronistischen Auslegungen« entscheidend waren. In meinem dem CAD vorgelegten Entwurf revozierte ich auch die von mir Falkenstein (zitiert CAD) suggerierten Bedeutungen »Metall«, bzw. »Meteor«. Inzwischen hat aber Civil, JNES 23, 7 die Deutung als Metall wieder aufgenommen.»), showing the relevance of the »amber incident« in his last years of life. On Landsberger and Oppenheim working together at the »Chicago Assyrian Dictionary« see Reiner 2002. Also note that Landsberger’s solution eliminates other proposals existing in literature, including for instance those in Bottéro 1949a, 19; Bottéro 1949b, 145. 157, and Cassin 1980–1983, 217 f.

\(^{1089}\) AHw (1961) 205.

\(^{1090}\) Dhorme 1961, 161.

\(^{1091}\) Civil 1964, 8 and n. 10; on p. 7 Civil wrote that »I am planning to publish soon a detailed study on sù-(du/ud)-ág (elmēšu), but unfortunately he never did so.

\(^{1092}\) Landsberger 1967, 190–198, esp. 196–198 with n. 2.

\(^{1093}\) Wilcke 1969, 138.

\(^{1094}\) See Landsberger 1967, 191 («In der Tat habe ich, als 1957 besagter Artikel des CAD vorbereitet wurde, die Bestimmung des elmēšu als Bernstein dem Herausgeber […] eine unbedingte Annahme der »Dieu des Anciens« entscheidend waren. In meinem dem CAD vorgelegten Entwurf revozierte ich auch die von mir Falkenstein (zitiert CAD) suggerierten Bedeutungen »Metal«, bzw. »Meteor«. Inzwischen hat aber Civil, JNES 23, 7 die Deutung als Metall wieder aufgenommen.»), showing the relevance of the »amber incident« in his last years of life. On Landsberger and Oppenheim working together at the »Chicago Assyrian Dictionary« see Reiner 2002. Also note that Landsberger’s solution eliminates other proposals existing in literature, including for instance those in Bottéro 1949a, 19; Bottéro 1949b, 145. 157, and Cassin 1980–1983, 217 f.

\(^{1095}\) Oppenheim 1970, 16 n. 31.

\(^{1097}\) Noonan 2019, 107.

\(^{1098}\) Bodi 1991, 82–94 (quotation on p. 90). Cf. Aster 2014, 12 n. 10 (who, quoting CAD E [1958], thinks that »the question of whether elmēšu in Akkadian is a stone, a type of amber, or a metal, has not been decisively resolved; it seems to be a metal in some Akkadian texts and a stone in others«), and Amzallag 2015, 89 and n. 34 (who thinks that »probably hašmal evokes a metal«, on the grounds of Driver 1951).
Peter Kingsley reviewed ḫasmal, ḫlektrov, and elmēšu(m), and rightly confirmed Landsberger’s conclusion1098. Confirming only in part his conclusion (»Die Deutung von elmēšu als Bernstein ist unabweisbar.«), in her 1997 discussion of the difficult Sumerian term sud-gan Karine Reiter briefly mentioned *sud-āḡ, rightly refusing their equation, but took the latter as a possible designation of a metal which would be used »als Schmuckelement oder i. S. v. »glänzend, strahlend« when in lexical texts it occurs besides gemstones and metals1099. In 2000 the »Concise Dictionary of Akkad* ian* »elmēšu(m), elli/emēšum, Ass. e/ilmišu, e/ilmiši as »(a valuable stone, phps.) >amber<1101. In 2009 Catherine Mittermayer summarised the current understanding of elmēšu(m) and *sud-āḡ: the former has a concrete meaning (amber), the latter can also be translated figuratively (lustre, used as an epithet of a deity)1102. In 2012 Manfred Krebernik discussed the feminine divine name ḫSud-āḡ, interpreted as >golddgelber Glanz< bzw. >golddgelb glänzendes Gestein/ Metall<1103. The spellings >sud-ra-aŋ2; sud-aŋ2; sud-an2; su-an2; an-su-ta2; ḫa-ra; su-ta-an2; in the entry *sudan of the »Electronic Pennsylvania Sumerian Dictionary« (ePSD-2) are currently interpreted as >a precious metal or material (possibly amber); (to) be shiny<1103.

The only actual candidates known to us for denoting >amber< in Akkadian and Sumerian are the substantives elmēšu(m) and *sud-āḡ respectively1104. Chronologically, *sud-āḡ is already attested in the middle of the 3rd millennium BC; the older available attestation of elmēšu(m) dates back to the beginning of the 2nd millennium BC, but it can be assumed that, like its Sumerian counterpart, it actually belonged to the lexicon of the Semitophone groups populating the Near East already in the Early Bronze Age. The occurrences of these two terms can be organised into two groups. The first includes those that refer to a concrete material, the second those that refer to a visual effect. Importantly, until now neither elmēšu(m) nor *sud-āḡ are attested in administrative cuneiform texts, which are counted in tens of thousands. However, this does not mean that in practice the circulation of amber was non-existent in the ancient Near East; rather, this rare and often exotic material must have been among those very rarely recorded in economic documents, which never cover the full spectrum of available goods and transactions carried out.

The starting point in the discussion of elmēšu(m) and *sud-āḡ in context is the evidence of the lexical lists, and more generally of the learned texts produced for internal uses of the scribal milieu.

Lexical lists of the 1st millennium BC show that Sumerian *sud-āḡ corresponds to Akkadian elmēšu(m), see the equivalence sud-āḡ-gá = el-me-šú in line 304 of Ura = ḫubullu XI, a tablet

1100 CDA² (2000) 70.
1101 Mittermayer 2009, 225 f.: »… neben dieser konkreten Bedeutung [of elmēšu(m)] kann sud-ra-āḡ im übertragenen Sinn auch mit ‹helles Licht, Glanz› übersetzt und unter anderem als Epithet einer Gottheit verwendet werden. Da sud-ra-āḡ, in ELA nie als Handelsgut auftaucht, wird hier eine Übersetzung mit ‹Glanz, Schein› vorgezogen. Der Begriff ist in Z. 41 auf ‹etza-gin, duru, bezogen, in Z. 483 auf ku-ši, und ku-babbar. Beachte, dass erst vom ‹Glanz, Schein› des Lapislazuli die Rede ist, wenn er aus den Blöcken herausgearbeitet ist (Z. 40).«
1102 Krebernik 2012.
1103 Online at <http://oracc.museum.upenn.edu/epsd2/> (accessed on 02. 02. 2020).
1104 In spite of the opinion held by some scholars, the stone *SAG.KAL = sankallu(m) is not >amber<, see, e.g., CDA² (2000) 316. Furthermore, an interpretation >ambre jaune< of *algames = algamišu was argued by van Dijk 1983, 119 f. for the passage in lines 2 f. of the late 3rd-mill. incantation VS 10 190 = van Dijk – Geller 2003, 76 f., interpreted as »le pain(!) laissa couler la résine sur la terre: la pierre algamiš se forma« in van Dijk 1978, 201 n. 25; however, this passage has then been differently interpreted »Das ist Wacholder! In die Erde war er eingepflanzt! Auf dem Gestein algamiš ist er aus sich selbst gewachsen!«, Rudik 2011, 407–410; see also Heimpel 1987, 50 n. 91) so that this stone remains currently unidentified, see PSD A/3 (1998) 171; CDA² (2000) 12; Civil 2008, 71 (a dark stone); Schuster-Brandis 2008, 393 f. and n. 587; Del Olmo Lete – Sanmartín 2015, 52; ePSD², s. v. algameš. Also note that in the early 2nd-mill. Sumerian hymn »Išbi-Erra Br, Segment E, l. 8, a reading >lú-sú-ud-āḡ< (so van Dijk 1978, 198 f. 201 f.) must be abandoned, see Michalowski 1989, 8 and n. 41; also Steinkeller 1988, 197 n. 2; Vanstiphout 1989/1990, 55 and n. 25; and ETCSL (2006) 2.5.1.2.
including terms for skins, glues, pastes, minerals, metals, copper and copper objects.1105 Considering the meaning of the terms recorded in lines 289–330, the contextual position of the entry in line 304 looks important. It appears that *sud-ağ = elmešu occurs at the meeting-point of a first group with metals and other hard materials (including tin, iron, glass, frit, slags, lead; lines 289–303) with a second group with soft substances (including antimony, alum, gypsum, opertim,7 kinds of silt and dregs, sulphur, algae; lines 305–330) which precedes the section with copper items (lines 331 ff.).1106 The common feature of these two parts may be that, in nature, all the mentioned items can normally be found on the ground in the form of pieces, individual stones and rocks, small blocks, slags, and lumps. This is confirmed by the earlier attestation of sud-ra-äg/sud-ra-äg in lines 148 f. of the monolingual (Sumerian) forerunners of Ura = ḫubullu XI, dated to the first half of the 2nd millennium BC, after kinds of coloured frit and before yellow pastes and sulphur (lines 144–158).1107 It indicates that the use of *sud-ağ to denote *umber dates back at least to the Middle Bronze Age, and this makes it possible that such use was even more ancient. One can note that precious materials obtained through mining activities, such as gold, silver, and lapis lazuli, do not occur in these textual contexts. In addition, considering further evidence gathered below, most likely the equivalence *sud-ağ = elmešu(m) belongs to the beginning of the soft and coloured substances rather than to the end of the hard metals and minerals, so that here a translation *umber seems contextually preferable to *electrum.1108 The same applies to the (as yet not fully published) 1st-millennium BC pharmaceutical lexical series uruanna = maštakal and related texts, where the equivalence *sud-ağ = elmešu occurs three times in similar contexts.1109 The semantically liminal position of *sud-ağ = elmešu(m) noted above also appears in older learned texts.1110 In the »Susa Practical Vocabulary« = Scheil 1921, 51–71 (end of the...
3rd mill. BC, late Old Akkadian or Early Old Babylonian) lines I:18’f. read: 10 gin an / 1 gin sud,-âg, »10 shekels of iron; 1 shekel of amber«. These entries occur after a section dealing with much larger amounts of metals — gold, silver, copper, tin, bronze, counted in minas and not in shekels — and before that dealing with fabrics. An important piece of information — i.e. the use of the semantic classifier na-4, »stones«, before elmēšum — is given by a slightly later text, the Old Assyrian »Kanesh Practical Vocabulary 2«, Kt n/k 1697 = Çeçen – Erol 2018, 56–58 (Kültepe, 19th cent. BC), whose lines 31–32 read: 7 ma-na / na4el-me-šum1112, »seven minas of amber«, thus around 3.5 kg. This text, akin to the »Susa Practical Vocabulary« mentioned above, includes a long initial section with »calculations of exchange rates of metals and stones« (their prices are given in silver or copper), followed by shorter sections dealing with jars (dug), fabrics (tûg) and animal hides (kuš)1113. In the initial section, first precious metals are listed: »gold« (kù-sig), »bronze« (zarab), »copper« (uruda), and »tin« (nagga). Then, precious stones follow: »carnelian« (su=Ug), »agate« (na=Ug)1114, »lapis lazuli« (nu=za:gin), »chlorite« (na=duḫ-su)1115, and »amber« (el-me-šum)1116. The list continues with »iron« (bar-zî-lûm), »borax« (?)[su,]-gan1117, and »lead« (a-SIG.). This textual part ends with »wool of goat« and »ordinary wool« (siki ud, and siki gen) followed by »tin« (nagga) again and by (bronze) »nails« (sa-am-ru-a-tum)1118.

1111 See Scheil 1921, 52; Falkenstein 1957, 304 (»Zweifellos ein konkreter Stoff ist sud-âga«); and Landsberger 1967, 193. Malayeri 2014, 169, who reads sud-âga (the correct reading in Dercksen 2019, 22, su,-âg, restores an-na), i.e. nagga, »tin«, misspelled. However, looking at Scheil’s copy, this solution is unlikely: the scribe, a teacher who was inscribing a prism to be used in a school, clearly wrote AN just at the right edge of the line (cf. the different position of AN and NA in the sure nagga of I:9’), so that AN is hardly a mistake. Also considering the low amounts in shekels of the two terms in I:18’–19’, one wonders if »amber« is not preceded by something rarer than tin. If so, the interpretation by Vaiman 1982, 35, of »AN« as »Eisen« looks convincing (either as a byform of KUG-AN or as an-=-bar, written in ligature), considering that iron is textually and archaeologically attested already in 3rd-mill. sources (»iron«, read an, also for Dercksen 2019, 22 n. 1).

1112 Çeçen – Erol 2018, 57.

1113 See Dercksen 2019, 21, who compares this text with the contemporary »Kanesh Practical Vocabulary 1«, published in 1993 by Karl Kecher in the Ankara volume in honour of Nimet Özgüç, and with the slightly earlier »Susa Practical Vocabulary«, published in 1921 by Jean-Vincent Scheil, see above.

1114 »Onyx« (hûdillû) for Dercksen 2019, 21.

1115 On na=duḫ-su, variant spelling of »duḫ-ši-a, as »chlorite«, typically from Iran, see Steinkeller 2006, 3–7, accepted e.g. in Schuster-Brandis 2008, 407–409.

1116 See Çeçen – Erol 2018, 59 and 62, and Dercksen 2019, 21 (in both cases elmēšum is translated as »amber«).

1117 See Dercksen 2019, 21: »Sugan (written sù-gan, su-gan in Old Akkadian and Ur III texts) is an unidentified substance that was added to bronze without causing a change in weight. E. Pernicka suggested that it was borax […] (OA 23, 18). The writing with BU instead of sô or su is further only attested in two Old Babylonian (mid 19th c.) texts from the Sin-ḫāšid palace in Urak (see Reiter 1999, 332); the substance does not appear to occur in any later document. Sugan was more expensive than copper, see also H. Waetzoldt, OA 23, 17.« Cf. Civil 1964, 7: »sô-(duḫ-ši-a-gû) and sô-gan of Ur III texts […] are both two different rendering of the same (foreign) words, but see the discussions of sô-su-GAN and borax in: Waetzoldt – Bachmann 1984; Michalowski 1993, 160 n. 11; Bjorkman 1993, 17 n. 86; and Sallaberger 1999, 321 f.; also ePSD2 s. v. su-GAN, sù-GAN, »a material used in metallurgy: borax?; electrum«. Furthermore, see Landsberger 1967, 192 f. n. 3.

1118 These general remarks on this part of the »Kanesh Practical Vocabulary 2« deserve to be quoted in full: »The selected goods, quantities, and prices tell us about this text as a didactic tool. It includes the logograms for gold, silver, tin, bronze, and copper, but uses unfamiliar qualities of gold and some archaic sign forms as well as a few rare goods, preferably in phantastic quantities unlikely to have ever reached an Old Assyrian merchant: 7 minas of elmēšum [cf. CAD E 108: »no econ. text ever mentions the e-stone text, 8 minas of iron. The Practical Vocabulary of Susa lists these two items as well, but in realistic quantities, 10 sh. of iron (an) and 1 sh. of elmēšum (su,-âg). The quantities seem to be chosen for arithmetical purposes; the number 105 occurs four times and 155 once. Some of the prices are plausible and lapis lazuli at 1 sh. of silver per 2¼ sh. approaches 2½ (ICK 2, 274) and the ratio in VS 26, 12:4–6, slightly less than 2 (purchase in Assur). On the other hand, the prices for tin (10, 4½, and 2½ sh. per sh. of silver) are too high to refer to prices in 19th-c. Assur (ranging from 17–12), but could fit sale prices in Anatolia (ranging from 10–4); 2½ is unattested and makes it doubtful whether these tin prices reflect OA practice. The bronze objects are valued per piece and their weight is specified (possibly to confuse the pupil): samrutum of 12 sh. at 29 sh. of copper, samālum-cups of 18 sh. at 45, cups of 18 sh. at 45 and 51, cups of 20 sh.
4.3 The written documentation: Mesopotamia

Sometime later, two Old Babylonian mathematical texts – i.e. YBC 4669 = MKT III pl. 3 (from Kish [?])1119 and YBC 5022 = May 2018, 261 f. (from Larsa [?])1120 – include the following datum in lines 25–28:1121: 2,15 sheets of gold (ruqqum ša ḫurāṣim, spelled kù-sig), 4 sheets of silver (ruqqum ša kaspim, spelled kù:babbar), 2,24 sheets of tin (ruqqum ša annakim, spelled naggaga), 2,8 sheets of amber (ruqqum ša elmēšim, spelled sud-āg)1122. Around one thousand years later, in the mineralogical lexical series abnu ṣīkīnu, source D = K.4751 (7th cent. BC), lines 1–2 read: ụlThe stone whose appearance is like […] this [stone], unstated) antasurrû [is its name]. [The stone whose appearance is like …], this stone, amber (unstated) el-mē-shūm is its name1123, another case in which el-mēšum is classified as a na₄ substance.

The association of unal el-mēšu(m) = *sud-āg with precious stones and metals of various kinds occurs in several literary texts where gods and kings are praised. In them, these spellings refer to either amber, an amber hue, or the visual effect they produce. Concrete references range from objects and artefacts to landscape elements such as earth and sky.

As for the association of unal el-mēšu(m) = *sud-āg with precious stones, the lines 11′–20′ of the bilingual Sumerian-Akkadian Insignienbeschworungen is = Ambos 2013, 212–223 (7th cent. BC), run as follows: »Large stones, large stones, stones, exulting in abundance, great for the flesh of the gods! Eye-shaped agate (unstated) /ḫulāl šini/), serpentine (unstated) /išin-muš-gi/muššaru), agate (unstated) /ḫulāl/), carnelian (na₄gug/sāngu), lapis lazuli (na₄za-gin-na/ugnū), chlorite (unstated) /lu₄duš-si-a/dušši), su-ba-stone/exquisite stone (unstated) /ša-abnu abnu nisigti/), amber (sud-āg/el-me-šū), perfect antasurrû (anta-sur-ra šu-du,a-anta-surra šukulu), stones whose knob is bordered with gold! To make (these stones) suitable for the pure breast of the king, Kusu, the chief priest of Enlil, purified them, made them shining!«1124. The poor condition of the available cuneiform sources do not allow us to be certain that this is also the case for lines 2–3 of the much earlier Sumerian disputation poem ḫulālu, carnelian (na₄), lapis lazuli (na₄gug/lapis; elle se para de diorite, de calcédoine, de cornaline [et] d'elmetšun) and Willeke 2007, 20 (»Die weite Erde)

at 60. No evidence exists to compare these data with real prices. […] All these features indicate that this part of the text was meant as an exercise in making calculations and writing (rare) logograms. The text may represent a scribal tradition developed during the late third millennium to which also the vocabulary from Susa belongs.« (Dercksen 2019, 22).

1121 Regarding the figures before »sheets« in the following translation see Civil 1964, 7 no. 9: »the number preceding ruqqu is misinterpreted in CAD s. elmešu as the number of objects, while it must be taken as a mathematical »coefficient«; also CAD R (1999) 418 (each number »is the coefficient used for calculating«) and May 2018. Cf. CAD E (1958) 107.
1122 See Lewy 1949, 164 (ruqqum as »metal sheets«, elmešum as »electrum«); Kilmer 1960, 292 n. 3 (»metal« sheets) Civil 1964, 7 f. and n. 9 (ruqqum as »metal« sheets) or the likes, elmešum as, tentatively, »electrum«; Landsberger 1967, 193; CAD R (1999) 418 (ruqqum as »hammered metal«, elmešum untranslated). Cf. Reiter 1999, 329 n. 110 (possibly a metal), and May 2018, 261 (a sheet of SU₄,AG₄-metals) and no. 54, with previous literature.
1124 See Ambos 2013, 220 f. (»Bernstein«, vollendetes Elektron«); also Landsberger 1967, 191. One of the latter is interpreted as »a kind of amber«, but the identification of taršîš, possibly a substantive from a root *ršš meaning »to glow«, remains uncertain (discussion in Harrell et al. 2017, 25–27, who tend towards its identification with amber).
1125 Reading [k] bar dagal-e kug »za-gin/ab-ba am-mi-ib-si / (nun) na₄ esir nāgug sud-rā-ág-gā šu-tag ba-ni-in-dug, following van Dijk 1964/1965, 54 f. (»La vaste Terre révèle à son corps des ornement de métal précieux et de lapis; elle se para de diorite, de calcédoine, de cornaline [et] d'elmetšun) and Willeke 2007, 20 (»Die weite Erde)
manuscripts is not yet fully established, so that this translation, and particularly with regard to *vamberë*, must remain tentative.

As for the association of *elmēšu* = *sud-*aĝ with precious stones and metals, an extraordinary literary text written in Sumerian, but likely composed at Nippur in a Semitophone milieu during the late Old Babylonian period, illustrates the connection of *sud-*aĝ with the goddess Inanna/Ištar, Venus. The composition today called »Message of Lu-dingira to his mother« = Civil 1964, 2–5, is known from various duplicates, those from Ugarit and Ḫattuša including remnants of translations into Akkadian and Hittite. Its lines 22–31 describe the second sign the son gives to the royal courier so that the latter can recognise the mother of the former: »My mother [her name, of course not by chance, is Šāt-Ištar, >She-of-Ištar<] is (like) an amber-coloured glimmer on the horizon (sud-rá-ág-gin, an-úr-ra), (coloured) like (the coat of) a doe in the mountains (lu-lim ḫur-sag-gá), (because) she is the Morning Star (shining even) at noon (as Evening Star)! (She wears ornaments made in) precious carnelian (nu4g-kal-la) (and) chlorite (nu4-ši-si-a) from Marḫaši, a prize for a king’s daughter, lavishly endowed with charm! (She wears) a seal of agate (nu4-kišib nír-ra), an ornament like that of the Sun-god! (She wears) a tin bracelet (ḫarr nagga), a ring (šu-gur) of an-₄ta-sur-ra-stone, (and) grains of bright gold (and) silver (kù-sig, kù-babbar zalag-gá) (in) a long beaded band, worn around the neck? (She is like) an alabaster statuette (lāma nu4-šu₄-ni₄-gal), placed on a pedestal of lapis lazuli (ki-gal nu4-za-gín), (within) a living trinket (box) of ivory (dim-ma zú til-la), with limbs filled with charm!«

>amber according to Peterson 2007, 111 n. 523 (»red deer star«). On dìm of line 3, where accordingly sud-rá-ág-gá is not interpreted as »amber« or the like, but rather becomes对应的 energy *sudr*-aĝ with the precious stones and metals, an ex...<n>

»My mother is like a bright light on the horizon, a doe in the mountains, a morning star (shining even) at noon«; Nouyagrol 1968, 315: »Ma mère, comme la lumière de l’horizon, est un cerf de montagne. Une étoile du matin (brillant encore) en plein midi«; Goodnick Westenholz 1992, 384: »My mother is like a bright light on the horizon, a doe in the mountains, a morning star (shining even) at noon«; ETCSL 5.5.01 (2006): »My mother is like the bright light [in the sky] \{1 ms. has instead: on the horizon\}, a doe on the hillsides. She is the morning star, (shining even at noon-time) \{1 ms. has instead:) providing plenty of light\}<n>

The loftiest ground became adorned with *bulūl*-stones and shining carnelian*. On »Tree and Reed«, still unpublished, see the overview in Jiménez 2017, 20 f.

Translation adapted from Civil 1964, 3: »My mother is like a bright light on the horizon, a doe in the mountains, a morning star (shining even) at noon«; Nouyagrol 1968, 315: »Ma mère, comme la lumière de l’horizon, est un cerf de montagne. Une étoile du matin (brillant encore) en plein midi«; Goodnick Westenholz 1992, 384: »My mother is like a bright light on the horizon, a doe in the mountains, a morning star (shining even) at noon«; ETCSL 5.5.01 (2006): »My mother is like the bright light [in the sky] \{1 ms. has instead: on the horizon\}, a doe on the hillsides. She is the morning star, (shining even at noon-time) \{1 ms. has instead:) providing plenty of light\}<n>

and Gadotti 2010, 120: »My mother is the heavenly brightness, a mountain doe, a morning star, shining even at midday«. See also Landsberger 1967, 194. About lu-lim of line 23 see Gadotti 2010, 122; the existence of an astral body called *lu-lim* (on which see Horowitz 2005, 166) may have influenced the imagery of *Ludingira to his Mother* according to Peterson 2007, 111 n. 523 (»red deer star«). On dim of line 30 as a small and composite piece of art cf. the remarks in Cavigneaux – al-Rawi 1995, 38 f. (»bibelot«). One can also note that, unfortunately, in the fragmentary 13th-cent. BC sources from Ugarit (RS 25.421, trilingual Sumerian-Akkadian-Hittite) and Ḫattuša (KUB 4.97, bilingual Akkadian-Hittite, CTH 315C) of the »Message of Lu-dingira to his mothers, the Hittite term corresponding to sud-rá-ág and *elmēšu* is lost (on these sources see Nouyagrol 1968; Laroche 1968; Puhvel 1996, 61 f; Kämmerer 1998, 164–168; Arnaud 2007, text 50; Klinger 2010, 324–328; Viano 2016, 256–265).
so, he used an *a capite ad calcem* arrangement\(^{1128}\), from the head, to which the heavenly skyline over the mountains alludes, to the feet, to which the pedestal alludes. If so, the crucial point is the colour of the mantle of the doe, amber-coloured indeed\(^{1129}\), and one can think that the son speaks of the colour of his mother’s hair, which in the composite doll depicting her was made of amber.

Interestingly, *sud-*\(^{-a} \-g\) is further used in another literary Sumerian composition masterfully composed by Lu-dingira. It is »An Elegy on the Death of Nannaya« = Kramer 1960, 52–55 = Sjöberg 1983, from which we learn that Nannaya, Lu-dingira’s father, was struck by an illness that would eventually kill him. Reporting this, on line 4 Lu-dingira poetically remembers: »(Precious for me as) rare amber (sud-*âg kal-*la) found in a distant foreign land (kur sud-*da pâd-*da), he was stricken with illness«\(^{1130}\). The personal name of the father, spelled 𒀭Nanna-\(a\), clearly indicates his identification with the Moon-god Nanna. It appears that all Lu-dingira’s close relatives had Akkadian names referring to the astral luminosity proper of Venus, the moon, and the aurora: besides his mother Sât-Ištar and his father Nannaya (both associated with the amber-coloured glimmer), his wife depicted as the ideal wife\(^{1131}\), whose death is mourned in »An Elegy on the Death of Nawirtum« (ETCSL 5.5.3), in fact bears a name, Nawirtum, meaning »Brightness«\(^{1132}\), which should actually refer to Aya, the ideal divine wife (if so, this virtually makes Lu-dingira the equivalent of the Sun-god Šamaš)\(^{1133}\). One can also note that the Akkadian gloss of a part of line 4 of »An Elegy on the Death of Nannaya« may offer supplementary, and significant, information on the origin of the mentioned amber: Sumerian kur sud-*da-, »in a distant foreign land«, is glossed *t-na tu-*qâ-*ar sa-*di-i, ina tuqâr sâdî\(^{1134}\) so that these expressions are possibly to be cumulatively interpreted as »in sediments of a desolate land«, thinking of the literary use of kur = 𒃘 sûdû(m), »open country, steppeland, desert«, to denote in general faraway empty regions.

There are several other attestations of elmêšu(m) and *sud-*\(^{-a} \-g\) in literary Akkadian or Sumerian texts that illustrate the use of amber in decorations of various artefacts or in the production of cult objects.

Considering the Akkadian texts, in the »Standard Babylonian Epic of Gilgameš« (7th cent. BC) there is a passage in which amber (elmêšu) is mentioned in the description of a phantasmagoric chariot: »The lady Ištar looked covetously on the beauty of Gilgameš: ›Come, Gilgameš, you be the bridegroom! Grant me your fruits, I insist! You shall be my husband and I will be your wife! Let me harness for you a chariot of lapis lazuli and gold (lušaṣmidka narkabti uqnî u ḫurâṣi), whose wheels are gold, amber its horns (şa magarrâša ḫurâšamma elmêšu garrâša). You shall have in harness ›storm-lions‹, huge mules. Come into our house with scents of cedar! When you

\(^{1128}\) On the *a capite ad calcem* arrangement in cuneiform texts see in general Bonechi – Catagnoti 2020, 154 n. 13, with literature.

\(^{1129}\) On this specific topic see further below the discussion of the »Prayer to Marduk and personal gods«.

\(^{1130}\) The translations in Kramer 1960, 58 (»The precious brilliant [sic], found [only] in remote mountains, had become ill«) and ETCSL (2006) 5.5.2 (»He, precious brilliance found in a distant mountain [?], was stricken with illness«) have trivialised this clear reference to a rare item coming from distant lands, which, by contrast, did not escape Landsberger 1967, 191, who convincingly included it in the paragraph »Die Kostbarkeit (Seltenheit) des elmêšu«. See Gadotti 2014, 28. 51 n. 11.

\(^{1131}\) See Löhnert 2016, 51 f. Furthermore, line 53 of this poem reads: UL X A IG1-mu sud-*âg kal-*la-mu me-*âm ga-mu-ri-in-pad. It has been translated as »Where now is my …, my precious brilliant! I would cry out to you« (Kramer 1960, 64) and »Where is my …, my precious brilliance? I would call upon you!« (ETCSL 5.5.3). This nostalgic cry by Lu-dingira follows and precedes similar desperate questions, such as »Where is that which brightens the … face, my noble counsel?« and »Where are my sweet songs which make the heart rejoice?«.

\(^{1132}\) For the Early Dynastic Mari goddess 𒀭MÛŠ.ZA.ZA, actually a form of Ištar, the interpretation *Sûbeʾītum, »She of the šiba-stone«, seems preferable to *Nawir-tum, and see the remarks by Gianni Marchesi in Marchesi – Marchetti 2011, 228 f.

come into our house, doorway and throne shall kiss your feet!« (tablet VI, 6–15)1135. The poet ironically plays with the stormy character of Ištar1136, adolescent sister of the Sun-god and therefore sister-in-law of the Aurora-goddess: paradoxically, the chariot she promises as a nuptial gift to the solar hero Gilgameš – but normally gifts are given by the groom to the bride – imitates that of the Sun-god (besides the mules, gold and lapis lazuli allude to him), while the peaceful house looks like that ruled by Aurora. As for the »horns« of this chariot, probably they belong to its forepart1137. If so, such an anterior position within the complex morphology of the solar vehicle suggests that by mentioning amber, the poet, who occupies the position of one who looks at the eastern horizon, is alluding to the aurora (i.e. to the goddess Aya) which precedes the rising of the sun (her husband Samaš) to which the gold alludes, the lapis lazuli being instead an allusion to the night in the background from where the two gods are coming1138. It can be added that this occurrence of elmēšu in the »Standard Babylonian Epic of Gilgameš« clearly implies that amber was considered very precious. As for this feature, one can incidentally recall here the following peculiar statement in line 23 of the »Righteous Sufferer’s Prayer to Nabû« STT 65 = SAA 3 12 (Sultantepe, 7th cent. BC): »I do not see …; death eludes me like amber (mūtu kī el-me-šú usuk),«1139. This passage remains unclear, but given its moral tone, it may once again imply the preciousness of the amber.

Evidence for the use of amber as a material used for cult objects connected with the main gods is abundant in Akkadian cuneiform texts of the 1st millennium BC. An attestation of elmēšu in connection with Ištar occurs in line 21’ of the »Address by Shalmaneser III to the goddess Mullissu« KAR 98, a text in which an Assyrian king of the beginning of the second half of the 9th century shows his devotion to the great goddess of Arbela: »I (the king) fixed a star of shining amber (kakabtu el-me-ši namri) resting on the top (of the refurbished harp of the temple)«1140. Later, the lines 9–12 of the »Babylonian Hymn to the god Erra« AO 17642 = Nougayrou 1947, 39–41 (Nippur, around 400 BC) mention elmēšu in a description of the cult statue of the Lord of the Underworld: »its upper cheeks are like daylight of amber (kīma urri el-me-šú usuk[kāšu]),

1135 See the edition of the passage and its discussion in George 2003, 618 f. and 830 (»The material elmēšu can be a precious metal and in such usage is usually translated »electrum«, but it is also known to be a rare, semi-mythical stone and I have opted for that. This stone is known for its bright colour«). Previously, elmēšu here meant »electrum«, e.g. for CAD M/1 (1977) 33; CAD Q (1982) 139.

1136 See Foster 1987, 34.

1137 See the discussion in Durand 1983, 281–283; also Dalley 1989, 129 n. 52.

1138 On this latter point see the discussion in Alaura – Bonechi 2012, 20 and n. 81, with literature.

1139 Untranslated in Lambert 1959, 131; then, see Livingstone 1989, 22 (»I do not see …; death eludes me like precious electromba); CAD R (1999) 267 (»death has eluded me like electrom[?]); Foster 2005, 699 (»I have gone everywhere for a mother, she has shrunk from me and is clawing at me. Death has tantalized me like a precious stone. I constantly go up to the roof to jump off, but my life is too precious, it turns me back«). The association of elmēšu with mūtu, »death«, and rūaqu(m), »to be distant, go far off, to get out of reach, escape someone«, is unparalleled to our knowledge. However, it is reminiscent of another precious thing, i.e. kaspum, »silver«, associated with rūaqu(m), »to become lost (said of money, valuables)« (see CAD R [1999] 267, and Kogan 2006, 201), in the expression kaspum màdukum rūaqannu, »quite a bit of my money has been lost«, attested in line 20 of the extraordinary dramatic Old Assyrian letter BIN 4 32, written by the merchant Pūsu-kēn. Its complete passage in lines 17–21 (to be considered with the general remarks of Veenhof 1987, 62 and 74 n. 74 in the background) reads: »Two or three of my tamkāru’s, on whom I am dependent, were foolish so that I was deprived of a lot of silver. This is not the right moment to disclose their names to you« for Dercksen 1999, 20; »Among the selling agents on whom I depend there are two or three unwise ones, so that I have lost much silver, but it is not expedient to reveal their names to you« for Veennhoof 1999, 62 n. 30; »Deux ou trois de mes agents-tamkārus dont je dépend n’ont pas de bon sens. Une grande quantité d’argent m’a échappé. Il n’est (toutefois) pas convenable vous révéler leurs noms!« for Michel 2001, 309; »For my agents on whom I depend, of whom two or three have little sense, a lot of money is out of reach. It is not proper for me to mention their names to you« for Larsent 2015, 225; see also Stratford 2017, 210. Considering its figurative language, perhaps a (to us unknown) proverbial expression of bitter tone is quoted in the »Righteous Sufferer’s Prayer to Nabû«.

1140 Following MacGinnis 2014, 110. Cf. CAD E (1958), 107, and Foster 2005, 783 (»a brilliant gem, shining like a star«).
its lower cheeks flash constantly like lightning (kīma bīngi ittanābirī lētāšū), the upper cheeks of Erra are amber (ša ʿNergal el-me-šū usukkāšu)), its lower cheeks flash constantly like lightning.\(^{1141}\) However, more often elmēšu occurs in texts directly or indirectly focused on Marduk, the supreme Babylonian god of magic and wisdom, water and vegetation, and judgement. Three passages of the »Poem of Erra and Ḫūrušu (possibly datable to the 8th cent. BC) run respectively as follows: »I put the mēšu-tree (and) the amber (el-me-šī) elsewhere, and showed no one where« (I 148; the god Marduk is speaking about his own cult statue)\(^{1142}\), »Clear amber (el-me-šū ebba) [from] its [pl]ace shall I bring up« (I 167; Erra is speaking, in fragmentary context)\(^{1143}\), and »O woe, Babylon, that I suspended like a cylinder seal (made) of amber on the neck of the Sky-god Anum! (ša kīma künkki el-mi-šu addišu ina ʾakki ʾ Anim)« (IV 43; Marduk is speaking)\(^{1144}\). The latter passage is inter alia important because it informs about the existence of small, but very precious, sacred objects made in amber where written texts may be carved, a feature on which the latter passage is inter alia important because it informs about the existence of small, but very precious, sacred objects made in amber where written texts may be carved, a feature on which see below. Some time later, in lines 30–32 of the mystical commentary KAR 30'7 = SAA 3 39\(^{1145}\), a text written by the Assyrian healer Kišir-Âššur (7th cent. BC), one reads: »The middle heaven of saggilmud-stone is of the Igidi gods. Bēl (i.e. Marduk) sits there in a high temple on a dais of lapis lazuli and has made a lamp of amber (nūr ša il-me-ši) where and will not reveal it to anybody«; Müller 1994, 789 (»Das messu-Holz und den elmeschu-Stein brachte ich an einen anderen Ort und habe ihn niemanden gezeigt [Ein kostbarer, gelblicher Stein, vielleicht Bernstein]«); Foster 2005, 888 and n. 3 (»I removed the wood and the gemstone«, noting that »The original depends upon a word play in mēšu (a tree) and elmēšu (a gemstone). The meaning is that the specific materials used to make the image are no longer to be had«). See also Cagni 1969, 192 f.

\(^{1141}\) See CAD E (1958) 107; Bodí 1991, 94 and n. 59; CAD U/W (2010) 243 (with the good solution ki-ma ur-ri instead of osk′ma IB-ḪU of the editio princeps) and 284.

\(^{1142}\) Translation adapted from CAD E (1958) 107 (»I changed the place where [grow] the mes-trees [bearing] e. and did not show anywhere«, followed by Bodí 1991, 92); Cagni 1969, 74 f. (»io cambiavo il posto dell’albero-mèšu [e] dell’[amba]-jelmeša e non lo rivalei a nessunostco); CAD N/1 (1980) 169 (»il put mèšu wood and elmèšu stone elsewhere and will not reveal it to anybody«); Müller 1994, 789 (»Das messu-Holz und den elmeschu-Stein brachte ich an einen anderen Ort und habe ihn niemanden gezeigt [Ein kostbarer, gelblicher Stein, vielleicht Bernstein]«); Foster 2005, 888 and n. 3 (»I removed the wood and the gemstone«, noting that »The original depends upon a word play in mēšu (a tree) and elmēšu (a gemstone). The meaning is that the specific materials used to make the image are no longer to be had«). See also Cagni 1969, 192 f.

\(^{1145}\) Basic data on this text in Arbøll 2020, 135. 184. 209. 304 f.

\(^{1147}\) See Oshima 2011, 284. 291 (»Brighten me like flux of gold. Like a jewel of elmēšu-stone, let me be precious to your eyes. Drive away evil, protect my life«); also Landsberger 1967, 191 (»möge ich in deinen Augen so kostbar sein wie (eine Perle) aus ultramarin«); Seux 1976, 211 (»Faïs-moi briller comme un dîl d’or, que je te sois précieux comme un bijou [?] d’ambrer; Repousse mon mal, protège mon souffle«); and van der Toorn 1985, 145 (»as a lulimti made of elmeschu-stone«). The identification as »doe« of the word spelled lu-timti, thus lulimti, feminine of lulimtu, red deer, stage, is conjectural, but cf. above the discussion of the passage with the doe in »Message of Lu-dirigir to his mother«. On this term see AHw (1965) 562 s. v. lulimtu, »sein Kleinod« (compared with the plant...
for amber, spelled ˹il˺-me-šú, also occurs in a very fragmentary passage in line 4 of the »Late Babylonian Commentary on „Marduk’s Address to the Demons« (2nd half of the 5th cent. BC or later)1149. Some centuries later, in the extraordinary »Marduk’s Eulogy of the Elder Brother of Eumuša« BM 32655 = Jursa – Debourse 2017, 90 (Babylon, 2nd cent. BC or later), the closing text, written on the lower edge, is: »A total number of 30 lines (of cuneiform text) is on the clay tablet and the amber (‘im‘-dub u ˹im˺-el-me-šú) of the Elder Brother of Eumuša«1150, confirming that cuneiform texts could be carved on amber, as suggested by the above-mentioned passage with the cylinder seal of the »Poem of Erra and Išum«.

Considering the Sumerian texts, in lines 20–23 of the hymn to the god Enlil »Ur-Nammu B« the founder of the Ur III kingdom (2112–2095 BC) speaks of his magnificent architectural works at the Ekur temple of this god in Nippur: »The shepherd Ur-Namma made the lofty Ekur grow high in Duranki. He made it to be wondered by the multitude of people. He decorated the archivolts of the Lofty Gate, the Great Gate, the Gate of Peace, the Ḫursaĝ-galama, and the Gate of Perpetual Grain Supplies with amber and refined silver (sud-rá-ág kug-me-a)«.1151

A different group of texts mention *sud-rá-ág immediately after ˹íl˺-za-gin, »lapis lazuli«. In these cases it is reasonable to translate this syntagm as »lapis lazuli (with) amber-coloured inclusions«, making reference to the variety of this prized blue stone with gold-coloured pyrite flecks. The copy, written during the first half of the 2nd millennium, of a Sumerian inscription of the Ur III king Su-Sin (»Šu-Sin 9«), commemorating an event that happened in 2030 BC, includes a passage in which this ruler is credited with having decorated a cult boat of the gods Enlil and Ninlil with the precious stones ˹íl˺-šítar (»jadeite«), ˹íl˺-gug (»scarlelian«), and ˹íl˺-za-gin (»lapis lazuli«), which are said to be respectively sag-kal (»precious [and] selected«), gi-rin (»reddish«), and sud-ág, a qualification commonly translated as »bright«1152, but more likely referring to amber-coloured inclusions. In the Sumerian hymn »Išme-Dagan A+V« king Išme-Dagan of Isin (1953–1935 BC) praises in lines 287–292 the magnif-
cient throne for the god Enlil and his spouse Ninlil he had built and decorated in the part of Enlil’s Ekur temple at Nippur called Enamtita (on this abode see also below), probably a bedroom: »Išme-Dagan, son of Dagan, stood the throne for Enlil my master on a dais … of seven storms, decora-
ted in a masterly and highly skilled manner with eye-shaped agate (anstir-igi), astuba-stone, (and)
amber-coloured lapis lazuli (*za-gin sud-rá-ág*), and I seated Enlil there with my lady Ninlil*.*

A further occurrence of this syntagm *za-gin sud-ág* is likely to be found in a very different earlier text, probably to be dated to the Early Dynastic period but known to us through two school copies written at Nippur at the end of the 3rd millennium BC. In fragmentary context, its incipit includes this passage: *za-gin sud-ág-ba* (ISET 1 211 1:4) // *za- gin sud-ág* (ISET 1 212 1:3)*.* In the *editio princeps* the incipit has been tentatively translated as »May …, the far away mountain land, bring to you lapis lazuli and sü-ág, (products) that are characteristic of (or: an ornament of) (this) mountain land*, unfortunately with an unclear geographic reference. However, it is certain that in the ancient Near East lapis lazuli arrived from the mountains of Afghanistan, from which amber could hardly have come. Therefore, more likely *za-gin sud-ág* means »lapis lazuli with amber-coloured inclusions«, thinking of a specific precious stone different from *za-gin-durú*, which this text says originated from another eastern land, Tukriš*.* Two passages of the epic tale known as *Enmerkar and the Lord of Aratta* (attested in manuscripts of the 1st half of the 2nd mill., but narrating events of roughly one thousand years before) are worthy of being quoted here. The former occurs in lines 38–41: »My sister! Inanna! For Uruk, gold and silver shall be masterly worked for me (in Aratta) and the bright lapis lazuli (*za-gin-durú*) (cut) from the ashlar. […] amber-coloured glimmer of the bright lapis lazuli (sud-rá-ág *za-gin-durú*) […]«; the latter occurs in lines 481–485: »(Then) when (Inanna) comes – the mountain of precious metals and lapis lazuli (kur kug *za-gin*) has been gathered for him like heaped up reeds – they shall heap up its gold, s[ilve]r (and) amber-coloured <lapis lazuli> (kù-sig, kù-babbar sud-rá-ág-bi) for Inanna, the Lady of the Ea, in the courtyard of Aratta*. *In these passages *sud-ág* – hardly amber here, given the eastern setting of Aratta – is said of kinds of

1155 Michalowski 1988, 163, with discussion on pp. 159 f.

1157 *Nin-mu ḫu-ul-na Unuq*-e, še? 288*kip-sig, kù-babbar ḫa-ma-an-gal-am-e* 290*za-gin-durú lagab-ta […] sud-rá-ág* *za-gin-durú, ʿx* […] ʿx* ’, »My sister, let Aratta (reading Aratta)« for Unug artfully work gold and silver for our sake! [Let them cut for our sake] polished lapis lazuli from its block; [let them work for my sake] the translucent smooth lapis lazuli for Vantisphout 2003, 58 f.; »My sister, let Aratta fashion gold and silver skilfully on my behalf for Unug. Let them cut the flawless lapis lazuli from the blocks, let them … the translucence of the flawless lapis lazuli … build a holy mountain in Unug for Vantisphout 2006 (1.8.2.3): »Meine Schwester! Innana! For Uruk shall man mir (in Arata) Gold and Silber meisterlich verarbeiten und den hellen Lapislazuli aus den Quaren [scheiden]. […] Glanz des hellen Lapislazuli […]« for Mittermayer 2009, 116 f. and 225 f. However, for Landsberger 1967, 191 f. »zu Tempelbau werden verwendet: Gold, Silber, Lapislazuli und e. « (cf. Falkenstein 1957, 304 as »Metallname«).

The passages collected so far show amber not only as a valuable and highly esteemed material, from which precious objects and decorations were made, but also as a connoted tone of a specific variety of lapis lazuli. Further occurrences of *elmēšu(m) and *sud-āĝ enrich the documentary framework, indicating their use to refer to a colour, or more precisely to a hue. An unexpected use of *elmēšu occurs in the scientific record in one of the Babylonian »Astronomical Diaries«, BM 45998 + BM 46049 = Sachs – Hunger 1996, 290 f. (end of the 1st mill. BC, event of 122 BC), if, as convincingly argued, obv. 11’ is to be interpreted as follows: »[…] setting of the moon, a rainbow whose glows were (like) amber (*tIR.AN.NA šú zīmāšu(MŰŠmes, šú) elmēšu(SUD<.ÁG>)) [stretched] from the north to the south side […]«. Probably here reference is made to the yellowish-pinkish colour of an extraordinary aurora borealis seen in Mesopotamia. Another reference to an amber tint of the sky should be found in a much earlier text, evidently imploring rain clouds in a period of drought that affected Southern Mesopotamia. It is the Sumerian »Prayer to An for Rim-Sin« = UET VI 102 = Steible 1975, 6 (king Rim-Sin of Larsa reigned between 1822 and 1763 BC), whose line 23 runs as follows: »may (the Sky-god An) open for you the amber-coloured nipples of the sky (ubur an sud-āĝ) so that the rain of the sky shall rain for you!«

These chromatic references may be compared with what is said, for the earth and not for the sky, in another text written in Sumerian, the »Debate between Grain and Sheep« (its older manuscript dates back to around 1800 BC), whose lines 71–73 read: »Grain called out to Sheep: »Sister, I am your better; I take precedence over you. I am the glory of the amber hue (sud-rā-āĝ) of the Land!«. The same should apply to lines 251–252 of the already mentioned, and more or less contemporary, Sumerian hymn »Išme-Dagan A+V«, where the king of Isin reverses the god Enlil saying: »I (Enlil) am gold dust, I am lapis lazuli in its lode, like amber (sud-rā-āģ) I brighten over the sky, in another text written in Sumerian, the »Debate between Grain and Sheep« (its older manuscript dates back to around 1800 BC), whose lines 71–73 read: »Grain called out to Sheep: »Sister, I am your better; I take precedence over you. I am the glory of the amber hue (sud-rā-āģ) of the Land!«. The same should apply to lines 251–252 of the already mentioned, and more or less contemporary, Sumerian hymn »Išme-Dagan A+V«, where the king of Isin reverses the god Enlil saying: »I (Enlil) am gold dust, I am lapis lazuli in its lode, like amber (sud-rā-āģ) I brighten over the sky (ubur an sud-āĝ) so that the rain of the sky shall rain for you!«

All these attestations in various ways refer to the materiality of *sud-āģ = *elmēšu(m), defining a valuable glimmering stone and the related yellowish-pinkish hue. Other occurrences of

This translation is suggested in Mitsuma – Hayakawa 2019, 48.

Translation of this passage of »Rim-Sin C« (ubur an sud-āģ gāl ḫu-mu-ra-ab-taka šèg(IM.A) an-na ḫu-mu-ra-ab-šèg) adapted from Steible 1975, 6 f. 21 f. (»Die Zitzen des leuchtenden Himmels möge er dir öffnen [und] Regenwasser vom Himmel für dich regnen lassen!«); Charpin 1986, 275–277 (»Qu’il ouvre les seins du ciel éclatant, qu’il fasse pleuvoir pour toi les nuages de pluie!«); Horowitz 1998, 262 f. (»May he open the teat of the elmēšu heaven, may he make the rain of heaven rain down«, »Because sud.āġa = elmēšu […]«, the surface of the heavens appears to be made of elmēšu-stone, and rain water may be stored in reservoirs above); ETCSL (2006) 2.6.9.3 (»May he open for you the breasts of the brilliant heavens, and cause the rain to rain for you!«); Brisch 2007, 200 f. (»He shall open for you the teats of the shining heavens so that the rain of heavens shall rain for you!«); and Gabbay 2015, 159 (none of them exploits the chromatic connotation).

ETCSL (2006) 5.3.2: »Enzinga u ḫu-gu mu-na-na dē[=e] nin, dub-sag-zu-ṣe-en-giš ma-ra-ab-gub-bē-en sud-rā-āģ kalam-ma-ka giri₃-zal-bi-me-en, »I am the glory of the lights of the Land«, and Mittermayer 2019, 221, »Von den Lichtern des Landes bin ich die Prächtigste«, but see Landsberger 1967, 192 »es ist die sumerische Ceres (nicht der personifizierte Sommernagel)«, which s rhums, the »I am the glory of the lights of the Land«, and Mittermayer 2019, 221, »Von den Lichtern des Landes bin ich die Prächtigste«, but see Landsberger 1967, 192 »es ist die sumerische Ceres (nicht der personifizierte Sommernagel)«, which sich rühmt, der des Landes zu sein, was natürlich auf die geldebolle Farbe des reifen Getreides anspeint«.

As for the negation of the atmospheric nature of Enlil, see the evidence provided in Steinkeller 1999, 114 n. 36, with literature, where Enlil is inter alia compared with terrestrial gods as Dagan and Aššur. Enlil’s main epitet was kur gal, »great mountain«, his Nippur temple was called Ekur, »House (which is a) Mountain«, his wife was called Ninḫursaĝa, »Lady-of-the-Mountain-Range(s)« (see Steinkeller 2019, 11–13, and his son Ninurta was a warlike farmer god. Note that amber is also associated with other members of Enlil’s household, his daughter Ninimma and his minister Nuska, a Firelight-god. Perhaps Enlil was originally a numen loci.
these two terms directly refer to gods, in the sense that they are used as their designations or in descriptions of their specific properties. Their meaning clearly derives from the aforementioned luminous and chromatic properties of that stone.

The Old Babylonian forerunner of the lexical series An = Anum, TCLE 15 168, documents "Sud-āg as an epithet of Aya (‘A-a), »Aurora«, wife of the god Šamaš (‘Utu), »Sun« (her Sumerian name was Šerda)\(^{1164}\). Much later, this surfaces again in two bilingual (Sumerian and Akkadian) religious texts from Assur (7th BC). One is the fragmentary prayer VS 24 31 = Maul 1991, 71 f., to the wife of the Moon-god Sin, i.e. the goddess Ningal, where their son Šamaš and his wife Aya are invoked on rev. 2–3: »Oh Šamaš, young hero, […]! Oh Aya ("Sud-ā-g-ā"), bride of the Egišnugal-temple, […]\(^{1165}\). The other, and much more informative, text, is the »Compendium of Ḫubazizi incantations« = Ebeling 1953, 361–379 = LKA 77, another text written by the Assyrian healer Kiṣir-Asṣur\(^{1166}\), a long part of which includes invocations to the Moon-god Sin, to his wife Ningal, to their son Šamaš the Sun-god, and to his wife Aya the Aurora goddess (obv. II:25–III:21). The latter invocation occurs in obv. III:13–21: »For the life of the Aurora goddess (‘Sud-ā-g-ā/‘A-a), his (of the Sun-god) beloved principal spouse, lady of the Underworld and of the Cultivated Land, she who is supreme at the Foundation-of-the-(Solar-)Mountain, veiled princess, queen of the Ebabbar-temple!\(^{1167}\). Depicted as the mistress of the lower and upper regions (bēlet erṣēti u mēšreti), i.e. of the netherworld as well as of the land inhabited by mankind, »Aurora« is the female ruler of the »White-House« (šarru Ḫabbar-ra), i.e. of the underworld residence of the solar divine couple. Her greatness appears twice. First, at dawn, when she manifests her luminosity at the base of the eastern side of the mountain from which her husband rises (ina šiši šadî šūturat). Secondly, during twilight, when the Sun-god comes back home and his wife’s luminosity appears again in the west at the opening of the home’s doors, but in a lower tonality, as if she were veiled (rubātu pussuntu), the veil being not only peculiar to the bride, but also to the night\(^{1168}\). It is probably in this latter capacity that Šerda/Aya is called "Sud-ā-g-ā, that is very likely Elmešu, this divine epithet, »Amber«, saying something of the peculiar way in which the goddess glimmers, radiating a low and warm glow at dusk (more on this below in the discussion of the personal names).

Šerda/Aya, i.e. »Aurora«, also called "Sud-ā-g-ā, is not the only goddess often associated with *sud-ā-g-ā, the other one being her sister-in-law Inanna/Istar, »Venus«\(^{1169}\), in both her aspects of Morning Star and Evening Star. This is shown by line 42 of the Sumerian hymn »Šulgi X«, where the Ur III emperor Šulgi (2094–2047 BC) praises this goddess as »the lady, the amber-coloured glimmer (sud-rā-āg) of the sky«\(^{1170}\). In the hymn »Iddin-Dagan A«, king Iddin-Dagan of Isin (1974–1954 BC) praises the goddess in this way: »I shall greet the great lady of heaven, Inanna! I shall greet the holy torch who fills the heavens, the amber-coloured glimmer (sud-rā-āg), Inanna,

1164 Falkenstein 1957, 305; Powell 1989, 450 with n. 31; and 453; Richter 1999, 301 and 1216; Krebernik 2012 (»goldgelber Glanz« bzw. goldgelber glänzenden Gestein/Metall) [akk. elmēšu]; also Alaura – Bonechi 2012, 34 n. 154.
1166 Basic data on this text in Arboll 2020, 183. 206 with n. 77; 309.
1168 Cf. the Old Babylonian »Prayer to the Gods of the Night« line 9, »Night draws a veil« (pussumat mušītum), Foster 2005, 207.
1169 A first analysis of the relevant occurrences in Falkenstein 1957, 305.
1170 ETCSL (2006) 2.4.2.24, nin sud-rā-g-ā an-na (»The lady, the light of heaven«). See van Dijk 1954, 86 f. (»La Dame, la lumière du ciel«); Klein 1981, 338 f. 151 (»The queen, the luminary of heavens«); Gadotti 2010, 122 (»The lady, the heavenly brightness«).
her who shines like daylight, the great lady of heaven, Inanna! The religious text >Dumuzid-Inanna P< includes in segment C line 31 a praise of the dwelling called Enamtila, lit. >House-of-Life< — likely the bedroom where Inanna and her husband Dumuzid enjoy their love — in which the goddess herself is defined as >amber-coloured glimmer< (sud-rá-ág)1172. This same motif also occurs in the *incipit of the 7th-century BC bilingual (Emesal Sumerian/Akkadian) >Eršema-prayer 42< = Gabbay 2015, 150–157, whose forerunner was included, one thousand years before, in the Old Babylonian syllabic Sumerian balag-prayer VS 2 4 = Gabbay 2015, 302 f.: >>You are the light of the sky (nūr šamē), glowing (napāḫum) like fire on the earth!<< (Akkadian)1173. Importantly, in >>Eršema-prayer 42<< the Akkadian equivalent of Sumerian *sud-rá-ág is not elmešu(m), >amber<, but rather nūru(m), >light<, also >shine, gleam (of stones)<.1174

One can note that the visual effect referred to by Sumerian *sud-rá-ág was used, around 2000 BC, in reference to several astral gods, as shown by a perusal of the occurrences of this substantive in the Sumerian literary texts published in the >>Electronic Text Corpus of Sumerian Literature<<. Not unexpectedly, among them there are relatives of both Šerda/Aya, >>Aurora<<, and Inanna/Ištar, >>Venus<<. They are Inanna’s brothers Utu/Šamaš, >>Sun<< (Aurora’s husband), probably when he is setting (»UtU Be« line 121174 and cf. the 1st-mill. bilingual prayer BA 10/1, 82 no. 8 // UVB 15 p. 36)1175, and Numušda (»Temple Hymns« line 397)1176, as well as Inanna’s father, Nannar, the Moon-god (»Nanna C« line 39; »Nanna L« lines 8. 16; »A Hymn to Nanna« line 3; »Gungunum B« segment C line 3)1177, also in his manifestation as the gibbous moon called Dilim-babbar (»Ibbi-Su‘en C« lines 1. 6. 66)1178. However, the >amber-coloured glimmer< that sud-rá-ág refers to was also apt to describe further gods, who were not astral but related to other physical elements. They are fire, as in the case of Enlil’s minister Nuska, the Firelight-god praised for being his *sud-rá-ág (»Nuska Be lines 7. 19)1179; earth, as in the case of Enlil’s daughter Ninimma (»Ninimma A« segment B
4.3 The written documentation: Mesopotamia

line 57)151, and water, as in the cases of Enki, the Eridug deity of the subterranean fresh waters and wisdom (»Šulgi Hymn to Enki« line 40), and Nanše, goddess of marshes, fish, birds, and also dream interpreter (»Nanše and the Birds« line 15)1181. Lastly, it is important to recall that both *sud-ₐₕₐ and elmēšu(m) also occur as proper names (in anthroponymy, toponymy, and theonymy).

On the Sumerian side, in the Lagaš administrative texts of the reign of Urukagina (middle of the 24th cent. BC) one finds the masculine personal names Sud-ₐₕₐ (Nik 1 92 obv. I:3) and Ur-Sud-ₐₕₐ (TSA 7 obv. VI:5), variant Ur-Šud-ₐₕₐ1182 (DP 40 obv. III:8)1182. The classifier KI in the personal name Ur-Šud-ₐₕₐ is important since it confirms that, at the time of Urukagina, there existed in the Lagaš kingdom a place called Sud-ₐₕₐ. It is also documented in DP 159 obv. III:21183, in a sequence of toponyms including the immediately preceding É-babbar (lit. »White-House«, the name of the Sippar and Larsa temples of the Sun-god Utu/Šamaš), so that for both a reference to the solar theology has been suggested1184. There is also a personal name spelled É-sud-ₐₕₐ in several administrative texts from Šuruppak and É-sud-ₐₕₐ in an ED IIIb tablet from Adab1185, which confirms both the topographical nature of this *sud-ₐₕₐ and the semantic affinity of *sud-ₐₕₐ and babbar as designations of colours and/or hues. It is then reasonable to think that a much older divine epithet including *sud-ₐₕₐ refers to a place related to the goddesses Šerda/Aya, »Aurora«, or, less likely, Inanna/Îštar, »Venus«. It is *Nin-Sud-ₐₕₐ. »Lady-of-Sudₐₕₐ«, spelled *Nin-sud-ₐₕₐ in the »Große Götterliste« from Šuruppak SF 1 (end of the 1st half of the 3rd mill. BC), obv. IV:17, and later attested as *Nin-sudₐₕₐ in the peculiar list of gods TH 80.112 from Amorite Mari (1st half of the 18th cent. BC) and as *Nin-<sud>-ₐₕₐ-gá in the late theological list from Nineveh (7th cent. BC) K.4339 = CT 25 9 ff., l:201186. The same should apply to the rarer, and masculine, divine name *En-sudₐₕₐ taken in an Ur III tablet from Umma (end of the 2nd mill. BC)1187. Furthermore, a cylinder seal shows that Lugal-sudₐₕₐ was the personal name of a scribe who lived at

1180 ETCSL 4.21.1, sud-ra-tä-[ga] ’kär’-kär êḫ maḫ ’si’-[x]-me-en, »you are the shining light which fills the exalted sanctuary«. On Ninimma see Focke 2000.

1181 As for Enki see this passage of the Old Babylonian copy of a text composed at the end of the 21st cent. BC: lugal-mu sud-ra-ₐₕₐ-Eniduₐₕₐ (Cohen 2005, 75 f.), »my king, amber-coloured glimmer of Eridu«; cf. the personal name Lugal-sudₐₕₐ below. As for Nanše see Veldhuis 2004, 118 f., »Nanše sud-ra-ₐₕₐ-gá e A […] ‘A-nu-na dingir-gal-[gal-e-ne-keₐₕₐ], [sudₐₕₐ, the shining, the […] of the Anuna, the great gods», and ETCSL (2006) 4.14.3 (on Nanše, Veldhuis 2004, 17–29). Possibly the amber hue was appropriate for describing the appearance of fresh or brackish water masses of Southern Mesopotamia under specific circumstances.

1182 On these two personal names see Selz 1989, 399; Foxvog 2001/2002, 177; Foxvog 2011, 81 and n. 98; Meyer-Laurin 2011, 66. As for the spelling with KI of *Ur-Sudₐₕₐ-gá in DP 40, see the photograph of this tablet in the »Cuneiform Digital Library Initiative«, online at <https://cdli.ucla.edu/search/search_results.php?SearchMode=Text&ObjectID=P220690>.

1183 Deimel 1932, 708 ad 48 (»sein Ort bei Lagaš«, compared with the divine names *Sudₐₕₐ-gá = Aya); Falkenstein 1966, 31 (place name); Edzard et al. 1977, 147 (»Tempelname²«); Rosengarten 1960, 176 (place name); Selz 1995, 252; Foxvog 2011, 81 and n. 98 (reference to the goddess Aya, the personal name Sudₐₕₐ meaning »[He of] Electrum [or Amber]«); Meyer-Laurin 2011, 66 (sein Tempels«, with *sudₐₕₐ taken as »helles Licht^{中枢}«). On DP 159 see Rosengarten 1960, 171–202; Beld 2002, 193 f. and n. 90; Prentice 2010, 176 f.

1184 See Powell 1989, 453 and George 1993, 70 f. (»shrine of Šamaš at Girsu^{中枢}«). On the complicated issue of the divine owner of the Lagaš temple called É-babbar see Selz 1995, 243 f., who follows Falkenstein 1966, 31 n. 3 in thinking that he rather was Ningirsu, who is not a Sun-god (but see the remarks in Heimpel 1986, 136 f.). Further note that in Nik 1 92 the names of the two «overseers» (ugula) are Ur-É-babbar and Sud-ₐₕₐ.

1185 See Pompotio 1987, 91 (Šuruppak); Gelb et al. 1991, 96–99 (Adab, read »É-sir-ₐₕₐ«); Andersson 2012, 174 n. 1022.

1186 See Cavignaux – Krebernik 2001a; also Krebernik 1986, 171. 200; and Mander 1986, 80, 94 (Šuruppak); Lambert 1992–1993, 151. 183, 188 (Mari and Šuruppak, but his statement »In the second millennium Sudag is a name of Aya apparently going back to Sud, goddess of Šuruppak« is unwarrented, see on the goddess Sud Krebernik – Lisman 2020, 143, with literature); Powell 1989, 453 (Šuruppak, Nineveh); and Andersson 2012, 174 n. 1022 (Šuruppak). Note however that, at the time of Šulgi, the goddess Inanna is called nun sud-ₐₕₐ-an-na, see the aforementioned Sumerian hymn »Šulgi XV line 15.

1187 See Falkenstein 1957, 305; Powell 1989, 453 with n. 44.
likely a weed. Analogies with the Greek feminine personal name Ἠλέκτρα come to mind, in Old Babylonian anthroponymy includes pairs of masculine and feminine personal names such as Duḫšum // Duḫšāṭum \((< \text{duḫšûm, chlorite})\), Uqnûm // Uqnītum \((< uqnîm, \text{lapis lazuli})\) and, indeed, Elmēšum // Elmēštum, which refer to names of precious stones. This makes it unlikely that the feminine name Elmēštum is to be explained by the substantive attested as elmeltu in Old Babylonian, elmeltu in Middle Assyrian, and elmessu in Neo-Assyrian, which designates a kind of grass, likely a weed.

In general, as for the Mesopotamian masculine and feminine personal names Sud-āg and Elmēšum/Elmēštum, analogies with the Greek feminine personal name Ἠλέκτρα\(^{1193}\) come to mind, onomastically and semantically.

1189 See CAD E (1958) 107 and Landsberger 1967, 192. In Babylonia the masculine personal name Elmēšum continued to be used down into the 1st mill. BC, see its occurrence in TMH 2 211, a Neo-Babylonian text.

1190 The database ARCHIBAB (accessed on 02. 11. 2020) includes 45 occurrences of men called Elmēšum (the name is spelled El-me-t(e)-šum, Il-me-šum, Il-mi-šu). We are aware of the following attestations: Abb 12 77 and 125; Abb 13 77, 78, 198; ABPh 136; CT 2 pl. 12 = Abb 2 81; CT 6 p. 28b = Abb 2 112; CT 8 7b; CT 48 116; CT 52 = Abb 7 37; CT 52 = Abb 7 97; CUA 71 = Goetze 1957, 26 f.; CUA 85 = Goetze 1957, 33; CUSAS 29 181; Edubba 1 13; JCSS 2 87; MHET II/5 667; MHET II/6 912 and 915; OECT 13 279; OECT 15 15; Riffia 28; TCL 10 112; TCL 18 105 = Abb 14 159; TEBA 5; TEBA 6; TEBA 7; TEBA 8; TEBA 9; TEBA 10; TEBA 11; TIM 2 = Abb 8 78; TMH 10 1a and 1b; UCLMA 0–1857 = A. J. Marchant, Old Babylonian Tablets from Larsa in the Lowie Museum of Anthropology (Diss. University of Berkeley 1990) 141–149; UET 5 242; UET 5 485; VAT 6676 = Kengel 1970, 124 f.; VS 7 56 = Imgula 2 58; VS 18 18; VS 22 11 = Kengel 1983, 14; VS 22 16; VS 22 41 = Kengel 1983, 36 f.; VS NF 13 6 and 36 (see van Koppen 2003/2004, 389); YOS 8 6; YOS 8 52; YOS 12 290; YOS 13 5; YOS 13 26, 31, 112, 169, 203; YOS 15 70, 112, 117, 203; Zadok 1999/2000, 336. On men called Elmēšum (the name is spelled El-me-t(e)-šum) see e.g. YOS 2 117 = Abb 9 117 (exceptionally in CAD E [1958] 107). On women called Elmēštum see, e.g., Abb 9 117 and 144; MHET I/1 63; MHET II/6 427 and 889; UET 5 242; YOS 12 245; de Boer et al. 2012/2013, text no. 4; Goetze 1948, text no. 21.

1191 Charpin 2014, 25 (selmešum une pierre précieuse brillante).

1192 So CAD E (1958) 107 (most likely a grass weed with elmessu-colored flowers); see also AHw (1965) 205, >eine Gras-Art, where elmeltu it is considered the feminine of elmēša(m), followed by CDA\(^2\), 70. Its occurrences are mainly limited to 1st-mill. lexical lists, where, as saddaru, it corresponds to Sumerian šalami and šEŠ.ŠES. However, elmeltu occurs in a dramatic passage of a Middle Assyrian letter (BATSH 4, 2: 15–21) describing the catastrophic consequences of the passage of grasshoppers, after which the inhabitants of a city were reduced to eating weeds, which confirms that this plant had no value: >15About what my lord wrote to me: Why did Aššukanaean troops not go after them (Karkemishian fugitives)?15 The grasshopper has eaten their harvest! They have eaten the elmeltu-grass thereafter!15There is nobody in the city! (Only) fifty Kassites, hostages or captives, and 50 Subarans, hostages, live in the city! There is no one for the garrison of the city!15see Llop 2012, 295 (selmelitu-grass), and see also Llop 2009/2010, 17. Cancik-Kirschbaum 1996, 201 f. takes instead elmeltu as a word denoting »chickpea(s species)«, followed for instance by Jakob 2003, 316, by Rients de Boer in de Boer et al. 2012/2013, 182, and by Jeffers 2017, 163 and n. 39.

1193 On which see Deroy – Halleux 1974, 51 f.
4.4 CONCLUDING REMARKS

Summarising the results of this investigation into Hittite ḫušt-, »amber«/»copal«, Akkadian elmēšu(m), »amber« (spelled syllabically, but also indicated by the Sumerogram SUD.ÁG and variants), and Sumerian *sud'-aĝ, »amber-coloured glimmer«, it would seem that these terms occur in cuneiform texts spanning the very end of the 3rd millennium to around 100 BC, and are distributed over the cultural areas of Hittite, Hurrian, Assyrian, Babylonian, and Sumerian. However, amber has not been recognised in the Late Bronze Age texts recovered from sites in the northern Levant such as Qatna, Alalakh, and Ugarit, where instead there is archaeological evidence for it, and in general it is not recorded in the administrative documentation. Therefore, one may surmise that the available written and material evidence is not a faithful reflection of the actual situation, and that amber, copal, and similar resinous substances – sought after for their therapeutic virtues, decorative qualities, and symbolic value – circulated from the Levant to Mesopotamia and Anatolia in quantities that were anything but modest. This circulation, probably already in place in the Early Bronze Age, must have depended on fluctuations in long-distance trade.

Noteworthy is the following evident asymmetry: in Assyro-Babylonian and Anatolian scribal milieus, spellings such as aselmēšu(m) and ḫušt-, rare but existing, clearly connote these two terms as belonging to the class of materials indicated by the semantic classifier NA₄ »stone« in the sense of a substance available in small blocks; however, NA₄ never occurs with Sumerian suđ-rá-āg = *sud'-aĝ. This suggests that the latter term originally did not belong to the semantic field of stones, but rather to that of light (»yellowish-pinkish glimmer«) or more likely to that of colour and hue (»yellowish-pinkish colour«, »amber hue«). The precise correspondence of *sud'-aĝ with aselmēšu(m) was due to the early use of the Sumerian term (decided by Semitophone scribes) as a Sumerogram, indicating that the glimmering stone had a yellow-pinkish hue. This fits very well with the properties of amber.

Moreover, in learned texts in which ḫušt- and/or elmēšu(m) are recorded together with other materials, both often appear in a liminal position, either between stones and plants or between metals and softer substances. Even today, taxonomic discrepancies are evidence of the difficulties in classifying amber.

Even if the contexts analysed are not homogeneous, and include lexical lists, magico-medical rituals, and literary texts of religious and epic content, nonetheless both ḫušt- and elmēšu(m), as well as *sud'-aĝ, always have a positive connotation: from time to time, they are useful ingredients in therapeutic mixtures, elements of prophylactic procedures, and parts of artistic decorations for statuettes, furniture, and architecture. They also deal with conceptualisations related to deities, including many goddesses. All these features occur in a general framework where recovery of health, richness, renewal, and good luck play a central role.

The present investigation of the terms that in the cuneiform Hittite, Akkadian and Sumerian sources could refer to »amber« is, of course, of indirect interest for the ambers of the Artemision at Ephesos. However, in our opinion its relevance is not negligible.

Spatially, the cuneiform texts that have been discussed in the previous pages come either from the same land mass to which Ephesos belongs, i.e. Asia Minor, or from more oriental but contiguous and connected lands, i.e. the Syro-Mesopotamian regions located immediately east of the Mediterranean. If we take the lands west of Ephesos as terms of comparison, Hittite Anatolia corresponds to Greece proper and Syro-Mesopotamia to Magna Graecia, both as distances and (at least in the 1st half of the 1st millennium BC) as contacts.

From a chronological point of view, it is true that many cuneiform attestations substantially predate the age of the Artemision, being traceable as early as the Bronze Age (3rd and 2nd millennium BC), but many others are datable to the first half of the 1st millennium BC, thus in phase with the archaeological findings at Ephesos discussed in this book. This is not surprising, given the enormous time depth of cuneiform. However, the millennia-old traditions that persisted in the written records of the Near Eastern Iron Age certainly have considerable importance in discussions con-
cerning the references to amber not only in the Old Testament, but also in Greek written sources, beginning with the »Iliad«.

More generally, it is important to recall that the record of Ephesos in cuneiform sources is highly probable, although the identification of Apasa, the capital of Arzawa documented in Late Bronze Hittite texts with the city of the Artemision is still debated. Later, in the first half of the 1st millennium BC, Ephesos was probably a central place in a very wide world that by now stretched from the Baltic to Egypt and from the western Mediterranean to Mesopotamia. The impression of sophisticated foreignness within the Graeco-Roman world that the iconography and theology of Artemis of Ephesos indubitably transmit solicits the comparison with the documentations of the Near East that Alessandro Naso has opportunistically asked us to undertake. The extraordinary opportunity that cuneiform texts provide to critically test the linguistic-philological and archaeological backgrounds of Biblical hašmal and Greek ἤλεκτρον certainly enriches the discussion of the general topic »amber in antiquity«. It also enhances the Artemision at Ephesos as a place of extraordinary finds within the increasingly emerging perspective of considering the late cuneiform Near East as the core of a polycentric and multicultural Greater Ancient Near East.

4.5 ADDENDUM

Since the completion of our work (end of 2020), new relevant information on *sud-ra-aĝ has been provided in two recently published works devoted to literary texts as well as administrative documents.

As for the literary texts, the Sumerian glossary by Pascal Attinger includes the entries sud-aĝ₂, su₂-ud(-da)-aĝ₂, su₂-da-aĝ₂, »brillant« (p. 943), and sud-ra-aĝ₂, sud-aĝ₂, »un métal précieux«, »le brillant« or »brillant«, »éclat (du lapis lazuli clair)«, »lumière, luminaire« (p. 943), also found in sud-ra₂-aĝ₂ mu₂-mu₂, »faire croître (sa) lumière (le dieu de la lune)« (p. 737), and perhaps in sud-ra₂-aĝ₂ KARA₂.KARA₂, »dispenser de la lumière, briller« (p. 598). Additional earlier discussions of *sud-aĝ can be found in two articles by Ake W. Sjöberg. In the latter work, he published and studied a Sumerian hymn to the Nippur warlike farmer god Ninurta, son of Enlil and husband of the healing goddess Gula, known today as »Ninurta A«. Line 11 of that hymn runs as follows: gidri kug-an sud-ág šu-na gál-[la-àm]. This passage has been translated as »He (i.e., Ninurta) holds in his hand a scepter of shining kuan-metal« (by Sjöberg) and »He holds in his hand a sceptre of shining precious metal« (in ETCSL 4.27.01). The precious metal called kug-an has not yet been identified, but on the grounds of its Akkadian equivalent amūtu (m), amūt-tum, an identification with meteoric iron is plausible. Accordingly, the passage in line 11 of »Ninurta A« may be translated »(Ninurta) holds in his hand a sceptre of amber-coloured meteoric iron«. This is therefore to be added to the other instances of *sud-ra-aĝ said of precious materials in contexts dealing with pieces of figurative art.

As for the administrative texts, in his 2021 in-depth analysis of »Kanesh Practical Vocabulary 2«, 1194

1195 Attinger 2021, 598. 737. 943. See also the 2023 revised edition of Attinger’s »Glossaire« (accessed 22. 11. 2023) 778. 954. 1226.
1198 See also Giusfredi 2017, 13 (she holds in his hand a scepter of shining (?) k.-metal).
Jan Gerrit Dercksen has discussed again the lines where *elmēšum* occurs, translating it as »amber(?)«, noting that it »does not occur as a commodity in O[ld]A[syrian] texts«, and adding that »small quantities of this material […] are attested in three administrative texts from Larsa dating to Rim-Sîn 1«. This welcome reference to tablets published by Karljürgen Gabriel Feuerherm in his 2004 Toronto dissertation¹²⁰⁰ is very important because, for the first time, the actual circulation of *elmēšum* appears in early administrative records (late 19th cent. BC) from Southern Mesopotamia, where the Sumerogram *sud₄*-āg is used to refer to this material (note that in texts of the same period and provenance, the masculine personal name *Elmēšum* is written syllabically either as *el-me-šum* or as *el-me-šu-um*). The recorded quantities are small, but not insignificant: 15 shekels (that is 124.5 g) in YBC 05244, more than 10 shekels (more than 83 g) in YBC 05291, and an unknown quantity in YBC 05271¹²⁰¹. In any case, our previous statement on the lack of evidence for *elmēšu(m) // *sud-aḫ in cuneiform administrative texts must be revised. Moreover, the possibility that more records of the cuneiform terms which potentially refer to »amber« will surface, in the future, within the crucial administrative documentation (where one can expect to find traces of material activities including trade in amber) should definitely be taken into account.

Silvia Alaura, Marco Bonechi

¹²⁰⁰ Dercksen 2021, 223 (»it is thought to be amber, but other identifications have been proposed«).
¹²⁰¹ Feuerherm 2004, 99. 110 f., and 106, with discussion on 100 f., where the translation »electrum« is adopted.
5 AMBER FINDS FROM THE ARTEMISION AT EPHESOS: CONCLUDING REMARKS

5.1 AMBER IN ANCIENT GREEK LITERARY SOURCES

Already in antiquity several writers mention amber as an exotic material, remarking on its properties and origins. The Greek word ἤλεκτρον means both amber and the gold-silver alloy, so one has to check every passage to understand the meaning in each separate case. In the Homeric poems ἤλεκτρον is already used as meaning amber: the description in the »Odyssey« of a skilled Phoenician worker wishing to sell a necklace of gold and amber has been thoroughly discussed since the time of W. Helbig.1202 Recently S. Rausch devoted a systematic study to the images of the north in the Greek literature from Homer to late Hellenism and he assumed that no established images of the north existed in ancient Greece. The critical review by Rausch included an accurate collection of the ancient Greek literature and a review of the statements of modern scholars. In the broader context of his research, Rausch also examined closely the passages in Greek literature with the word ἤλεκτρον meaning amber. According to Rausch, in the 7th to 5th centuries BC amber was not seen as a secured northern import, as claimed by some modern scholars, but the place of origin of the amber and the connected Eridanos river were located in several regions in the north (Hesiod, Choirilos), west (Aischylos, Euripides »Hypopolitos«), and east (Euripides »Phaethon«, Ktesias)1203. Rausch concluded that for ancient Greeks in the 7th to 5th centuries BC, amber was a substance of unknown origin and a mythical product. The Greek representations of the north changed considerably in the course of the centuries, and in the Hellenistic era a new image of the north was coined. According to the passages of the Greek literature critically analysed by Rausch, in that broader context the place of origin of the amber was also definitively connected to the north in the 4th century BC through the travels of Pytheas of Massalia and the geographer Timaeus’s knowledge1204. Further details regarding the properties assigned to the fossil resin in antiquity included the salutary ones, but depend on literary traditions after the 7th century BC. Therefore, they were probably unfamiliar to those offering the amber objects found in the Artemision of Ephesos.

5.2 MODERN STUDIES ON AMBER

The first modern studies about the topic «amber in antiquity» were written by single scholars as general introductions to clarify the precious substance’s meaning, value and distribution routes. The «classic» article by J. M. de Navarro on the different distribution routes of the fossil resin developed in the Bronze and Iron Ages deserves particular mention1205. In the following years, the growing interest in amber stimulated the appearance of the first museum catalogues on amber collections1206. Several

1202 The main comments on the Homeric passage (Hom. Od. 15, 459) are Helbig 1887, 20; Wenskus 1985, 93; Rausch 2013, 34, 254 T29; Psoma 2020.
1203 Ancient literary sources on amber have been collected and commented by Mastrocinque 1991a, 11–55; D’Ercole 2008, 19–28; Orsini 2010, 235–276; Rausch 2013, 32–35 collected and reviewed ancient Greek sources about amber from Homer to Euripides with special attention to the geographical provenance and to the origin of the amber in the Greek literature (Rausch 2013, 251 T17; 254 T29; 257 T37; 272 T113; 273 T124; 282 T168).
1204 Post-classical literary sources about amber have also been collected and discussed by Magnani 2002, 222–233.
1205 de Navarro 1925. The existence of amber routes in pre-Roman time has been now evaluated with nuanced positions by T. Stöllner (Stöllner 2004) and A. Palavestra (Palavestra 2007).
conference proceedings were devoted to the topic and 1982 marked the beginning of a series of periodic scientific meetings focusing on amber. The many exhibitions on amber, with catalogues that usually contain up-to-date overviews and also include unpublished finds played an important role. The latest museum catalogues, such as those of the Bibliothèque Nationale and the Louvre in Paris and the Getty Museum in Malibu, are devoted to figured items. From the 1990s onwards, detailed studies and research about the finds from single sites have been carried out, and ensured the identification of the peculiarities of several workshops in different countries. Several scholars stressed the central role played during the Early Iron Age in the Mediterranean basin by Italian workshops and the influence they had on other production centres, as will be clarified (below, chap. 5.3).

Some Mediterranean contexts dated to the 7th to the 6th century BC emerge as particularly rich and meaningful for their amber finds (pl. 26, 2): tomb VI in Satricum (province of Latina) in Latium vetus dated to 650–640 BC and yielded more than 500 figured ambers of high quality, assigned by D. Waarsenburg to a carver from Rhodes. The 8,377 pieces from Novi Pazar (Serbia), dated to the late 6th to the early 5th century BC, have been stylistically connected to finds from Southern Italy and attributed by A. Palavestra to a single princely grave, with some difficulty, owing to the lack of information about the related excavations. Both scholars stressed the active role of amber workshops in the Italian peninsula – where carvers of different origins were active — the two researchers highlighted the influence they had on other districts, with D. Waarsenburg positing the Aegean area and A. Palavestra pointing to the Balkans. Among unpublished finds, one has to stress the astonishingly rich female grave, known as »tomba della Regina«, at Numana (province of Ancona), dated to 520–500 BC, which has yielded approx. 3,000 amber ornaments, already mentioned (above, chap. 2.4). Its edition will shed new light on the princely female graves in the Mediterranean in the late 6th century BC. Pre-Roman amber ornaments from Central Europe have been collected and reviewed.

5.3 THE ROLE OF THE ITALIAN PENINSULA IN AMBER MANUFACTURING IN PRE-ROMAN TIMES

Recent research by P. Bellintani pointed out that the beginning of Italian leadership in amber manufacturing dates back at least to the Late Bronze Age and the 12th century BC, according to the chronology of 11 unfinished beads of Tiryns type identified at Campestrin di Grignano Polesine (province of Rovigo) near Frattesina di Fratta Polesine in the Po Valley in Veneto. The unfinished pieces belong to the remains of a Late Bronze Age amber workshop, and include other workshop residues.

Waarsenburg 1995, 404–455 provided an accurate review of the literature about amber in pre-Roman Italy.

See now Rocco 2020.

Some significant female grave groups from Italy and the Aegean have been illustrated in Princesses 2012: for the grave Chiaromonte 325, now dated to the late 8th–early 7th cent. BC (Bianco 2020, 111 figs. 17–20), see S. Bianco in: Princesses 2012, 326–335 (dated to the 1st half of the 7th cent. BC).

Stahl 2006 (until the La Tène period) and Nüss 2011 (from the La Tène period onwards) collected and discussed Central European amber finds.

Bellintani et al. 2019 and Salzani et al. 2020 for preliminary reports about the settlement of Campestrin; Bellintani et al. 2015, 422–426, Bellintani 2016 and Bellintani et al. 2021 for the analysis of the amber from Campestrin; and for a broad view about the amber trade in the Late Bronze Age including the beads of Tiryns type in the Mediterranean.
Laboratory analysis has played a significant role in identifying the provenance of the raw amber used in the archaeological items. The late Curt Werner Beck (1927–2008) developed laboratory analyses to determine the amber’s provenance and successfully applied infrared spectroscopy (Fourier transform infrared spectroscopy, FTIR). Without doubt Beck remained the world leading authority in amber studies for over 50 years, and he founded the Amber Research Laboratory at Vassar College in Poughkeepsie, where it is still housed today. The high level of succinic acid in Baltic amber, already proved by previous laboratory studies carried out using different methods, has been confirmed by FTIR analysis and allows us to call it succinite. By contrast, the variety of amber from Sicily contains less succinic acid than Baltic amber and is thus called simetite from the Simeto river, where this type of amber originates.

Succinite was largely exchanged, travelling from the Baltic area through several routes as early as the 2nd millennium BC: it has been identified as the material of 41 amber beads found on the south-west coast of Turkey at Uluburun in a shipwreck dated by dendrochronology to 1364 ± 15–26 BC (Late Helladic III A).

Although simetite from Sicily was already used during the Copper Age in the Italian peninsula at Laterza (province of Taranto) and later at Cesena (province of Forlì-Cesena), in Italy Baltic amber had a longer history and is so far attested in several pile-dwellings in Northern Italy in the second phase of the Early Bronze Age, during the first half of the 2nd millennium BC (ca. 1800–1650 BC). A single bead of Baltic amber found in the settlement of Villaggio delle Macine near Albano (province of Rome) is dated to the early phase of the Medium Bronze Age (Ital. BM I, ca. 1650–1550 BC) and allows us to extend the distribution area of succinite in the Medium Bronze Age to Central Italy. The fossil resin used at Campestrin is of Baltic origin, and was used locally to make beads of the Tiryns type in the Late Bronze Age (12th cent. BC) – so for the moment Campestrin can claim to be the earliest known working site of Baltic amber in the Central Mediterranean, and the origin of Tiryns type amber beads, mostly concentrated in Northern Italy (pl. 27).

The laboratory analysis provided evidence of the contemporary use in the same site in the Italian peninsula of both Baltic and non-Baltic amber, where the latter’s origin remains unidentified; this is attested by samples from the Early Iron Age settlement at Poggiomarino in northern Campania (province of Naples) analysed by DRIFT (diffuse reflectance infrared Fourier transform spectroscopy). The same is suspected for samples from Sardinian sites.

1216 See the database <https://pages.vassar.edu/> (accessed on 19.06.2020).
1217 A detailed overview of the different sources of amber in Europe and their peculiarities has been provided by the contributions of several scholars in Ganzelewski – Slotta 1996, 77–382.
1219 Beck 1971 and Beck – Hartnett 1993 for the FTIR analyses of the amber samples from Laterza, actually dated to the Copper Age (M. L. Nava – A. Salerno in: Ambre 2007, 82 f.); Miari et al. 2017, 301–303 n. 10 for an amber bead from grave 1 at Gattolino (Cesena, province of Forlì-Cesena); Miari – Benazzi 2018, 11 f. M. Miari (Superintendenza Archeologia Belle Arti e Paesaggio per la Città metropolitana di Bologna e le province di Modena, Reggio Emilia e Ferrara, Bologna) kindly informed me that a radiometric date to 3619 ± 45 cal BP 2σ 2140–1880 (95.4 %) BC, has been obtained for grave 1 at Gattolino, i.e. in the Early Bronze Age.
1221 The amber bead from the Villaggio delle Macine has been published by Bellintani et al. 2007.
1222 Bellintani 2016, 281 f. stressed the role of Campestrin. Archaeologists named the Tiryns shape a particular form of cylindrical bead with a raised ring in the middle and an axial hole because it was first identified in the hoard deposed at Tiryns. The distribution map of the amber beads of Tiryns shape in the Mediterranean, provided in Naso 2019, fig. 1 (here pl. 27) also includes amber beads of Allumier types, which are coeval. On the beads of Tiryns shape see recently Harding 2020, 16 f. and Bellintani et al. 2021.
1223 The results of the DRIFT analysis of samples from Poggiomarino are published by Bellintani – Angelini 2012 and the possibilities of local working have been explored by Cesarano – Bellintani 2012. Amber samples from Sardinia have been analysed by Bellintani et al. 2012; Lo Schiavo – D’Oriano 2018, 132 f. give further literature. The provenience of the non-Baltic amber assessed at Poggiomarino is as yet not further identified. In Sicily the use of both local simetite and imported succinite is documented (Cultraro 2010).
The Adriatic basin provided the natural terminus of the resin fossil’s trade routes linking the Baltic area to the Mediterranean; its coasts played a leading role in amber carving and in the redistribution of the raw substance. The amber workshops on the Adriatic side of the Italian peninsula show a tendency to shift from north to south over time: the Late Bronze Age manufacturing at Campeserin in in Veneto, in the Po Valley, near the central hub of Frattesina di Fratta Polesine, where Baltic amber was available, as well as Near Eastern raw materials such as ivory and ostrich eggs. By contrast, in the late 9th to the early 8th century BC, in the Early Iron Age, Verucchio in Romagna became the main amber-working centre. Its flourishing ended ca. 650 BC but was strongly connected to its role as the terminal of the Adriatic trade routes, and as a redistribution centre for amber in Central Italy, including the routes bound for the Tyrrhenian regions. After 650 BC, the leading role in amber working along the Adriatic was taken by the region of Picenum, an area corresponding to the southern part of modern-day Marche, where an essential amber-working centre was established at Belmonte Piceno in the Tenna Valley. Amber workshops active in the Italian peninsula in the Adriatic area, at Belmonte Piceno and Numana, influenced Slovenia’s amber production at Novo mesto and in Serbia at Novi Pazar in the 7th and 6th centuries BC.

From the eastern Italian coast, amber was further redistributed to other districts in Italy. In Central Italy, particular attention was soon devoted to figured artefacts; early specimens dating from the late 8th century BC onwards have been found in Etruscan funerary interments at Vetulonia and Veii and elsewhere in Ager Faliscus and Latium vetus; this is attested by tomb VI in Satricum, mentioned earlier. Both northern and southern Campania yielded rich funerary interments also comprising elaborate female amber ornaments. In Southern Italy, amber was remarkably popular among the Oenotrians in modern-day Northern Calabria at Macchiabate, near Francavilla Maritima, and particularly in south-western Basilicata. Here, cemeteries have yielded an impressive amount of amber and opulent parures of suspended ornaments belonging to rich female interments, mostly dated between the late 8th and early 6th centuries BC. In Apulia, amber was mainly used during the Bronze and Iron Ages and from the 7th century BC onwards (pl. 28, 1). In Northern Italy, amber jewels were widespread in Veneto’s eastern region and its abundance of Central European products in Verucchio are a consequence of the trade relations based on amber. The decline of Verucchio after 650 BC is the reason for the scarce redistribution of raw amber in Etruria, and Latium vetus, where graves after that date are generally less rich in amber finds than before.

On Picenian figured amber see Warden 1994. For non-figured amber from Picenum see Negroni Catacchio 2003. The main amber finds from Belmonte Piceno are discussed by Weidig 2021, 79–90: above, chap. 2.6. For the cultural sequence of Verucchio see von Eles – Pacciarelli 2018, and for the handcraft production, see Bentini et al. 2020, both with literature. The scanty number of Eastern Mediterranean imports and, in contrast, the abundance of Central European products in Verucchio are a consequence of the trade relations based on amber. On Picenian figured amber see Warden 1994. For non-figured amber from Picenum see Negroni Catacchio 2003. The main amber finds from Belmonte Piceno are discussed by Weidig 2021, 79–90: above, chap. 2.6. For the cultural sequence of Verucchio see von Eles – Pacciarelli 2018, and for the handcraft production, see Bentini et al. 2020, both with literature. The scanty number of Eastern Mediterranean imports and, in contrast, the abundance of Central European products in Verucchio are a consequence of the trade relations based on amber. The decline of Verucchio after 650 BC is the reason for the scarce redistribution of raw amber in Etruria, and Latium vetus, where graves after that date are generally less rich in amber finds than before.

On Picenian figured amber see Warden 1994. For non-figured amber from Picenum see Negroni Catacchio 2003. The main amber finds from Belmonte Piceno are discussed by Weidig 2021, 79–90: above, chap. 2.6. For the cultural sequence of Verucchio see von Eles – Pacciarelli 2018, and for the handcraft production, see Bentini et al. 2020, both with literature. The scanty number of Eastern Mediterranean imports and, in contrast, the abundance of Central European products in Verucchio are a consequence of the trade relations based on amber. The decline of Verucchio after 650 BC is the reason for the scarce redistribution of raw amber in Etruria, and Latium vetus, where graves after that date are generally less rich in amber finds than before.

On Picenian figured amber see Warden 1994. For non-figured amber from Picenum see Negroni Catacchio 2003. The main amber finds from Belmonte Piceno are discussed by Weidig 2021, 79–90: above, chap. 2.6. For the cultural sequence of Verucchio see von Eles – Pacciarelli 2018, and for the handcraft production, see Bentini et al. 2020, both with literature. The scanty number of Eastern Mediterranean imports and, in contrast, the abundance of Central European products in Verucchio are a consequence of the trade relations based on amber. The decline of Verucchio after 650 BC is the reason for the scarce redistribution of raw amber in Etruria, and Latium vetus, where graves after that date are generally less rich in amber finds than before.
western districts, in the Golasecca culture area, particularly in the 7th to 5th centuries BC. The main Mediterranean islands of Sicily and Sardinia yielded amber finds dating to pre-Roman times.

One can conclude that for quite a long time an actual ambermania dominated several pre-Roman Italian regions. A subsequent decrease in amber artefacts has been noted for the late 6th century BC in contexts in Etruria and Latium. J. Bouzek believes this might be due to the threat posed to the amber trade routes by such peoples as the Scythians and Celts. Trade routes in all regions north of the Alps were affected in ways which were so significant that only a few Baltic amber goods actually reached the Mediterranean shores.

5.4 AMBER FINDS IN THE AEGEAN IN THE EARLY IRON AGE

In the late 8th to the early 7th century BC skilled carvers with different origins (Syrian, Phoenician) discovered amber in Italy and they immediately appreciated and worked it, as the Bernardini ivories from Praeneste show. Can one presume that as a consequence of this awareness, amber as a raw material spread to the Eastern Mediterranean? And that skilled carvers travelled together with it?

It is generally believed that amber was popular in the Greek world, as a votive offering in sanctuaries and in funerary interments in tombs, and more frequently employed during the Geometric than in the Archaic period.

The following tables show data about the contexts and quantities of amber finds in the Greek world, including North Africa and excluding Magna Graecia and Sicily, to provide an updated general framework for the finds from Ephesos.

In the Greek world, amber was not very common, either as a votive offering or as part of a funerary interment, and did not reach the popularity it enjoyed in the Italian peninsula. Some years ago, it was observed that the amber contents of the Satricum tomb VI outnumbered the entire Greek amber record. This observation is still valid, if we do not count the finds at Ephesos; also, over time, new discoveries have increased the total amount of ambers from Greece, the Ionian finds from Miletos providing a particularly exceptional case. A similar observation can be made regarding the amber finds from the Artemision, if compared with the amber finds from other Greek sanctuaries: the Artemision yielded more carved amber than all Greek sanctuaries put together. But the finds from Ephesos are outstanding not only for their quantity but also for their quality. The significant number of finds at the sanctuary of Athena at Lindos does not seem to correspond to any quality of artistry, although ambers are only summarily described and a new publication would seem necessary. Figured amber carvings, represented at Ephesos by only a few pieces, are very rare in Greece, as T. J. Dunbabin observed, because, generally speaking, ancient Greeks preferred to carve ivory rather than amber.

1234 See the aforementioned literature.
1235 The best overview of amber finds in the Italian peninsula during the Bronze and Early Iron Age is the catalogue of the exhibition Ambre 2007.
1236 Bouzek 1992, 367, followed by Waarsenburg 1995, 405. The hypothesis needs an appropriate testing.
1237 Bouzek 1992, 367, followed by Waarsenburg 1995, 405. The hypothesis needs an appropriate testing.
1238 Previous lists have been compiled by Dunbabin 1962, 520; Strong 1966, 25; Kilian-Dirlmeier 2002, 274–275, Liste 33 (devoted exclusively to sanctuaries).
1239 Waarsenburg 1995, 428 n. 1118.
1240 Dunbabin 1962, 522 n. 5.
1241 The rarity of amber finds in the Aegean, and the Near East was not correctly assessed: for a long time, the amber statuette representing an Assyrian king (Boston, Museum of Fine Arts, inv. 38.196) was classified as authentic, until it was identified as a modern forgery by O. W. Muscarella (Muscarella 2000, 177).
Table 6 a Amber finds from Greek sanctuaries in the Aegean and North Africa

<table>
<thead>
<tr>
<th>Site</th>
<th>Literature</th>
<th>Typology</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ephesos</td>
<td>this volume</td>
<td>figures, beads, pendants, inlays, fibulae</td>
<td>659</td>
</tr>
<tr>
<td>2 Lindos, Athena</td>
<td>Blinkenberg 1931, 109–113</td>
<td>beads, inlays, fibulae, pendants</td>
<td>212</td>
</tr>
<tr>
<td>3 Miletos, Aphrodite</td>
<td>unpublished</td>
<td>beads, spacers</td>
<td>ca. 150</td>
</tr>
<tr>
<td>4 Perachora, Hera</td>
<td>Dunbabin 1962, 520–525</td>
<td>beads, fibulae, scarabs</td>
<td>54</td>
</tr>
<tr>
<td>5 Sparta, Artemis</td>
<td>Dawkins 1929, 386</td>
<td>beads, inlays, fibulae, pendants</td>
<td>ca. 50</td>
</tr>
<tr>
<td>6 Crete, Idaean Cave</td>
<td>Sakellarakis 1988, 184–187</td>
<td>beads</td>
<td>47</td>
</tr>
<tr>
<td>7 Aetos</td>
<td>Heurtley – Robertson 1948, 117</td>
<td>beads</td>
<td>46</td>
</tr>
<tr>
<td>8 Kithnos, Apollo + Artemis</td>
<td>Mazarakis Anian 2019, 106</td>
<td>beads</td>
<td>37</td>
</tr>
<tr>
<td>9 Chios, Harbour sanctuary</td>
<td>Boardman 1967, 238–240</td>
<td>beads, inlays, pendant</td>
<td>ca. 34</td>
</tr>
<tr>
<td>10 Philia, Athena Ionia</td>
<td>Kilman 2002, 271</td>
<td>beads, inlays, fibulae, pendants</td>
<td>18</td>
</tr>
<tr>
<td>11 Chios, Kato Phanai</td>
<td>Lamb 1934/1935, 154 f.</td>
<td>beads, inlays, fibulae</td>
<td>ca. 16</td>
</tr>
<tr>
<td>12 Eretria, Apollo</td>
<td>Haber 2003, 83, 86</td>
<td>beads, inlays</td>
<td>12</td>
</tr>
<tr>
<td>13 Phrai, Artemis Enodia</td>
<td>Kilian 1975, 204</td>
<td>fibulae</td>
<td>7</td>
</tr>
<tr>
<td>14 Cyrene, Artemis</td>
<td>Pernier 1931, 202 fig. 26</td>
<td>inlays</td>
<td>more than 4</td>
</tr>
<tr>
<td>15 Delos, Artemis + Hera</td>
<td>Deonna 1938, 309 no. 161; Gallet de Santier – Tréheux 1948, 220 no. 69</td>
<td>beads</td>
<td>2</td>
</tr>
<tr>
<td>16 Claros, Apollo</td>
<td>unpublished</td>
<td>beads</td>
<td>few</td>
</tr>
<tr>
<td>17 Olympia, Zeus + Hera</td>
<td>Furtwängler 1890, 208</td>
<td>beads</td>
<td>2</td>
</tr>
<tr>
<td>18 Crete, Dictae Cave</td>
<td>Boardman 1961, 71, 73</td>
<td>beads</td>
<td>2</td>
</tr>
<tr>
<td>19 Samos, Hera</td>
<td>Kyrieleis 1985, 429</td>
<td>fibula</td>
<td>1</td>
</tr>
<tr>
<td>20 Tocra, Demeter + Kore</td>
<td>Boardman 1966, 166 no. 105</td>
<td>bead</td>
<td>1</td>
</tr>
<tr>
<td>21 Siphnos, Artemis (?)</td>
<td>Brock 1949, 27 no. 7</td>
<td>bead</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6 b Amber finds from Greek cemeteries in the Aegean

<table>
<thead>
<tr>
<th>Site</th>
<th>Literature</th>
<th>Typology</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortetsa, Crete</td>
<td>Brock 1957, 54</td>
<td>beads</td>
<td>70</td>
</tr>
<tr>
<td>Eretria, child grave</td>
<td>Blandin 2007, I 98 f.; II 77</td>
<td>beads</td>
<td>29</td>
</tr>
<tr>
<td>Lefkandi, graves</td>
<td>Sherratt 2010, 129</td>
<td>beads</td>
<td>ca. 15</td>
</tr>
<tr>
<td>Arkades, graves</td>
<td>Levi 1931, 477</td>
<td>beads</td>
<td>several</td>
</tr>
<tr>
<td>Praisos, Crete, grave 28</td>
<td>Marshall 1905, 65</td>
<td>beads, pendant</td>
<td>several</td>
</tr>
<tr>
<td>Tinos, grave</td>
<td>Levi 1926, 215</td>
<td>beads</td>
<td>3</td>
</tr>
<tr>
<td>Athens, grave</td>
<td>Kühler 1954, 197</td>
<td>pendant</td>
<td>1</td>
</tr>
<tr>
<td>Thera, grave</td>
<td>Pfuhl 1903, 238</td>
<td>beads</td>
<td>few</td>
</tr>
<tr>
<td>Eretria, grave</td>
<td>Blandin 2007, I 49 f.</td>
<td>bead</td>
<td>1</td>
</tr>
<tr>
<td>Ialyssos, grave</td>
<td>Jacopi 1929, 118</td>
<td>lion figure</td>
<td>1</td>
</tr>
<tr>
<td>Eleusi, grave</td>
<td>AE 1898, 103 a. 107</td>
<td>non vidi</td>
<td>–</td>
</tr>
</tbody>
</table>

1241 The amber disc belonging to a fibula from Samos is mentioned by Martelli 1988/1989, 21 f., l). See above, chap. 2.6 for a possible other amber find from Samos.
In the Greek sanctuaries, beads are the most common amber find. However, the original ornaments they belonged to remain unknown: finds from the Italian peninsula show that beads were mostly used for necklaces, but they can also compose other suspended ornaments, such as breast coverings, elaborate pendants and girdles. Inlays constitute significant but often underestimated amber ornaments, which are used to embellish wood and ivory objects such as furniture, boxes, and metal artefacts, but mostly fibulae. Amber inlays are widely distributed in the Greek world outside Ephesos, and in the 8th and 7th centuries BC, they were used in jewellery, bronze statuary, and decorative work on ivory or wood. The sanctuaries of Artemis Orthia at Sparta, Hera at Perachora, Apollo at Eretria, and Athena Itonia at Philia also yielded amber inlays, presumably destined to embellish ivory items and mostly dating to the 7th century BC. Several bronze fibulae, whose bows were decorated with alternating segments of amber and ivory or bone, and inlaid with amber discs, came to light in the sanctuaries of Artemis at Sparta, Hera at Perachora, and Athena at Lindos, as well as at the Artemision at Ephesos. Already C. Blinkenberg, T. J. Dunbabin, D. E. Strong, and later P. G. Guzzo identified Italian handicraft as the inspiration for the Greek fibulae coated with ivory or bone and inlaid with amber. The largest production areas of this type of fibula in Italy are located in Verucchio and Campania respectively (above, chap. 2.5).

The distribution of characteristic Ephesian artefacts highlights the supremacy of Ephesos in the Ionian amber-working landscape: a fine connoisseur such as Paul Jacobstahl was able to define an Ephesian shape of bone pinheads with amber inlays, whose single specimens have been found in the sanctuaries of Apollo at Chios, Hera at Samos and perhaps at Miletos.

The role of Ephesos is outstanding compared to other Greek sanctuaries, not only for the quantity but also for the quality of the amber finds, as a brief review of items in the sanctuary of Artemis can confirm.

5.5 AMBER FINDS IN THE ARTEMISION

According to the information provided by D. Hogarth, the carved ambers from the British excavations were found in and around the Central Basis in some find-places. In this research it was possible to identify only some published objects with the catalogue entries of this volume, because in 1908 few objects were reproduced with photographs and the catalogue numbers for both the Archaeological Museum Istanbul and the British Museum are missing. The secured information is the following. A large amount of amber, including fibulae, almost all pendants, and pinheads was found in the basis. Spacers, a disc, and a fitting element or hinge were discovered.

1243 Dawkins 1929, 224 f. pl. 132 (spectacle fibulae) and Droop 1929, 198 pl. 82 a–b. e–f. i–k for Sparta (fibulae with alternating segments of amber and ivory); Blinkenberg 1926, 198; Blinkenberg 1931, 90 nos. 132–133 pl. 9 (spectacle fibulae); 86 pl. 8 no. 103 (three fibulae with alternated segments of amber and ivory) for Lindos; Dunbabin 1962, 433–437 nos. A124–A194 (c. 60 spectacle fibulae). 439–442 nos. A239–A264 (fibulae with alternated segments of amber and ivory). 523–524 nos. H–H7 for Perachora; Kilian-Dirlmeier 2002, 29 nos. 371–373 (3 fibulae with amber coatings). D. Waarsenburg followed suggestions proposed by the mentioned scholars and presumed an import from Italy to the Aegean for some objects such as bronze fibulae coated with amber (Waarsenburg 1995, 428 n. 1118, with literature), thoroughly analysed in this regard by P. G. Guzzo (Guzzo 1982). The amber finds from Verucchio throw new light on the topic of the amber-coated fibulae. Amber workshops were presumably active at several sites: according to F. Lo Schiavo, a particular type should be Pithecusan (Lo Schiavo 2006, 259 type 172.2; Lo Schiavo 2010, type 172.2, 391 f. nos. 2859–2867). The specimens of the Pithecusan type were mostly found at Pithecusae, but two further examples have been found in southern Campania. Two comparable exemplars came to light, at Perachora (Dunbabin 1962, 440 no. A240) and Lindos (Sapouna Sakellarakis 1978, no. 1581), respectively.

1244 The amber pins of Ephesian type outside Ephesos have been identified by Jacobstahl 1956, 34 and 88, with literature (Lamb 1934/1935, 154).

1245 Hogarth 1908a, 214–216.
AMBER FINDS FROM THE ARTEMISION AT EPHESOS: CONCLUDING REMARKS

164

ered in the area west of the basis. Beads (cat. 541–591) come from all parts. The statuette cat. 540 was discovered in the area east of the basis. As already noted, the finds in the Green Schist Basis belong to the rich foundation deposit for Naos 2: it consisted of approx. 800–1,000 small precious objects in gold, silver, electrum, ivory and amber, including 24 electrum coins.1246

According to the excavation data of the Austrian excavations, the amber finds were concentrated inside the sanctuary of Artemis in four areas, two larger and two smaller ones, which have been carefully analysed by M. Kerschner in some contributions focusing on the find-spots of the electrum coins in the sanctuary and reviewed by him and A. M. Pülz in this volume. Further single amber finds are also known. The reconstruction of the stratigraphic sequences of the contexts of the electrum coins can be used as a reference because, in the same layers, the coins were associated with carved amber and other precious votive offerings: the related layers are generally datable no later than the 7th century BC. The careful and recent evaluation of each detail related to the excavation and the related finds allows us to offer only a brief synthesis here: further details can be found in the contributions of M. Kerschner and A. M. Pülz already mentioned1247. The four main areas are listed here (diagram 2; pl. 29):

1. The filling of the Green Schist Basis was dug out in 1904–1905, during the British Museum excavations lead by D. G. Hogarth (pl. 29). The Green Schist Basis is located inside the second temple of Artemis, Naos 2, and the votive offerings include electrum coins and hundreds of small jewels of gold, silver, ivory, and amber. D. G. Hogarth interpreted them as belonging to a foundation deposit and classified it as a closed context, now dated around 640–620 BC. The related amber finds are easy to identify in the present volume because they are preserved in the Archaeological Museum in Istanbul and the British Museum in London (cat. 540–659); they comprise 120 amber items, all belonging to the following categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figured</td>
<td>1</td>
</tr>
<tr>
<td>Beads</td>
<td>51</td>
</tr>
<tr>
<td>Pendants</td>
<td>39</td>
</tr>
<tr>
<td>Spacers</td>
<td>4</td>
</tr>
<tr>
<td>Fibulae</td>
<td>19</td>
</tr>
<tr>
<td>Inlay</td>
<td>1</td>
</tr>
<tr>
<td>Pinheads</td>
<td>3</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>1</td>
</tr>
<tr>
<td>Unfinished</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

2. The »Hortfund« of Naos 1a was explored in 1987 by the Austrian Archaeological Institute (pl. 29). In the second half of the 7th century BC, the first temple of Artemis, Naos 1, was damaged by flooding

1247 M. Kerschner – A. M. Pülz, above chap. 1.
so that reconstruction at a higher level – Naos 2 – became necessary. Naos 1 was infilled with a rammed earth layer, as Hogarth described it, of approx. 0.50 m, the surface of which formed the floor of the subsequent Naos 2. Before the Rammed Earth Layer was infilled, a hoard (Ger. »Hortfund«) was deposited intentionally on the floor of the then abandoned Naos 1 in the building phase identified in the contribution to this volume by M. Kerschner and A. M. Pülz and called Naos 1a. A shallow pit was probably made for this purpose or an existing void in the ground was used to deposit the precious votive offerings. This hoard consisted of approx. 1,500 small objects made of precious materials, such as gold, electrum, silver, bronze, ivory, faience, rock crystal, glass, and amber. Naos 1a was short-lived and was followed by the newly built Naos 2. The foundation deposit for Naos 2 was deposited in the Green Schist Basis and it was excavated in 1904–1905. As the third temple, Sekos 1, was built in the late 7th century BC, Naos 2 must be dated sometime before that and Naos 1a immediately before Naos 2. Dates around 650–640 BC for Naos 1a and around 640–620 BC for Naos 2, respectively, may be presumed. The »Hortfund« dates to 650–640 BC and includes the following amber finds:

Table 7a Amber finds of the »Hortfund«: main metrical units

<table>
<thead>
<tr>
<th></th>
<th>870232</th>
<th>870246</th>
<th>870281</th>
<th>870352</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beads</td>
<td>62</td>
<td>78</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Pendants</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Spacers</td>
<td>30</td>
<td>56</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>Fibulae</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Inlays</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Indeterminate</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>141</td>
<td>61</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 7b Amber finds of the »Hortfund«: other metrical units

<table>
<thead>
<tr>
<th></th>
<th>870232</th>
<th>870245</th>
<th>870272</th>
<th>870298</th>
<th>870324</th>
<th>870341</th>
<th>870348</th>
<th>870349</th>
<th>870353</th>
<th>870354</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Pendants</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacers</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fibulae</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

The four main metrical units yielded 401 amber finds, to which must be added a further 59 ambers recovered in the metrical units explored in the adjacent areas, so a total of 460 amber elements from the »Hortfund« with the following typology:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figured</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beads</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendants</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacers</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibulae</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlays</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminate</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1250 This is a minimum number, because fragments (cat. 294–296) are not included. See concordance list 1 for the further ambers from the adjacent metrical units explored in the excavation season 1987, here listed in the contribution by M. Kerschner and A. M. Pülz, above chap. 1.
3. The filling east of the northern Limestone Basis D was excavated in 1984–1990 by the Austrian Archaeological Institute in an area located at a distance of approx. 15–20 m north-west of the contemporaneous temple, Sekos 2 (pl. 29)1251. According to the recent interpretation suggested by M. Kerschner, it is likely that sacrificial residues and precious votive offerings, including gold, bronze, ivory, faience, and some amber objects, which were found around and east of the Limestone Basis D, constitute a secondary deposition of objects, which had accumulated gradually over time. Votive offerings, among them a few amber objects, and sacrificial remains were deposited in an ashy layer in around 590 BC1252. Among the amber objects, two artefacts deserve a special mention: a couple of very fine beads (\textit{cat. 275–276}, type 6d), perhaps originally belonging to spinning tools, acting as decorative elements of wooden distaffs.

Table 8 Amber finds beneath the Limestone Basis D

<table>
<thead>
<tr>
<th></th>
<th>860000</th>
<th>860155</th>
<th>860203</th>
<th>860217</th>
<th>860344</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Beads</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlays</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminates</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

4. The area of the Limestone Basis B, situated 8 m east of the contemporaneous Sekos 2, was excavated by the Austrian Archaeological Institute in 1993 and 1994. Basis B was built around 600 BC and formed part of the enlarged floor area surrounding the temple1253. Beneath the Basis B and thus preceding it, a sequence of two major fillings (labelled A and B) and five depositional layers (C–G) was found. Both fillings were infilled to level the space for the floor area around 600 BC. They contained a few amber objects and precious votive offerings belonging to the late 7th century BC (pl. 29)1254. Among the amber finds, only the spacer \textit{cat. 474} was found in »Opferschicht D«, a layer earlier than the Basis B and dated to 620–615 BC.

Table 9 Amber finds beneath the Limestone Basis B

<table>
<thead>
<tr>
<th></th>
<th>940014</th>
<th>940085</th>
<th>940110</th>
<th>940135</th>
<th>940146</th>
<th>940242</th>
<th>940268</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendants</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Single amber ornaments have also been found in other parts of the temenos: a unique find would be the female bust \textit{cat. 1}, one of the most relevant figured pieces, which came to light in the open space to the south, in the area in front of the temple. In this area, no other amber finds or precious items have come to light1255.

1251 Kerschner 2020, fig. 15.
1253 Kerschner 2020, 234 f. fig. 15.
1254 Kerschner 1997, 182 for the chronology of »Opferschicht D«, 225 for the stratigraphic sequence; recent general overview in Kerschner – Konuk 2020, 137–143 figs. 23–28.
1255 The stratigraphic sequence and the finds from this area (Ger. »südlicher Tempelvorplatz«) have not yet been studied systematically, and therefore it is not yet possible to define the context of the bust (M. Kerschner, pers. comm.). For the open space to the west, see Kerschner – Konuk 2020, 147 with n. 230; 168.
These contextual datings provide a *terminus ante quem* for the production of the amber objects. The date indicated by the most recent finds of a stratigraphic context is the date of the deposition of this layer. The individual objects contained in it may, however, be older, possibly even significantly so.

Figured

Figured carved ambers are very rare in the Aegean. The Artemision yielded the female bust [cat. 1](#), the pair of human heads [cat. 2–3](#), the scarab [cat. 4](#), the bird protome [cat. 5](#), and the female statuette [cat. 540](#) (pl. 30, 540). The most relevant pieces, such as the bust ([cat. 1](#)) and the two female heads ([cat. 2–3](#)), are pierced by unnecessary through-borings. Evidently, these are traces of these works’ previous uses. Reuse was common in the amber-carving field because of the high value of the resin fossil. This occurrence is particularly likely in a region such as Ionia, so far removed from the amber’s land of origin. The Daedalic bust [cat. 1](#) initially belonged to an unidentified polymateric artefact and was reused, probably in a suspended horizontal ornament such as a chain or a necklace. The heads [cat. 2–3](#) form a pair and can originally be connected to metal pins, which were among the most popular female votive offerings in the sanctuary of Artemis. Probably the two amber heads belong to the same tradition as the two gold pinheads, each with two human heads, also from the Artemision and already mentioned (above, chap. 2.1), which reproduce the deity or her devotees. Finally, they were probably used as pendants on a chain or a necklace. The geometric style characterises the two heads and indicates that these are indeed among the earliest amber objects offered to Artemis, if not the earliest of all. The bird protome [cat. 5](#) and the female statuette [cat. 540](#) are quite rare items with few comparisons and were probably carved at Ephesos. Figured amber finds from the Artemision are strictly connected to local carving activity in other materials, especially ivory. In general, figured amber finds from the Artemision are dated no later than 600 BC.

Beads, pendants, and spacers

The artefacts of these categories are the most numerous of all: 342 beads, 92 pendants, and 143 spacers make up a total of 577 specimens (pl. 31). 460 items were found in the »Hortfund« of Naos 1a, and 426 of them belong to the three categories addressed here. The remaining elements were recovered in one significant concentration, in the Green Schist Basis, and in two smaller clusters inside the sanctuary. Based on their shape, 342 beads have been classified according to seven main types and eight subtypes for a total of 15 more or less different shapes. The comparisons identified for each shape demonstrate the substantial coincidence in the chronology among main types because, outside Ephesos, beads of different shapes often belong to the same ornament. Two types, cylindrical beads with faceted surfaces (type 4b) and cylindrical beads with spiral ends (type 4c), find few comparisons outside Ephesos, supporting the hypothesis of a local production. The beads of the type 6d might originally have belonged to a spinning tool such as a wooden distaff. The 92 pendants have been classified into 6 types and 12 subtypes for a total of 18 shapes. In addition to well-known shapes, such as the ubiquitous type 3 bulla-shaped pendants, common to several amber-carving traditions in different countries and probably related to the myth of the origins of amber itself, there are other works, perhaps of local origin, such as the type 4 bottle-shaped and the type 6 wineskin-shaped pendants for which documentation is quite scarce. Depending on the direction of the through-borings, one has to distinguish between horizontal and vertical pendants, which might occur in different positions within the same ornament, as shown by close comparisons.

Finally, 143 spacers are the most significant elements of the groups because they reveal the original presence of multi-row suspended ornaments, which one can imagine in several positions.

around the breast, neck, and waistline of the women, as pectoral jewellery, necklaces and girdles. Similar bird-shaped spacers with a different pattern of through-borings, i.e. either horizontal and vertical (spacers type 4) or only horizontal (spacers type 5), have also come to light. They point to the presence of multi-row suspended ornaments including upper and lower rows. From the lowest row of the ornament, vertical pendants hung from threads strung through the vertical borings of the spacers. The similarities in size, shape, and colour of several beads and pendants and all the spacers also point to the hypothetical reconstruction of an elaborate, multi-row ornament composed of hundreds of carved ambers. The finds’ position proves that the whole jewel was deposited in the floor of Naos 1a, presumably in a shallow pit made for this purpose, around 650–640 BC as part of the »Hortfund«. The lavish artefact explains the difference between the high number of amber offerings at Ephesos and the relative scarcity of amber finds in other Greek sanctuaries. The imbalance depends upon the presence of this one ornament (below, chap. 5.6). The most peculiar elements are the bird-shaped spacers, and these find close comparisons with similar ornaments in the examples of the Oenotrian handicraft of northern Calabria and south-western Basilicata in Southern Italy. Triangle-shaped spacers (type 7) also occur in girdles from Italian contexts. However, in these cases, the triangular spacers are usually combined with lozenge-shaped spacers: only in the Artemision at Ephesos are exclusively triangle-shaped spacers documented. This fact helps to prove that these spacers are carvings executed outside of Italy.

Fibulae

The votive offering of an uncertain number of fibulae, corresponding to about 20 specimens, does not constitute the whole of the original gift – presumably fibulae were offered together with precious textiles and dresses (pl. 19, 2). It is likely that the offerers were mostly women, as the typology of the fibulae and the female deity of the sanctuary indicate.

I. Kilian-Dirlmeier explored the general possibilities as to whether male or female offerers made specific votive offerings to Greek deities.

The scholar observed the popularity of offerings such as metal pins and fibulae in several sanctuaries dedicated to female deities and concluded that the female offerings were most numerous, meaning women were the most common offerers in Greek sanctuaries. Male offerings were less common, either because they were made of perishable materials or on account of their actual smaller quantity. The inspiration of the fibulae coated with ivory or bone and inlaid with amber (cat. 489–490 plus single pieces belonging to further specimens for a total of 4–5 fibulae) came to the Greek world from Italy, where such fibulae are concentrated particularly at Verucchio and in Campania. Fibulae and pins are dress-fasteners and were likely also offered together with garments in Greek sanctuaries.

Inlays

The amber inlays from the Artemision are stylistically rooted in the Eastern Greek tradition of ornaments for wooden furniture. Together with bone inlays, they constitute precious proof of the existence of a local carving activity; as the recovered inlays are too few to belong to a complete ornamentation set, they probably testify to work in progress on wooden inlaid artefacts. The inlaid items (klinai (?), boxes (?)) have not been identified because no concentration of inlays has been found – instead, the objects were scattered over the entire sanctuary area.

1258 See above, chap. 2.5.3. S. Bianco recently noted some influence exerted by the handicraft of Verucchio on the few fibulae coated with amber from Basilicata (Bianco 2020, 115). A fibula from the grave Chiaromonte 258 has been reproduced by Montanaro 2016, 365 f. fig. 4.
The inlays from the Artemision play an important role in the framework of Greek inlaid wooden furniture. Their date, in the late 7th century BC places them among the earliest, if not the earliest, attestation of inlay in Greece and allows researchers to fill the chronological gap between the earlier finds in Etruria, where amber was largely available, and those in the Greek world.

Pinheads

Pins made from electrum, gold, silver, bronze, ivory and bone were a very popular votive offering in the Artemision at Ephesos. Some amber pinheads have been found, without needles, which were probably made of bone or ivory (pl. 25, 1). Amber pinheads were probably an Ephesian special production.

Raw and unfinished amber

When compared to the number of areas potentially requiring huge amounts of inlays, the number of unfinished amber lumps (cat. 535 and 651: pl. 25, 2) and the scanty number of inlays indicate that fossil resin was worked locally at the Artemision and illustrate the high value assigned to the precious substance. In the sanctuary of Artemis, there is archaeological evidence indicating that materials such as gold, bronze, and carving of bone and ivory were worked locally (above, chap. 2.6).

5.6 A GIRDLE FOR ARTEMIS

436 amber pieces belonging to several categories of carved ambers, namely 258 beads, 42 pendants, and 136 spacers, have been found in the extremely circumscribed area of the »Hortfund«. They show similar style, dimensions, colour, and, if present, a similar type of decoration, so that one can imagine they all once belonged to one single votive offering, a female ornament. 136 spacers are clear clues to the identification of the ornament as a suspended one, constituted by several rows of carved ambers, which were distanced and kept in order by the spacers. Surprisingly good comparisons between the spacers from Ephesos and artefacts from Oenotrian female graves in Southern Italy allow us to identify the suspended ornament: the shapes and numbers agree with the identification of the presumed ornament as a multi-row girdle (above, chap. 2.4). This chapter aims to explore this possibility and reach a plausible idea of the original aspect of the girdle.

Amber girdles have been identified in Oenotrian female graves in modern-day south-western Basilicata, datable from the late 8th to the early 6th century BC, as mentioned (above, chap. 2.4). They have several rows of ornaments, composed of beads, spacers of various shapes (geometric and bird-shaped), pendants of various shapes (with vertical and horizontal through-borings), but all of them have two end-spacers at both extremities used to collect together the various strings of the ornament (pl. 33).

In the Artemision, the spacers were found in four metrical units, i.e., ART 870232, ART 870246, ART 870281 and ART 870352 (pl. 34, 1). The two end-spacers (type 1) are similar in shape and size, each showing five borings, and were found in the same metrical unit in the »Hortfund«, i.e. ART 870352 (pl. 34, 2): they may belong to the ends of the same girdle and are precious indications of the existence of only one ornament originally made up of five rows, sustaining a lower row of pendants. Several spacers, bird-shaped (28 spacers, type 5), triangular (55 spacers, type 7), and round (16 spacers, type 8), respectively, belonged to the upper rows of the ornament, while bird-shaped spacers with three borings (32 spacers, type 4) and some pendants all belonged to the lowest row (pl. 35, 1. 2). The original aspect of the upper part of the girdle is highly hypothetical.

1259 Jacobstahl 1956, 33.
a layout comprising opposing rows of triangular spacers so far constituting the only certainty. Pendants with vertical borings (17 pendants, type 5a) might be hung from the lowest row of the girdle thanks to the vertical boring of the type 4 bird-shaped spacers. To the lowest row also belong pendants with a horizontal boring (9 pendants, type 5b), possibly mixed with some others with a vertical boring: both type 5a and type 5b pendants have a similar decoration, which is visible only if the pendant is hanging downward. Another 16 pendants and several beads of various shapes should belong to the same girdle, and were strung along horizontal and vertical rows. One has to presume a quite strict structure, in which the spacers with several through-borings played the most important role, providing both connectivity and a certain solidity to the entire composition. This is particularly true for both ends of the ornaments, where the end-spacers constituted a crucial point for the girdle and where one can locate the round spacers with several borings (15 spacers, types 8b and 8c). The textile thread was surely a key element (pl. 36, 1, 2), and one should postulate that it ran more than once through the borings and was reinforced by well-tied knots.

We must point out that we will probably never know what the girdle offered to Artemis really looked like: the original appearance might be similar to the one we can only imagine. If we try using all the carved ambers found in the »Hortfund« and some others, we can reach a total of about 450–500 components – this takes into account that a percentage of the tiny amber objects was inevitably lost or destroyed in the groundwater or during the modern excavation of the sanctuary. The evidence of two end-spacers indicates the original presence of one girdle. The suggested reconstruction is based on the actual quantity of carved amber found in the »Hortfund«, but the original length of the girdle remains highly hypothetical (pl. 36, 3).

I am inclined to exclude the presence of beads of glass, faience, and other materials in the composition of the girdle, in spite of the fact that beads of this type have been found in the Artemision and that they were also numerous in the »Hortfund«: the quantity of amber beads is sufficient to presume the original presence of a girdle completely composed of amber. On the other hand, the beads of materials other than amber inserted in a few examples of polymateric ornaments from Oenotrian female graves would indicate the possible inclusion of beads of glass, faience, and other materials in the girdle from the Artemision. It is appropriate to conclude that before passing a definitive judgement we must wait for the final publication of all the beads found in the »Hortfund«, as these are still unpublished.

The votive offering of a unique artefact such as the amber girdle in the sanctuary of Artemis at Ephesos raises a series of questions. Were girdles a common votive offering to Artemis? Was the girdle a local product or was it imported to Ephesos, where it remained an isolated artefact? When was it offered, and by whom?

After all, in Greek sanctuaries outside Ephesos, girdles were a well-known votive offering to female deities but were usually made of bronze. G. Klebinder-Gauß has recently explored

1262 On possible steps in the excavation process during which very small objects may have been lost see Kerschner – Konuk 2020, 157–159 figs. 37–38.
1263 As a comparison, it may be worth remembering that the girdle found in situ in the grave Chiaromonte 156 consists of almost 300 components (S. Bianco in: Ambre 2007, 242 no. III.264, here pl. 33, 2).
1264 Pulsinger 2008 provided an overview of beads of glass and other materials found in the Artemision. These beads are being prepared for publication by A. M. Pülz and B. Pulsinger, Pulsinger – Pülz (in preparation).
1265 As composite ornaments, one can mention the diadem with bone, ivory, glass, amber and scarabs from Alianello, grave 315 (C. Gaslain in: Magie 2005, 61; S. Bianco in: Princesses 2012, 339–343) and the girdle with bronze, ivory and amber beads from the grave Alianello 594 (M. Tagliente in: Magie 2005, 80; S. Bianco in: Magie 2005, 94). Both graves date to the 7th cent. BC. M. Kerschner (personal communication) suggested that possibly amber beads were lost and they may have been substituted with beads of other material such as glass or faience, amber being rare in the Aegean.
1266 Klebinder-Gauß 2007, 93–108 provides an overview of the main cases of girdle finds in Greek sanctuaries devoted to female deities and explored the possible meanings of the votive offerings. A particular belt buckle made up of a gold plate within a bronze frame has been found in the sanctuary of Artemis at Ephesos (Pülz 2009, 136 f. 313 no. 433). D’Acunto 2000 reviewed the images of belts in the Greek statuary of the 7th cent. BC.
the purpose of votive offerings of girdles to deities in general, and to Artemis in particular, in the publication on the bronze girdles brought to light in the Artemision at Ephesos. The ancient literary tradition stressed certain moments in the life of a woman such as virginity, marriage and giving birth, which justified the gift of an ornament closely connected to the waistline and therefore mostly to the function of procreation. Other meanings linked to religious beliefs were sometimes associated with female adornments. An example is provided by female necklaces with bronze pendants. Ornaments of this type were deposited around 600 BC as funerary interments in a grave in Megara Hyblaea (province of Syracuse) and in the second half of the 6th century BC as votive offerings in the sanctuary at Satricum (province of Latina). However, this type of link has never been suggested for girdles.

To determine the place where the girdle was produced, we must examine the framework of the relationship between the Ionian world and the Oenotrian cultures in which amber girdles are common. In the composition of the complex belt, bird-shaped spacers play a particularly important role, as they can assume both a religious meaning and a functional purpose (above, chap. 2.4). The earliest finds of amber bird-shaped spacers are documented in the Oenotrian cemetery of Macchiabate (commune of Francavilla Marittima, province of Cosenza), in female burials dated to the third quarter of the 8th century BC onwards – others appear somewhat later, in the female Oenotrian burials in Basilicata, dated from the late 8th to the early 7th century BC (above, chap. 2.4). A relationship between Southern Italy and Ephesos was possible through Siris. This Eastern Greek city was founded by the Ionians from Colophon on the coast of modern-day Basilicata and its active role as a link between Ionian and Oenotrian aristocracies has recently been suggested. According to a common pattern in the colonial relationships, one can presume marriages between Greek colonists and Oenotrian women, so that the personal relationships became a driving force in the general framework of the contacts between the Greek cities of the Eastern Mediterranean and Southern Italy or the Italian Far West.

The Oenotrian finds from Francavilla Marittima indicate that the fashion for amber girdles was created in Southern Italy in the last quarter of the 8th century BC, and although it developed further in Basilicata, it failed to influence the production of a similar ornament in Ionia: here the girdle appears as an isolated element, and anyway, in no case was amber itself as common as it was in the Italian peninsula. Although the Ephesian girdle follows Italian (Oenotrian) prototypes and the stylised bird figures adopted for the spacers depend upon earlier Italian models, the carver was able to create a personal style, as testified by the rendering of the bird-shaped spacers and by the use of triangular spacers. Therefore, I am inclined to consider the execution of the girdle as a special commission assigned to a skilled (Oenotrian (?), East Greek (?)) carver active at Ephesos, who had become familiar with the carved ambers from Southern Italy within the framework of the relationships between the Oenotrian people and the Greeks of Siris or of other Greek foundations. The circles incised on several ambers are also an Ephesian peculiarity, almost a workshop’s trademark: the same is true for the round spacers (spacers, type 8), which have been tentatively associated with the girdle. The hypothesis of local work is, of course, open to doubt, because no other amber girdles from Ephesos or from Ionia have come to light: in future, amber finds will make it possible to verify this hypothesis.

According to local usage, the girdle was first offered to Artemis by a woman and then deposed in the filling on the floor of Naos 1 before Naos 1a was built. The polished and glossy surface of several ambers shows that the pieces were used for a short time so that one can imagine a very
brief exposition followed by the deposition in the earth. The most probable date for the chronol-
ogy of the girdle is around 650 BC or a little later, before the deposition date of the filling of
Naos 1a, placed around 650–640 BC. The jewel was probably buried wrapped in a cloth, as the
high number of fibulae with amber coating and belonging to the same votive deposit indicates:
some of them may have been used to close the cloth bag containing the precious amber girdle and
other ornaments. The cloth bag might possibly also include a precious dress and other perishable
offerings. Over time, the continuous infiltration of groundwater into the sanctuary’s central area
wore out and destroyed the cloth and dispersed the carved amber over a larger area.

Who offered the amber girdle to Artemis? Foreign votive offerings and western offerers
are generally rare at the Artemision, which is closely connected to local offerers and Lyd-
ian kings, as shown by the inscription on the marble columns of Dipteros 1, mentioning the
dedication of the columns by the Lydian king Croesus. For this reason, the votive offering
by an Oenotrian woman, whose possible presence in Ionia has never been suggested, seems
quite unlikely: the idea of a local production corroborates the hypothesis of a Greek offerer.
The amber girdle was probably offered to Artemis by a Greek woman capable of appreciating
a new ornament, locally produced under the influence of Oenotrian jewels from Southern
Italy. The girdle should be considered as a work produced as a special commission because
at Ephesos it remained a unique piece. The close connections between the Ionians settled in
Siris and the Oenotrian élites (below, chap. 5.7) favoured the reception of an Oenotrian style
belt in Ionia.

5.7 RELATIONSHIPS BETWEEN IONIA AND MAIN ITALIAN AMBER-
WORKING DISTRICTS

What were the overall relationships between Italian localities and Central Ionia? What do we
know about the cultural contacts between these two regions? Can one mention further reasons and
identify any clues to identify a restricted area?

From the first half of the 8th century BC, the Greek foundations in Southern Italy favoured
the extensive spread over the peninsula of their distinctive cultural elements, first among these,
of course, the Greek alphabets. On the other hand, the Greeks ›discovered‹ new customs
and new materials in Italy and increased the range of their craftsmanship. The relationships
were both complex and articulated: recent research has perceptibly changed the previous out-
look concerning the first contacts between Greek ›colonists‹ and local inhabitants in Southern
Italy and composed a fascinating picture involving a mix of cultures, dominated by interaction
and hybridity. In this new perspective, the area of the modern-day Basilicata plays a very
important role, showing how complex and various these relationships could be. The area over-
looking the Gulf of Taranto between the Spartan colony itself and Sybaris was free of Greek
foundations in the 8th century BC and only around 650 BC was the Greek colony of Siris founded
there. In the territory in which Siris was founded, Greek finds predating the foundation
of that city have been recovered – their interpretation is debated in the framework of the issue
about the location of early Siris. It is worthwhile to describe briefly the knowledge accrued so
far about the territory around Siris, as shown some years ago in an important symposium\(^\text{1275}\). Recent publications of the cemeteries of Siris in the area of modern-day Policoro (province of Matera) provided fresh data and, by renewing our perspective, allowed the (re)opening of the debate.

The south-west cemetery of Schirone at Siris yielded at least 125 burials, all placed within rare pithoi from Rhodes and Corinth and in trade amphoras from Miletos, Chios, Samos, Clazomenai, Lesbos, Athens, Corinth and other as yet unidentified Eastern Greek production areas, all dating to the first half of the 7th century BC\(^\text{1276}\). The burial rites and the absence of rich funerary interments allowed researchers to assign the cemetery to a Greek community and to identify the area of Schirone as the earliest cemetery created for the first immigrants from Eastern Greece and the Aegean. According to Mario Lombardo and further scholars, these were indeed the first settlers of this area before the actual foundation of Siris, which is dated ca. 650 BC\(^\text{1277}\). The large range of original provenance of the ›foreign people‹ from Eastern Greece and elsewhere is exemplified firstly by the trade amphoras, whose early shapes find few comparisons in Ionia itself, and secondly, by certain special finds, such as the unidentified (Eastern Greek [?]) trade amphora bearing a presyllabic Cypriot inscription\(^\text{1278}\). The settlement patterns of the earliest phase included mixed groups of people both of various overseas origins and locals, and this favoured the cultural contacts and the exchange of diverse types of knowledge, techniques and customs between individuals of different provenance and languages. The resulting mixed society is well reflected in the approx. 450 burials explored in the Western cemetery of Madonnelle at Siris, dated from the late 8th to the late 7th century BC; it mostly comprised cremations similar to those at Schirone, which are assigned to Greek individuals, but also included other inhumations showing individuals buried in a crouching position in accordance with local burial rites\(^\text{1279}\). The existence of single huts inhabited by indigenous people is attested by single sites dated to the late 8th to the early 7th century BC, including huts and coeval graves of individuals buried in a crouching position in the settlement area. Schematically, it seems to identify at least three types of burials in the territory of modern-day Policoro, related to the different settlement patterns of the district, i.e. 1. cemeteries with Greek cremation burials (Schirone); 2. cemeteries with Greek cremation burials and local people inhumated in a crouching position (Madonnelle); and 3. local people buried in a crouching position in the settlement area\(^\text{1280}\). A detailed interpretation of these data lies outside of the aims of this book. One can summarise that in general, the territory around Siris shows clearly how close the relationships between Greeks and Oenotrians were from the late 8th to the early 7th century BC onwards. Moreover, the intensity of cultural contacts in this area probably also favoured the presence of mixed communities and mixed marriages. How does this reflect upon the votive offering of an amber belt in the Artemision at Ephesos?

According to the schema developed by C. Ulf, cultural contacts among peoples of various origins are characterised by reciprocity\(^\text{1281}\), so that one can look for Ionian elements in Italy and Italic elements in Ionia\(^\text{1282}\). Generally speaking, we can identify the main flow from Ionia to Italy

\(^{1275}\) Siris 1986.

\(^{1276}\) The funerary interments from the necropolis at Schirone have been published by Berlingò 2005 and Berlingò 2016.

\(^{1277}\) Lombardo 2000, 200–204. 230–238 collected and discussed ancient literary sources about Siris.

\(^{1278}\) The Cypriot inscription was identified by G. Pugliese Carratelli (Pugliese Carratelli 1971) and the amphora was later published by Berlingò 2005, 344 no. 16 figs. 10–12.

\(^{1279}\) 68 funerary interments from the necropolis at Madonnelle have been published by Berlingò 2017.

\(^{1280}\) Giardino 2010 furnished an overview of the archaeological sites around Policoro, recently analysed by Altomare 2022, 127–134 no. 75 (Policoro), with previous literature. De Stefano 2022, 20–33.

\(^{1281}\) C. Ulf reviewed the literature on the theoretical approach to cultural contacts in antiquity and believes reciprocity is a key element in contacts among people of different cultures (Ulf 2009, 106–110).

\(^{1282}\) Good examples are known from the 6th cent. B.C: J. Spier was able to identify a gem-cutter trained in an East Greek workshop, who probably travelled west to Etruria in the late 6th cent. BC and he, in turn, had an Etruscan apprentice, the Master of the Boston Dionysos. Other members of the same East Greek workshop probably influenced gem-engravers in Lydia (Spier 2000). J. Barron presumed the adoption of Latin names by East Greeks (Barron 2004).
and a minor one flowing in the opposite direction from Italy to Ionia and the Aegean: amber is one of the few elements travelling from west to east1283. According to this view, the votive offering of an amber girdle influenced by Oenotrian artefacts in a Greek sanctuary in Ionia leads to the search for any contacts going in the opposite direction, namely, from Ephesos to Italy, and more specifically from Ephesos to modern-day Basilicata. We will also follow the same procedure for the Adriatic district, as we have seen how this constituted the main hub for amber trade in pre-Roman times all over the Mediterranean.

The perspective we suggest is supported by some finds from Basilicata, which have recently been identified, some as purely Eastern Greek works, and others as probably Eastern Greek imitations of Phrygian products, all dated to the second half of the 7th century BC. Their identification as personal ornaments (fibulae and pins) corroborates the hypothesis of a movement of people between Southern Italy and Ionia, particularly Ephesos, where close comparisons with the Artemision votive offerings have been identified1284. One can also take this argument one step further. A silver fibula from grave 154 of the Oenotrian cemetery of Chiaromonte, similar to Phrygian jewels, has been connected to Northern Greek or Balkan fibulae. Two silver necklaces from the female graves 142 and 157 of the same cemetery are isolated in those contexts and can actually be connected to jewels from Cumae in Campania; it is worthwhile to point out that, regarding this comparison, we do not have in-depth knowledge of the jewels from cities such as Siris and Sybaris1285. Common to each jewel from Chiaromonte is the combination with other precious items, such as a gilded pendant in the necklace (grave 142), a silver chain with two silver pendants in the fibula (grave 154), or a silver pendant on the necklace (grave 157). New jewels have been created by joining various objects of different origin. All three of the graves mentioned belong to the first half of the 6th century BC1286. A further silver find has come to light in the \textit{anaktoron} explored at Torre di Satriano (province of Potenza) in Basilicata, which yielded the impressive remains of a building dated from ca. 550 BC onwards, and a silver brooch reproducing a bird with open wings, identifiable either as an eagle or more probably as a hawk1287. There are no stylistic comparisons for the jewel in Southern Italy, but the subject is strictly connected to the series of gold and silver brooches found in the Artemision at Ephesos and probably also in other Ionian localities1288. The Ionian brooches reproduce a hawk with open wings. On the one hand, this bird is connected to Artemis through Cybele, whose early cult influenced the worship of the Greek deity in the sanctuary at Ephesos. On the other hand, the hawk (Gr. μέρμνος) was the heraldic animal of the Mermnad dynasty of Lydia, whose connections with Ephesos were deep. According to W. Rudolph and G. Platz-Hoerster, similar brooches were produced in the second half of the 7th century BC by the same workshop, active at Ephesos, which had »more than one master and worked for at least one

1283 Greek foundations in Italy have been and are subject to countless studies, which are continuously reassessed: see Donnellan et al. 2016a and Donnellan et al. 2016b. With special regard to Anatolia and Etruria, the proceedings of the conference held in Rome 2016 are a reference point (Baughan – Pieraccini 2023).

1284 Verger 2014; Verger 2016.

1285 Similar silver jewels are also documented in Greek cities in Sicily such as Megara Hyblaea and Syracuse (P. G. Guzzo, personal communication).

1286 Guzzo 2014, 153 with previous literature for the jewels from the three Oenotrian graves, the best images of which have been reproduced in Trésors 1998, pls. 20 (grave 142), 21–23 (grave 154), 25 (grave 157). Verger 2014, 20 suggested the silver fibula from the grave Chiaromonte 154 should be classified as a work of Northern Greek or Balkan origin, but he did not discuss any of the jewel's other features.

1287 P. G. Guzzo in: Osanna – Guzzo 2015, 9–11 no. 2. A female grave of the late 5th cent. BC at Orsara di Puglia (province Foggia) also yielded a bronze brooch with silver coating reproducing a hawk with open wings, which is probably a late echo of the Ionian brooches (Bruscella 2016, 239 no. 32k).

1288 In the Artemision at Ephesos several gold and silver brooches have been found, both in the English excavations (six gold examples reproducing hawks »with open wings«: Hogarth 1908a, 97 nos. IV.21. IV.22–X.35. IV.23. IV.24–X.41. IV.27. IV.28–X.40, for the back: IV.28–X.40; IV.22–X.35, IV.24–X.41), and in the Austrian excavations (two specimens, in gold and silver respectively: Pülz 2009, 221 cat. 26 and 27 pls. 4–5 colour pl. 5, 51–52). Seven other silver brooches are preserved in North America, and one gold brooch is in Berlin (Pülz 2009, 51 f.).
5.7 Relationships between Ionia and the main Italian amber-working districts

According to P. Jacobstahl, another possible example of Ionian or Ephesian import to Italy is a silver pin found several years ago on the Tyrrenian coast, in northern Calabria, at Santa Maria del Cedro (province of Cosenza) in the territory of Laos. The pin was found in a female grave with other Greek funerary interments, later than the pin itself, which can be dated no later than the first half of the 6th century BC: the imported jewel had probably been held as a precious heirloom for several years before being placed in the grave. Both the brooch and the pin, conceived as personal ornaments, can be originally related to Ionian women and probably to Siris: the brooch could have been considered as an exotic *keimelion* in an indigenous context, while the pin might originally have belonged to an Ionian (Ephesian?) woman in Italy.

Very interesting results emerge when comparing the stylistic characteristics of the silver ornaments and the results of the laboratory analysis of the silver used for the necklaces from the graves Chiaromonte 142 and 157, for the fibula from the grave Chiaromonte 154 and for the brooch from Torre di Satriano: the composition of the silver used in each jewel gave different results, showing the use of different metals, each with its own unique peculiarities. These results seem to corroborate the idea of distinct provenances, although unknown, for each type of silver, and perhaps also of the jewels themselves, thus confirming the possible existence of open societies in Basilicata in the first half of the 6th century BC.

It is hard to identify Ephesian or Ionian elements on the Adriatic shores of Italy: notoriously, Aegean imports to Verucchio are very few. On the other hand, Adriatic artefacts indicate contacts with the Aegean already in the 7th century BC, as in the case of three bronze fibulae found in the sanctuary of Hera at Samos, one of them probably produced in Emilia-Romagna at Verucchio. Regarding Verucchio, one can also presume the export of precious textiles, which is hard to verify archaeologically. From a *longue durée* perspective, this relationship is also documented later. A special shape of Etruscan bronze funnel from Panticapaeum on the northern shore of the Black Sea, probably produced in Emilia-Romagna in the late 6th century BC, bears a Greek inscription declaring it as a votive offering to Artemis Ephesia: it was first brought from Italy to Ephesos and then offered in a sanctuary in the remote Greek colony of Panticapaeum founded by Milesians. The find shows how broad and intense the connections in the Mediterranean and beyond were, and how our present-day understanding is still casual and unsystematic.

To sum up, a review of our actual knowledge indicates the presence of settlements inhabited by Ionians and Oenotrians on the Ionian coast of Basilicata, in the area of Policoro, from the 8th century BC onwards, which means that these two peoples enjoyed close relationships with one another. The archaeological record also includes personal belongings of Ionian women connected to the indigenous world and testifies to the use of mixed jewels, obtained from precious elements.

1289 Quote from Rudolph 1995, 57. 75 f. cat. 13 F; see also Platz Horster 2001, 23 f. for the connection of the hawk with female deities.

1290 Galli 1932, 325–328 for the grave; 326 fig. 2 for the silver pin, classified as Ionian by Jacobstahl 1956, 34 fig. 133; Guzzo 1993, 298. Similar shapes occur in bronze in the Artemision at Ephesos: Klebinder-Gauß 2007, 71 f. and 240 no. 288, pl. 20.

1292 Bentini et al. 2020, 385 f. mention a few Aegean imports to Verucchio. The Greek imports to Emilia dating back to the 7th–6th cent. BC have been listed and commented by Lippolis 2000.

1293 Among the three specimens of bronze fibulae, a pair of navicella-type fibulae is well known (von Hase 1997, 297 figs. 5.4) and a dragon-shaped fibula has recently been identified (Bentini et al. 2020, 385 f. fig. 3 for this fibula). The origins and the early worship phases in the sanctuary at Samos have been reviewed by Walter et al. 2019 (169 f. for the mention of amber finds in the Artemision at Ephesos).

1294 The Iron Age textiles from Verucchio, which are one of the most relevant textile groups throughout the Mediterranean, have been reviewed by Stauffer 2012, Raeder Knudsen 2012 and Stauffer – Raeder Knudsen 2015. The remains of raw blue pigments (Isatis tinctoria) were identified in the graves Lippi 32/2006 and Lippi 40/2006 and have been connected to their usage as colouring for textiles (Rottoli et al. 2015, 112. 117; Bentini et al. 2020, 386).

of different origin, also connected to Ionia and Ephesos. The connection between the sanctuary of Artemis at Ephesos and the Oenotrians, whose artisans were able to develop the models for the amber belts, seems to be thus attested. Therefore, we can conclude that the model of the girdle was developed in Italy and then transmitted to Ionia. Probably the girdle was a special commission assigned to a skilled (Oenotrian [?], East Greek [?]) carver active at Ephesos, who had become familiar with the carved ambers from Southern Italy within the framework of the relationships between the Oenotrian people and the Greeks of Siris or of other Greek foundations in Southern Italy.

The connections between Verucchio and the Adriatic area and Ephesos and Ionia are not as strong as those linking Basilicata and Ephesos. Nonetheless, they can be substantiated by some clues, which provide enough evidence to presume that the import of raw amber to Ephesos actually travelled through the Adriatic channel. Probably skilled carvers of different origins travelled to Ionia together with the raw amber. The dense Mediterranean framework of the 8th to the 7th century BC included a whole universe of nuances and gradations, and the identification of single actors is not easy.1296

5.8 THE ARTEMISION AS AN AMBER-WORKING CENTRE

The development of a taste common to female aristocracies in the late 8th to the 7th century BC is a well-known phenomenon in Mediterranean and Central European societies. It also includes elements traditionally associated with the female sphere, such as careful work on clothes, using precious wool-crafting tools. Therefore, it is hardly surprising to find similarities between the images reproduced on a late Hittite stone funerary stele from Maraş (South-Eastern Türkiye) in the 8th century BC, and on an ivory statuette of a spinner from Ephesos or on an Etruscan bronze rattle from Bologna in the 7th century BC1297 (pl. 37, 2). The female offerer of the amber girdle to Artemis belonged probably to these elites.

The importation to Ephesos of a substance such as amber, an extremely exotic substance in the Eastern Mediterranean, is an exciting phenomenon. If the early date of the two Geometric heads (cat. 2–3) is correct, this would mean amber was already known in Ephesos before the girdle’s arrival. In this context, we must stress the Baltic origin of the amber used in Ephesos, according to the samples analysed by FTIR (above, chap. 3), and the presence of unfinished pieces, as these prove the importation of amber as a raw material (above, chap. 2.8).

The two Ephesian heads (cat. 2–3) have a properly Geometric style so that one can presume their production occurred directly in Ionia and at Ephesos. They may possibly be the work of local carvers, more familiar with ivory carving than with amber: this is attested by various drillings, the reuse and the different functions of the two heads and of other figured pieces. The amber-working testifies a very high level of technical ability already in the early finds because the drillings are

1297 Schachner – Schachner 1996 and Gruber 2004, 89 fig. 48 for the late Hittite stele. Şare 2010, 72 fig. 12 furnished literature about the ivory statuette from the Artemision at Ephesos and suggested it was a distaff handle. The literature on the rattle from Bologna ranges at least from Morigi Govi 1971 to Torelli 2011, 201 ff. Iron Age textiles from Italy are collected and discussed by Gleba 2012 (231 for wool-working tools). Regarding wool-working tools in precious materials, one can mention amber sets from several burials belonging to the late 8th–early 7th cent. BC in Verucchio such as the graves Lippi 24/2005 (pl. 37, 2), 47/2006 (pl. 37, 3), 23/2005 (pl. 37, 4), 58/2007 (respectively Le ore 2007, 180 nos. 122–123; Princesses 2012, 257 no. 27; Poli – Privitera 2018; Ghini – Poli 2018) and from Vaglio, grave 102 (early 6th cent. BC: M. Tagliente in: Magie 2005, 76–78). A useful selection of funerary interments belonging to upper-class women are collected in Princesses 2012: see particularly S. Bianco in: Princesses 2012, 326–335 for the grave Chiaromonte 325, dated to the late 8th–early 7th cent. BC. The evidence related to the occurrence of wool-working tools and sets in Central European female graves is discussed by Fath – Glunz-Hüsken 2011.
small and fine and the surface perfectly polished. The clear and transparent substance was carefully chosen. If we are right to assign them originally to pinheads, both amber heads are deeply rooted in a typical Ephesian production, probably made expressly for use as votive offerings in the sanctuary of Artemis, but open to the Near Eastern tradition of the figured pinheads. The use of amber for an Ephesian speciality, such as the pins, can help to clarify the import of raw amber to Ephesos, a substance quite rare and almost exotic in the Aegean in the 7th century BC, as the few comparisons show.

Can one presume an import of the raw amber through Italy? The answer seems positive: along the coasts and inland areas of the Italian peninsula the resin fossil was so popular that one can describe Italy falling prey to an actual ambermania at the time. On the other hand, an import through Anatolia seems quite unlikely: very few amber finds have been discovered in this region, and the most relevant, such as the carved ivory panel with gilded and amber inlays from Kerkenes Dağ, date to 580–570 BC (above, chap. 2.6).

Which Italian region would be likely to serve as a trade hub for the import of raw amber to Ionia? The natural terminal of the Baltic amber used in Ephesos was in the Adriatic basin, an area where the role of Verucchio in amber trade was overwhelming from the second half of the 8th century to 650 BC. This view is confirmed by the amber finds from the Balkanic sites, generally later than the 8th to the 7th century BC. The redistribution of raw amber undertaken in Italy by the Etruscan elites of Verucchio brought the highly desirable resin fossil by both land and sea routes through the Tyrrenian and Adriatic shores into central and southern regions of the Italian peninsula, not only to Etruria, Latium vetus and Campania, but also further south, to modern-day Basilicata, Puglia and Calabria. Typical amber products of these regions, such as the fibulae from Emilia-Romagna and Campania and the girdles from Basilicata, find good comparisons in the carved amber from Ephesos and show how large and intense the range of contacts between the Adriatic and Tyrrenian Italy with Ionia was. It is hard to choose one region or another, or one place or another as the main trade hub for the amber trade from Italy to Ionia. However, the presence of Greek foundations in Southern Italy, such as Siris, leads us to prefer the southern regions. Archaeological evidence leads us to presume that more than one region in Italy could act as a source for the raw amber brought to Ephesos. After all, although the main find, i.e. the girdle, is connected to Basilicata, the fibulae coated with amber and ivory or bone inlaid with amber are rare in Basilicata and seem strictly related to artefacts from Emilia-Romagna and Campania. Future discoveries will no doubt verify this interpretation. Probably skilled carvers travelled together with the raw amber from the Italian peninsula to Ionia.

The relationship may account for the development of similar tastes in amber ornaments in both regions. In Ephesos some ivory statuettes, including the one conventionally called Megabyzos, whose name is now corrected to Megabyxos, show women with long necklaces formed by beads and pendants that in the real world may have been of glass or amber or both of these materials, possibly illustrating the local importance of amber.

The systematic review of the carved amber reveals the existence of shapes occurring only in Ephesos, such as the Daedalic bust and some beads (types 4b and 4c), pendants (type 6) and spacers (types 3, 7 and 8): they have been tentatively assigned to local carvers, who developed an individual style, destined to satisfy the consumption of goods and the demand for votive offerings at the sanctuary of Artemis. Further artefacts can be assigned to these skilled workers,

1298 I was not able to identify the ancient source of information (Pliny, nat. [?]) on the use of pumice and shark’s skin for the first cleaning and then of gypsum powder and finer skin for the final polishing of an amber surface (Virgil 1989, 54).

1299 Dusinberre 2002.

1300 In several contributions, A. Palavestra stressed the influence of Italian on Balkanic amber workshops: Palavestra – Krnić 2006, passim.

1301 According to the new spelling suggested by Bremmer 2004.

1302 The ivory statuettes from the Artemision have been reviewed by Işık 2001; Radner 2001; Seipel 2008, 159–186.
such as wooden furniture and ivory or bone objects with amber inlays, which correspond to the
taste which spread to Eastern Greece and was strictly limited to beds, thrones and boxes, as de-
picted on Athenian vase paintings. The few inlays identified in the Artemision were significantly
not placed in the »Hortfund,« but were found scattered throughout the entire area of the sanctuary,
and are too few to compose the intricate decoration which such items would have needed: one
can presume they belonged to unknown artefacts, and that the work was abandoned or still in
progress when the inlays were placed in the earth fillings. Their early date, certainly not after the
late 7th to the early 6th century BC, is relevant because it allows us to assess, at least in this period,
the introduction in the Aegean of the taste for amber inlays, which was a peculiarity developed
during the 7th century BC in a district rich in amber such as the western Mediterranean. Before the
discovery of the Ephesian finds, the earliest amber inlays from Greece and Ionia had been dated
from 550 BC onwards.

The location of the carving workshop active in the Artemision is not known, either on the
ground or through special finds, but its activity can be reconstructed thanks to a significant
quantity of amber and ivory remains. The Artemision at Ephesos can be added to the Greek sanc-
tuaries having local workshops to satisfy the demand for votive offerings.

Alessandro Naso

1303 The most characteristic amber-carving tool was the bow drill, mostly consisting of perishable materials such as
wood and leather and having a metal bit (De Grossi Mazzorin 2012, 40 fig. 2.5). It is hard to identify a drill bit
among excavated metal finds, as it can easily be confused with metal artefacts such as nails and other tools.
1304 Many Greek sanctuaries yielded remains from metalworking, and lists of these have been compiled by Martelli
6 CATALOGUE OF THE AMBER FINDS FROM THE ARTEMISION

The carved ambers are described in two main groups, according to the different excavation campaigns in which they were found. First are listed the finds of the excavations carried out by the Austrian Archaeological Institute (1965–1995, cat. 1–539), which are preserved in the Ephesos Archaeological Museum in Selçuk. The next section deals with the objects found in the campaigns of the British Museum (1904–1905, cat. 540–659), which are divided between the Archaeological Museum in Istanbul and the British Museum in London. They are presented in one group because they belong to the same context.

Amber finds have been recovered in four primary find contexts inside the sanctuary of Artemis, which have been discussed by M. Kerschner in some recent contributions devoted to the electrum coins and summarised here.1305

The carved ambers are listed according to the following categories:

- Figured: cat. 1–5
- Beads: cat. 6–296
- Pendants: cat. 297–349
- Spacers: cat. 350–488
- Fibulae: cat. 489–523
- Inlays: cat. 524–533
- Pinheads: cat. 534
- Raw amber: cat. 535
- Indeterminable: cat. 536–539

6.1 EPHESOS ARCHAEOLOGICAL MUSEUM IN SELÇUK (CAT. 1–539)

The carved ambers are listed according to the following categories:

- Figured: cat. 1–5
- Beads: cat. 6–296
- Pendants: cat. 297–349
- Spacers: cat. 350–488
- Fibulae: cat. 489–523
- Inlays: cat. 524–533
- Pinheads: cat. 534
- Raw amber: cat. 535
- Indeterminable: cat. 536–539

1305 The stratigraphical sequences and the find assemblages explored during the English and the Austrian excavations have been described and analysed carefully by M. Kerschner in: Kerschner 2005, 134–140; Kerschner 2020, 206–223 and Kerschner – Konuk 2020, 114–155. For the synthesis see above, chaps. 1 and 5.5. – Abbreviations used in the catalogue: AMI = Archaeological Museum, Istanbul; AMS = Ephesos Archaeological Museum Selçuk; ART = Artemision; BM = British Museum, London; D = Diameter; D hole = Diameter of the drill hole; H = Height; L = Length; T = Thickness; W = Width.
As usually happens for finds from the excavations of the Austrian Archaeological Institute in the Artemision at Ephesos1306, the amber finds have two independent inventory numbers: 1) The excavation inventory number is provided for finds at the time of their discovery and indicates the exact find-spot within the site. Therefore this number is crucial for the connection with the stratigraphical sequence and for the interpretation of each find. It consists of 4 elements: 1. ART[emission]; 2. The first two numbers indicate the year of excavation, abbreviated to the last two numbers: e.g. 87 for 1987. The following four numbers feature the numbers of the excavated metrical unit: e.g. 0352 for 352. Until 1994, the Artemision excavations were carried out according to the metrical method or arbitrary level excavation method. The number after the dot is the number given to each object found in a specific metrical unit: e.g. ART 870352.1, ART 870352.2 1307; 2) The museum inventory number is assigned to objects when they are handed over to the Archaeological Museum of Selçuk. Objects having only the excavation inventory number, mostly fragments, are preserved in the storeroom in the Austrian Excavation House at Selçuk.

Figured (cat. 1–5)

Cat. 1 Female bust

Pls. 7, 1; 38, 1
Excavation inv. ART 760238; AMS inv. 5/29/76
From the west side of the archaic temple.
On the front, the lower part of the hair is still preserved, arranged in Daedalic style (the so-called Etagenperücke) with two braids framing the face. The tresses are divided into horizontal waves and they are quite schematic; the one on the right has four waves and is longer, the left one has only three. The breasts are rounded and shown in relief; the upper parts of the arms are worked in slightly rounded relief, adhering strictly to the body; the bust is sharply tapered. The back is plain; probably it reproduces a veil; in the back’s lower section this is underlined by two weakly etched, straight, horizontal parallel lines, and in the upper part by two oblique and parallel grooves carved on each side, from the shoulders upwards, perhaps converging somewhere on the now missing head.
The base is rounded.
The bust has an intricate system of horizontal and oblique through-borings. The widest boring runs horizontally about halfway up the humerus. Under the base, three pairs of bore-holes are visible; these are all connected and converge in two further borings on the lower side of the bust.
The head is missing; there are several chippings on the surface and a deep scratch on the back; the fracture at the top is rounded and not recent. Red amber.
H max. 3 cm, base 3.4 × 1.1 cm, T 1.1–1.2 cm, D of the upper boring: 0.2 cm, D of the lower borings 0.1 cm.
Lit.: Erdemgil 2008, 186 no. 165 fig. 165 (dated around 650 BC), with previous literature; Müss 2008a, 96 f. 100 fig. 41; Naso 2013, 262 f. figs. 1–3.

Cat. 2 Human head

Pls. 7, 2; 38, 2
Excavation inv. ART 870352.1; AMS inv. 141/61/87 (T 12)
From the eastern side of the Naos 2 cella.
Extremely fine Geometric-style human head, very similar to cat. 3. The general form of the head is almost cylindrical, rounded on the sides and flat on the top; slightly oblique grooves indicate the eyebrows; the eyes are rendered as engraved circles with a central cavity; the nose is long and straight, almost pointed; a horizontal groove runs under the nose; the mouth is indicated by a horizontal groove; the chin is prominent; the neck is short and compressed. A blind hole (W 0.2 cm, deep 0.5–0.6 cm) on the top of the head is plugged with amber, perfectly adherent and well polished. Two bore-holes (D 0.1 cm) run through the lower part: one horizontal perforation is visible at the top of the neck, the other is oblique and runs between the base and the back of the head.
Transparent, complete. H 1.8 cm, W 1.2 cm, D base 0.8 cm.
Lit.: Bammer 1988b, 23. 30 no. 7 fig. 27; Bammer 1990, 150 f. fig. 23 (left), pl. 20 a (left); Bammer 1991, 76–79 fig. 32; Mastrocinque 1991a, 68 f. pl. 1, 2; Bammer 1992a, 185 pl. 1 b; Bammer 1992b, 37 f. figs. 8 (left) and 5a; Bammer – Müss 1996, 77 fig. 91; Erdemgil 2008, 186 no. 166 fig. 166; Müss 2008a, 97 f. 102 fig. 53 (right); Naso 2013, 262 f. figs. 1–3.

Cat. 3 Human head

Pls. 7, 3; 38, 3
Excavation inv. ART 870352.2; AMS inv. 142/61/87
From the eastern part of the Naos 2 cella.
Extremely fine Geometric-style human head, similar to cat. 2. The general form of the head is almost cylindrical, rounded on the sides and flat on the top; the eyebrows are indicated by slightly oblique grooves; the eyes are circles engraved with a central cavity; the nose is long and straight, almost pointed; a horizontal groove runs under the nose to indicate the mouth; the chin is prominent; the neck is short and compressed upon a rounded base.
A blind boring (W 0.2 cm, deep 0.5–0.6 cm) is visible on top of the head; a through-boring (W 0.1 cm) runs horizontally from side to side under the nose; an oblique through-bore runs from the base and the back of the neck (W 0.1 cm; deep. 0.2 cm). A blind boring (W 0.1 cm, deep 0.2 cm) is visible under the base.

1307 The asterisk after the excavation inventory number indicates the provenience pieces of the samples taken for the laboratory analysis of amber: above, chap. 3.
Transparent. Complete; cracks and scratches on the surface. H 1.6 cm; W 1 cm; D max 0.9 cm.

Lit.: Bammer 1988b, 23. 30 no. 7 fig. 27; Bammer 1990, 150 f. fig. 23 (right); Bammer 1991, 76–79 fig. 32; Mastrocinque 1991, 68 pl. 1, 2; Bammer 1992a, 185 pl. 1 c; Bammer 1992b, 38–43 figs. 8 (right) and 5a; Muss 2008a, 97 f. 102 fig. 53 (left); Naso 2013, 262 f figs. 4–6.

cat. 4 Scarab
Excavation inv. ART 860344; AMS inv. 65/41/86 (A 10)
Scarab with horizontal boring on the long side of the base. The scarab has a prominent clypeus, triangular prothorax, and lines separating the elytra. Under the base, a prancing horse is engraved within a notched frame. The horse’s hind legs intersect at the centre of the field, and the front legs are raised; the mane is visible. Engraving on the back and under the base damaged by chipping.
Base: 0.7 × 1.1 cm. Red amber.
Lit.: Boardman 1990, 4. 6 n. 13, with previous literature.

Beads (cat. 6–296)

TYPE 1: GLOBULAR BEADS (CAT. 6–30)

cat. 6 pl. 39, 6
ART 88/Basis A–115 AMS inv. 90/54/88
Globular bead with a vertical bore-hole. Uneven thickness makes the bead irregular. Intact. Red amber. D 0.8 cm; D hole 0.15 cm.

cat. 7 pl. 39, 7
Excavation inv. ART 870246.21; AMS inv. 14/2/99
Globular bead with an irregular, angular surface and vertical bore-hole. Intact. Red amber. D 0.8 cm; D hole 0.15 cm.

cat. 8 pl. 39, 8
Excavation inv. ART 870246.22; AMS inv. 14/2/99
Globular bead with a slightly pointed end, irregular surface and a vertical bore-hole. Intact. Red amber. D 0.9 cm; D hole 0.1 cm.

cat. 9 pl. 39, 9
Excavation inv. ART 870246.23; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Dark red amber. D 0.6 cm; D hole 0.15 cm.

cat. 10 pl. 39, 10
Excaivation inv. ART 870246.24; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Dark red amber. D 0.6 cm; D hole 0.1 cm.

cat. 11 pl. 39, 11
Excaivation inv. ART 870246.25; AMS inv. 14/2/99
Globular bead with an irregular, faceted surface and a vertical bore-hole. Dark red amber. D 0.6 cm; D hole 0.1 cm.

cat. 12 pl. 39, 12
Excaivation inv. ART 870246.26; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Light red amber. D 0.6 cm; D hole 0.1 cm.

cat. 13 pls. 10, 1; 39, 13
Excaivation inv. ART 870246.27; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Intact. Light red amber. D 0.7 cm; D hole 0.1 cm.

cat. 14 pl. 39, 14
Excaivation inv. ART 870246.28; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Intact. Light red amber. D 0.6 cm; D hole 0.1 cm.

cat. 15 pl. 39, 15
Excaivation inv. ART 870246.29; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Intact. Red amber. D 0.6 cm; D hole 0.1 cm.

cat. 16 pl. 39, 16
Excaivation inv. ART 870246.30; AMS inv. 14/2/99
Globular bead with an irregular surface and a vertical bore-hole. Intact. Red amber. D 0.5 cm; D hole 0.1 cm.

Serena Privitera
cat. 17
Excavation inv. ART 870232.31; AMS inv. 15/2/99
Globular bead with a vertical bore-hole. Intact. Red amber. D 0.7 cm; D hole 0.2 cm.

cat. 18
Excavation inv. ART 870232.32; AMS inv. 15/2/99
Globular bead with a vertical bore-hole. Intact. Red amber. D 0.7 cm; D hole 0.2 cm.

cat. 19
Excavation inv. ART 870232.33; AMS inv. 15/2/99
Globular bead with a round cross-section and longitudinal bore-hole. Intact. Red amber. D 0.6 cm; D hole 0.2 cm.

cat. 20
Excavation inv. ART 870232.34; AMS inv. 15/2/99
Globular bead with a vertical bore-hole. Intact. Red amber. D 0.5 cm; D hole 0.2 cm.

cat. 21
Excavation inv. ART 870245 AMS inv. 3/5/99
Globular bead with a central hole on a modern-day string with beads of different materials. Intact. Red amber. D 0.8 cm; D hole 0.3 cm.

cat. 22
Excavation inv. ART 870281.13; AMS inv. 16/2/99
Globular bead with a central, vertical bore-hole. Intact. Red amber. D 0.9 cm; D hole 0.25 cm.

Type 2: Ring-shaped beads (cat. 31–64)

cat. 27
Excavation inv. ART 870281.64; AMS inv. 16/2/99
Globular bead with a central, vertical bore-hole. The cross-section is oval. Intact. Light red amber. D 0.9 cm; D hole 0.25 cm.

cat. 28
Excavation inv. ART 870352.13; AMS inv. 17/2/99
Globular bead with a central, vertical bore-hole. Intact. Red amber. D 0.9 cm; D hole 0.3 cm.

cat. 29
Excavation inv. ART 870324.67; AMS inv. 17/2/99
Globular bead with an irregular surface and a vertical bore-hole. Intact. Red amber. D 0.6 cm; D hole 0.1 cm.

cat. 30
Excavation inv. ART 870324.70; AMS inv. 17/2/99
Globular bead with an irregular surface and a vertical bore-hole. Intact. Light red amber. D 0.7 cm; D hole 0.1 cm.

cat. 31
Excavation inv. ART 880946.113; AMS inv. 83/54/88
Irregular, ring-shaped bead with a central hole. Yellow amber. D 1.2 cm; H 0.7 cm; D hole 0.4 cm.

cat. 32
Excavation inv. ART 880443.112; AMS inv. 87/54/88
Large, ring-shaped bead with a central bore-hole. A portion of bone needle remains in the bore-hole and is incised with a V to stop the pearl from shifting position. Chipping is visible on the bead’s surface. Dark red amber. D 1.4 cm; H 1 cm; D hole 0.3 cm.

cat. 33
Excavation inv. ART 870232.11; AMS inv. 15/2/99
Large, ring-shaped bead with a central hole. Intact. Red amber. D 1.1 cm; H 0.6 cm; D hole 0.3 cm.

cat. 34
Excavation inv. ART 870232.88; AMS inv. 15/2/99
Irregular, ring-shaped bead with a central hole. Many chips visible on the object’s surface. Red amber. D 0.65 cm; H 0.4 cm; D hole 0.15 cm.

cat. 35
Excavation inv. ART 870281.3; AMS inv. 16/2/99
Ring-shaped bead with a central, vertical bore-hole and an approximately square cross-section. Intact. Red amber. D 0.9 cm; H 0.7 cm; D hole 0.2 cm.
cat. 36 pl. 39, 36
Excavation inv. ART 870281.10; AMS inv. 16/2/99
Ring-shaped bead with a vertical perforation through the object. The sides are heavily rounded. Intact. Light red amber. D 0.6 cm; H 0.2 cm; D hole 0.1 cm.

cat. 37 pl. 39, 37
Excavation inv. ART 870281.42; AMS inv. 16/2/99
Large, ring-shaped bead with a central bore-hole, the edges are rounded. Intact. Light red amber. D 1.2 cm; H 0.6 cm; D hole 0.2 cm.

cat. 38 pl. 39, 38
Excavation inv. ART 870119.44; AMS inv. 16/2/99
Large, ring-shaped bead with a central bore-hole, the edges are rounded. Intact. Light red amber. D 1.2 cm; H 0.4 cm; D hole 0.15 cm.

cat. 39 pl. 39, 39
Excavation inv. ART 870119.58; AMS inv. 16/2/99
Ring-shaped bead with a central hole. The object is highly fragmented. Red amber. D 0.8 cm; H 0.4 cm; D hole 0.15 cm.

cat. 40 pl. 39, 40
Excavation inv. ART 870352.14; AMS inv. 17/2/99
Ring-shaped bead with a central hole. The bead has pronounced edges, which results in an almost square cross-section. Intact. Red amber. D 0.8 cm; H 0.4 cm; D hole 0.1 cm.

cat. 41 pl. 39, 41
Excavation inv. ART 870352.16; AMS inv. 17/2/99
Ring-shaped bead with a central, vertical bore-hole. Intact. Red amber. D 0.7 cm; H 0.4 cm; D hole 0.3 cm.

cat. 42 pl. 39, 42
Excavation inv. ART 870324.64; AMS inv. 17/2/99
Ring-shaped bead with a central hole. The bead is well preserved and the edges of the object are clearly defined, whereby an approximately rectangular cross-section is achieved. Intact. Red amber. D 0.9 cm; H 0.5 cm; D hole 0.15 cm.

cat. 43 pl. 39, 43
Excavation inv. ART 870341.68; AMS inv. 17/2/99
Small ring-shaped bead with a central hole, the edges are rounded. Intact. Light red amber. D 0.5 cm; H 0.2 cm; D hole 0.2 cm.

cat. 44 pl. 39, 44
Excavation inv. ART 870348.83; AMS inv. 17/2/99
Large, ring-shaped bead with a central hole, the edges are rounded. Due to its state of preservation, the object is criss-crossed by streaks of different colours. Intact. Red amber. D 1.4 cm; H 0.5 cm; D hole 0.3 cm.

cat. 45 pl. 40, 45
Excavation inv. ART 870199*
Three fragments of a ring-shaped bead with a central hole. Red amber. D 0.6 cm; D hole 0.1 cm (reconstructed).

cat. 46 pl. 40, 46
Excavation inv. ART 870246.12
Small fragment of a ring-shaped bead. Due to the small size of the fragment, the identification is not quite certain. Because of its shape and colour, a connection can be established with bead cat. 47 (ART 870246.2). Yellow amber. L 0.9 cm; W 1.1 cm; D hole 0.2 cm.

cat. 47 pl. 40, 47
Excavation inv. ART 870246.2*
Highly fragmented ring-shaped bead. Because of its shape and colour, a connection can be established with bead cat. 46 (ART 870246.12). Yellow amber. L 0.7 cm; W 0.9 cm; D hole 0.2 cm.

cat. 48 pl. 40, 48
Excavation inv. ART 870246.3
Fragment of a ring-shaped bead with a central hole. Due to the very poor condition, unequivocal assignment to a type is difficult. Based on the shape, the object should probably be classed as a ring-shaped bead. This fragment and cat. 49 (ART 870246.4) probably originate from the same bead. Yellow amber. L 1 cm; W 0.4 cm; D hole 0.4 cm.

cat. 49 pl. 40, 49
Excavation inv. ART 870246.4
Fragment of a ring-shaped bead with a central hole. Based on the shape, this fragment and cat. 48 (ART 870246.3) probably originate from the same bead. Yellow amber. L 1.4 cm; W 0.5 cm.

cat. 50 pl. 40, 50
Excavation inv. ART 870246.5
Fragment of a ring-shaped bead with a central hole. The hole is filled with a heavily corroded metal which was analysed by means of X-ray fluorescence. The alloy consists primarily of iron and copper in a ratio of 4 : 1, and other trace elements such as silver, lead, etc., have also been identified. It is very likely that cat. 51–52 (ART 870246.6 and ART 870246.7) belong to the same bead. The amber is very poorly preserved. Yellow amber. L 0.9 cm; W 0.6 cm.
CATALOGUE OF THE AMBER FINDS FROM THE ARTEMISION

cat. 51

Excavation inv. ART 870246.6
Fragment of a ring-shaped bead with a central bore-hole. The broken edges are very smooth. It is very likely that cat. 50 and 52 (ART 870246.5 and ART 870246.7) originate from the same bead. The amber is very poorly preserved. Yellow amber. L 1.4 cm; W 0.9 cm

cat. 52

Excavation inv. ART 870246.7
Fragment of a ring-shaped bead with a central bore-hole. The shape of the bead is not clearly identifiable, but as the fragments probably belong to the same group as cat. 50–51 (ART 870246.5 and ART 870246.6), we can expect the fragment to belong to the same type. The amber is very poorly preserved. Yellow amber. L 1 cm; W 0.8 cm.

cat. 53

Excavation inv. ART 870246.8
Fragment of a ring-shaped bead with remains of a central bore-hole. This fragment and cat. 54 (ART 870246.9) probably originate from the same bead. Yellow amber. D 1.5 cm; H 0.5 cm; D hole 0.6 cm.

cat. 54

Excavation inv. ART 870246.9
Fragment of a ring-shaped bead with remains of a central bore-hole. This fragment and cat. 53 (ART 870246.8) probably belong to the same bead. Yellow amber. H 0.6 cm; W 1.2 cm.

cat. 55

Excavation inv. ART 870246.10
Fragment of a ring-shaped bead with remains of a central bore-hole. Yellow amber. D max. 0.6 cm; H 0.5 cm; D hole 0.45 cm.

cat. 56

Excavation inv. ART 870246.11
Fragment of a ring-shaped bead with remains of a central bore-hole. Yellow amber. D max. 0.9 cm; H 0.4 cm; D hole 0.4 cm.

cat. 57

Excavation inv. ART 870349*
Four fragments of a ring-shaped bead with remains of a central bore-hole. Red amber. D 0.6 cm; H 0.25 cm; D hole 0.1 cm.

cat. 58

Excavation inv. ART 870354.1
Fragment of a ring-shaped bead with remains of a central bore-hole. About half of the object survives. The amber is poorly preserved and very porous. Yellow amber. D max. 0.7 cm; H 0.3 cm; D hole 0.4 cm.

cat. 59

Excavation inv. ART 870354.2
Fragment of a ring-shaped bead with remains of a central bore-hole. About half of the object survives. The amber is poorly preserved and very porous. Yellow amber. D max. 0.9 cm; H 0.4 cm; D hole 0.4 cm.

cat. 60

Excavation inv. ART 870374.1
Fragment of a ring-shaped bead originally showing a central bore-hole. Yellow amber. D max. 1.3 cm; H 0.7 cm; D hole 0.4 cm.

cat. 61

Excavation inv. ART 900402.1*
Fragment of a ring-shaped bead originally showing a central bore-hole. The bead’s edges were carefully smoothed, but have been broken off. Red amber. D max. 0.6 cm; H 0.4 cm; D hole 0.2 cm.

cat. 62

Excavation inv. ART 900434*
Ring-shaped bead with a central bore-hole. The edges are rounded. Intact. Red amber. D max. 1.3 cm; H 0.55 cm; D hole 0.4 cm.

cat. 63

Excavation inv. ART. 931289*
Fragment of a ring-shaped bead with a central bore-hole. Yellow amber. H 0.9 cm; W 0.85 cm.

cat. 64

Excavation inv. ART. 940242.4*
Small ring-shaped bead with a central bore-hole. The edges are rounded. Fragmented on one side. Red amber. D 1 cm; H 0.6 cm; D hole 0.43 cm.

Type 3: Disc-shaped beads (cat. 65–104)

Type 3a: Round, disc-shaped beads (cat. 65–82)

cat. 65

Excavation inv. ART 870246.111; AMS inv. 14/2/99
Round, disc-shaped bead. Intact. Red amber. D 0.8 cm; H 0.3 cm; D hole 0.2 cm.

cat. 66

Excavation inv. ART 870246.112; AMS inv. 14/2/99
Round, disc-shaped bead. Completely preserved. One half of the bead is thinner and shows an irregular height. Intact. Red amber. D 0.7 cm; H 0.2 cm; D hole 0.2 cm.
6.1 Ephesos Archaeological Museum in Selçuk

cat. 67 pl. 40, 67
Excavation inv. ART 870246.113; AMS inv. 14/2/99
Round, slightly irregular disc-shaped bead. The ends of the bead are slightly flattened. The bead is completely preserved. Intact. Red amber. D 0.7 cm; H 0.3 cm; D hole 0.2 cm.

cat. 68 pl. 40, 68
Excavation inv. ART 870246.114; AMS inv. 14/2/99
Round, disc-shaped, uniform bead. The object is completely preserved. Intact. Red amber. D 0.5 cm; H 0.2 cm; D hole 0.2 cm.

cat. 69 pl. 40, 69
Excavation inv. ART 870246.115; AMS inv. 14/2/99
Round, disc-shaped, uniform bead with defined edges and a large bore-hole. A patina covers the object. Intact. Red-orange amber. D 0.5 cm; H 0.2 cm; D hole 0.2 cm.

cat. 70 pl. 40, 70
Excavation inv. ART 870246.116; AMS inv. 14/2/99
Round, disc-shaped, uniform bead with well-defined edges and a large bore-hole. A patina covers the object. Intact. Red-orange amber. D 0.5 cm; H 0.2 cm; D hole 0.2 cm.

cat. 71 pl. 40, 71
Excavation inv. ART 870232.6; AMS inv. 15/2/99
Round, disc-shaped bead with well-defined edges. Intact. Red amber. D 1 cm; H 0.2 cm; D hole 0.15 cm.

cat. 72 pl. 40, 72
Excavation inv. ART 870281.11; AMS inv. 16/2/99
Round, disc-shaped bead with a bore-hole through the whole object. Edges are sharply defined and the sides are tapered. Intact. Light red amber. D 0.6 cm; H 0.1–0.3 cm; D hole 0.1 cm.

cat. 73 pl. 40, 73
Excavation inv. ART 870281.12; AMS inv. 16/2/99
Round, disc-shaped bead with a central bore-hole. The edges are flattened. Intact. Light red amber. D 0.14 cm; H 0.5 cm; D hole 0.2 cm.

cat. 74 pl. 40, 74
Excavation inv. ART 870281.53; AMS inv. 16/2/99
Disc-shaped round bead with a central bore-hole. The edges are sharply angular. Intact. Red amber. D 0.5 cm; H 0.2 cm; D hole 0.15 cm.

cat. 75 pl. 40, 75
Excavation inv. ART 870349.24; AMS inv. 17/2/99
Round, disc-shaped bead with a central bore-hole. Due to its state of conservation, the bead has a very irregular shape. Intact. Red-orange amber. D 0.5 cm; H 0.2 cm; D hole 0.15 cm.

cat. 76 pl. 40, 76
Excavation inv. ART 870348.55; AMS inv. 17/2/99
Round, disc-shaped bead with a central bore-hole. The almost lenticular object is well preserved and has rounded edges. Intact. Red-orange amber. D 0.8 cm; H 0.25 cm; D hole 0.15 cm.

cat. 77 pl. 40, 77
Excavation inv. ART 870341.63; AMS inv. 17/2/99
Round, disc-shaped bead with a central bore-hole. The bead is irregularly shaped. Intact. Red-orange amber. D 0.9 cm; H 0.4 cm; D hole 0.2 cm.

cat. 78 pl. 40, 78
Excavation inv. ART 870341.65; AMS inv. 17/2/99
Small, round disc-shaped bead with a central bore-hole. The almost lenticular object is well preserved and has rounded edges. Intact. Red amber. D 0.6 cm; H 0.2 cm; D hole 0.1 cm.

cat. 79 pl. 41, 79
Excavation inv. ART 870341.66; AMS inv. 17/2/99
Round, disc-shaped bead with a central bore-hole. The edges of the object are slightly rounded. Intact. Red amber. D 0.7 cm; H 0.2 cm; D hole 0.3 cm.

cat. 80 pl. 41, 80
Excavation inv. ART 870341.81; AMS inv. 17/2/99
Round, disc-shaped bead with a central bore-hole. The bead is irregularly shaped. Intact. Red-orange amber. D 0.8 cm; H 0.3 cm; D hole 0.3 cm.

cat. 81 pl. 41, 81
Excavation inv. ART 910496.1
Small, round, disc-shaped bead with a central bore-hole and an approximately rectangular cross-section. Intact. Red amber. D 0.55 cm; H 0.2 cm; D hole 0.2 cm.

cat. 82 pl. 41, 82
Excavation inv. ART 910584*
Small, round, disc-shaped bead with a central bore-hole and a lenticular cross-section. Intact. Red amber. D 0.7 cm; H 0.3 cm; D hole 0.15 cm.

Type 3b: Angular, disc-shaped beads (cat. 83–84)

cat. 83 pl. 41, 83
Excavation inv. ART 880170.109; AMS inv. 17/2/99
Round, disc-shaped bead with a central bore-hole. Disc-shaped, hexagonal bead with a central bore-hole.
The bevelled sides are of roughly equal size. A bore-hole runs through the centre of the bead's minimum width. Intact. Light red amber. D 1 cm; H 0.4 cm; D hole 0.2 cm.

cat. 84

Excavation inv. ART 940085; AMS inv. 30/43/94
Disc-shaped, pentagonal bead with a central bore-hole running through its minimum width. The bevelled sides are of roughly equal size. Intact. Red amber. D 0.8 cm; H 0.5 cm; D hole 0.15 cm.

Type 3c: Disc-shaped beads with horizontal bore-hole (cat. 85–104)

cat. 85

Excavation inv. ART 870352.26; AMS inv. 166/61/87
Large, disc-shaped, lenticular bead with a central perforation running through its maximum width. Edges are sharply defined. Intact. Red amber. D 2.3 cm; H 1 cm; D hole 0.2 cm.

cat. 86

Excavation inv. ART 870233.2; AMS inv. 176/61/87.
Disc-shaped, round-oval bead with a central bore-hole running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.8 cm; H 0.3 cm; D hole 0.1 cm.
Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

cat. 87

Excavation inv. ART 870246.1; AMS inv. 177/61/87.
Disc-shaped, round-oval bead with a perforation running through its maximum width. Edges are sharply defined. Intact. Light red amber. L 0.75 cm; H 0.3 cm; D hole 0.1 cm.
Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

cat. 88

Excavation inv. ART 870246.139; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a perforation running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.6 cm; H 0.2 cm; D hole 0.1 cm.

cat. 89

Excavation inv. ART 870246.140; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a perforation running through its maximum width. Edges are sharply defined. Intact. Red-orange amber. L 0.6 cm; H 0.2 cm; D hole 0.1 cm.

cat. 91

Excavation inv. ART 870246.142; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a broken-off bore-hole running through its maximum width. Edges are sharply defined. Red amber. L 0.8 cm; H 0.6 cm; D hole 0.2 cm.

cat. 92

Excavation inv. ART 870246.143; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a bore-hole running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.8 cm; H 0.6 cm; D hole 0.1 cm.

cat. 93

Excavation inv. ART 870246.144; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a bore-hole running through its maximum width. Edges are sharply defined. Intact. Dark red amber. L 0.7 cm; H 0.2 cm; D hole 0.1 cm.

cat. 94

Excavation inv. ART 870246.145; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a bore-hole running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.7 cm; H 0.2 cm; D hole 0.1 cm.

cat. 95

Excavation inv. ART 870246.146; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a bore-hole running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.6 cm; H 0.2 cm; D hole 0.1 cm.

cat. 96

Excavation inv. ART 870246.147; AMS inv. 14/2/99
Disc-shaped, round-oval bead with a horizontal bore-hole running through the whole object. Edges are sharply defined. Intact. Red amber. L 0.5 cm; H 0.2 cm; D hole 0.1 cm.

cat. 97

Excavation inv. ART 870232.18; AMS inv. 15/2/99
Disc-shaped, round-oval bead with a horizontal bore-hole running through the whole object. Edges are sharply defined. Intact. Red amber. L 0.8 cm; H 0.6 cm; D hole 0.1 cm.

cat. 98

Excavation inv. ART 870232.19; AMS inv. 15/2/99
Disc-shaped, round-oval bead with a bore-hole running through its maximum width. Edges of the beads are faceted. Intact. Red amber. L 0.7 cm; H 0.6 cm; D hole 0.1 cm.
Type 4: Cylindrical Beads (cat. 105–211)

Type 4a: Simple Cylindrical Beads (cat. 105–113)

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Pl.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>41, 99</td>
<td>Disc-shaped, round-oval bead with a bore-hole running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.8 cm; H 0.6 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>100</td>
<td>41, 100</td>
<td>Disc-shaped, round-oval bead with a horizontal bore-hole running through its maximum width. Edges are sharply defined. Intact. Red-orange amber. L 0.9 cm; H 0.6 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>101</td>
<td>41, 101</td>
<td>Disc-shaped, round-oval bead with a horizontal bore-hole running through its maximum width. Edges are sharply defined. Intact. Light red amber. D 0.7 cm; H 0.3 cm; D hole 0.15 cm.</td>
</tr>
<tr>
<td>102</td>
<td>41, 102</td>
<td>Disc-shaped, round-oval bead with a horizontal bore-hole running through its maximum width. Edges are sharply defined. Intact. Light red amber. D 0.8 cm; H 0.3 cm; D hole 0.15 cm.</td>
</tr>
<tr>
<td>103</td>
<td>41, 103</td>
<td>Disc-shaped, round-oval bead with a horizontal bore-hole running through its maximum width. Chipped surface, and one edge partly missing. Intact. Red amber with veins. L 2.2–1.7 cm; H 0.4 cm; D hole 0.2 cm.</td>
</tr>
<tr>
<td>104</td>
<td>41, 104</td>
<td>Disc-shaped, round-oval bead with a horizontal bore-hole running through its maximum width. Edges are sharply defined. Intact. Red amber. L 0.9–0.6 cm; H 0.3 cm; D hole 0.1 cm.</td>
</tr>
</tbody>
</table>

Type 4b: Cylindrical Beads with Faceted Surface (cat. 114–179)

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Pl.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>41, 105</td>
<td>Cylindrical bead with a smooth surface. The two short ends are irregular. Red amber. H 1.3 cm; L 0.7 cm; D hole 0.2 cm.</td>
</tr>
<tr>
<td>106</td>
<td>41, 106</td>
<td>Cylindrical bead with a central bore-hole. Intact. Red amber. H 0.7 cm; D 0.3 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>107</td>
<td>41, 107</td>
<td>Cylindrical bead with a longitudinal bore-hole. Intact. Red amber. H 0.7 cm; D 0.35 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>108</td>
<td>41, 108</td>
<td>Cylindrical bead with clearly defined edges and longitudinal bore-hole. The bead tapers slightly upwards, so the object is irregularly conical. Intact. Red amber. H 0.9 cm; D 0.5 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>109</td>
<td>41, 109</td>
<td>Cylindrical bead with clearly defined edges and longitudinal bore-hole, which runs through the minimum width of the bead. Intact. Orange amber. H 1.8 cm; D 0.6 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>110</td>
<td>41, 110</td>
<td>Large, cylindrical bead with a longitudinal bore-hole. Intact. Red amber. H 1.8 cm; D 0.8 cm; D hole 0.3 cm.</td>
</tr>
<tr>
<td>111</td>
<td>41, 111</td>
<td>Large, cylindrical bead with a longitudinal bore-hole. Chipped surface. Red amber. H 1.9 cm; D 0.8 cm; D hole 0.2 cm.</td>
</tr>
<tr>
<td>112</td>
<td>41, 112</td>
<td>Cylindrical bead with clearly defined edges and a longitudinal bore-hole. The bead narrows asymmetrically on one side. Intact. Light red amber. H 0.6 cm; D 0.6 cm; D hole 0.15 cm.</td>
</tr>
<tr>
<td>113</td>
<td>41, 113</td>
<td>Large fragmented cylindrical bead with a longitudinal bore-hole. The bead is broken off along the bore-hole. Red amber. H 1 cm; W 0.8 cm; D hole 0.15 cm.</td>
</tr>
</tbody>
</table>

- Type 4b: Cylindrical Beads with Faceted Surface (cat. 114–179)

Type 4b: Cylindrical Beads with Faceted Surface (cat. 114–179)

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Pl.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>42, 114</td>
<td>Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.1 cm.</td>
</tr>
<tr>
<td>115</td>
<td>Pls. 10, 5; 42, 115</td>
<td>Excavation inv. ART 870246.37; AMS inv. 14/2/99</td>
</tr>
</tbody>
</table>
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.1 cm.

cat. 116

Excavation inv. ART 870246.35; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.3 cm; D 0.3 cm; D hole 0.15 cm.

cat. 117

Excavation inv. ART 870246.55; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.3 cm; D 0.3 cm; D hole 0.15 cm.

cat. 118

Excavation inv. ART 870246.56; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.7 cm; D 0.4 cm; D hole 0.15 cm.

cat. 119

Excavation inv. ART 870246.63; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.15 cm.

cat. 120

Excavation inv. ART 870246.64; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.4 cm; D 0.25 cm; D hole 0.1 cm.

cat. 121

Excavation inv. ART 870246.65; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.8 cm; D 0.4 cm; D hole 0.1 cm.

cat. 122

Excavation inv. ART 870246.66; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. The bead is broken on one end. Red-orange amber. Height: 0.5 cm; diameter: 0.3 cm; hole diameter: 0.1 cm.

cat. 123

Excavation inv. ART 870246.67; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. The bead is broken on one end. Red-orange amber. Height: 0.6 cm; diameter: 0.3 cm; hole diameter: 0.1 cm.

cat. 124

Excavation inv. ART 870246.68; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. The bead is broken on one end. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.15 cm.
ed surface. The bead is broken on one end. Red amber. H 0.6 cm; D 0.3 cm; D hole 0.15 cm.

cat. 133
Excavation inv. ART 870246.72; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.2 cm; D 0.3 cm; D hole 0.15 cm.

cat. 134
Excavation inv. ART 870246.73; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a central bore-hole and faceted surface. One side is intact, the other side is broken. Red amber. H 0.2 cm; D 0.3 cm; D hole 0.15 cm.

cat. 135
Excavation inv. ART 870246.74; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.3 cm; D 0.3 cm; D hole 0.15 cm.

cat. 136
Excavation inv. ART 870246.75; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a central bore-hole and faceted surface. Red amber. H 0.2 cm; D 0.3 cm; D hole 0.15 cm.

cat. 137
Excavation inv. ART 870246.76; AMS inv. 14/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.2 cm; D 0.3 cm; D hole 0.15 cm.

cat. 138
Excavation inv. ART 870232.22; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.7 cm; D 0.4 cm; D hole 0.15 cm.

cat. 139
Excavation inv. ART 870232.23; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.35 cm; D hole 0.1 cm.

cat. 140
Excavation inv. ART 870232.25; AMS inv. 15/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. One side is intact, the other side is broken. Red amber. H 0.6 cm; D 0.3 cm; D hole 0.1 cm.

cat. 141
Excavation inv. ART 870232.54; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.35 cm; D hole 0.1 cm.

cat. 142
Excavation inv. ART 870232.55; AMS inv. 15/2/99
Small fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.35 cm; D 0.3 cm; D hole 0.12 cm.

cat. 143
Excavation inv. ART 870232.56; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.12 cm.

cat. 144
Excavation inv. ART 870232.57; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.7 cm; D 0.3 cm; D hole 0.1 cm.

cat. 145
Excavation inv. ART 870232.58; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.1 cm.

cat. 146
Excavation inv. ART 870232.59; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.7 cm; D 0.3 cm; D hole 0.1 cm.

cat. 147
Excavation inv. ART 870232.62; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.8 cm; D 0.3 cm; D hole 0.1 cm.

cat. 148
Excavation inv. ART 870232.63; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.9 cm; D 0.3 cm; D hole 0.1 cm.

cat. 149
Excavation inv. ART 870232.64; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.1 cm.
cat. 150 pl. 42, 150
Excavation inv. ART 870232.65; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.1 cm.

cat. 151 pl. 42, 151
Excavation inv. ART 870232.66; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.75 cm; D 0.35 cm; D hole 0.1 cm.

cat. 152 pl. 42, 152
Excavation inv. ART 870232.67; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. The diameter of the bead is slightly oval. Red amber. H 0.65 cm; D 0.3 cm; D hole 0.1 cm.

cat. 153 pl. 42, 153
Excavation inv. ART 870232.68; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Light red amber. H 0.6 cm; D 0.5–0.4 cm; D hole 0.1 cm.

cat. 154 pl. 42, 154
Excavation inv. ART 870232.69; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.5 cm; D 0.3 cm; D hole 0.1 cm.

cat. 155 pl. 42, 155
Excavation inv. ART 870232.70; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.7 cm; D 0.4 cm; D hole 0.1 cm.

cat. 156 pl. 42, 156
Excavation inv. ART 870232.72; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.6 cm; D 0.3 cm; D hole 0.1 cm.

cat. 157 pl. 42, 157
Excavation inv. ART 870232.73; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.6 cm; D 0.3 cm; D hole 0.1 cm.

cat. 158 pl. 42, 158
Excavation inv. ART 870232.74; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. One end of the bead is broken. Red amber. H 0.8 cm; D 0.3 cm; D hole 0.08 cm.

cat. 159 pl. 42, 159
Excavation inv. ART 870232.75; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.75 cm; D 0.45 cm; D hole 0.18 cm.

cat. 160 pl. 42, 160
Excavation inv. ART 870232.76; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.4 cm; D 0.3 cm; D hole 0.1 cm.

cat. 161 pl. 42, 161
Excavation inv. ART 870232.77; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.6 cm; D 0.3 cm; D hole 0.1 cm.

cat. 162 pl. 42, 162
Excavation inv. ART 870232.79; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.8 cm; D 1.3 cm; D hole 0.1 cm.

cat. 163 pl. 42, 163
Excavation inv. ART 870232.80; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.55 cm; D 0.35 cm; D hole 0.1 cm.

cat. 164 pl. 42, 164
Excavation inv. ART 870232.81; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Light red amber. H 0.45 cm; D 0.35 cm; D hole 0.1 cm.

cat. 165 pl. 42, 165
Excavation inv. ART 870232.82; AMS inv. 15/2/99
Fragment of a cylindrical bead with a longitudinal bore-hole and faceted surface. Red amber. H 0.4 cm; D 1.4 cm; D hole 0.1 cm.

cat. 166 pl. 42, 166
Excavation inv. ART 870232.83; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Light red amber. H 0.7 cm; D 0.3 cm; D hole 0.1 cm.

cat. 167 pl. 42, 167
Excavation inv. ART 870232.84; AMS inv. 15/2/99
Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Light red amber. H 0.6 cm; D 0.35 cm; D hole 0.1 cm.
6.1 Ephesos Archaeological Museum in Selçuk

Cat. 168 pl. 42, 168

Excavation inv. ART 870232.85; AMS inv. 15/2/99

Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 1.1 cm; D 0.4 cm; D hole 0.18 cm.

Cat. 169 pl. 42, 169

Excavation inv. ART 870232.86; AMS inv. 15/2/99

Cylindrical bead with a longitudinal bore-hole and faceted surface. One end is chipped. Red amber. H 0.8 cm; D 0.3 cm; D hole 0.1 cm.

Cat. 170 pl. 42, 170

Excavation inv. ART 870281.19; AMS inv. 16/2/99

Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.8 cm; D 0.3 cm; D hole 0.1 cm.

Cat. 171 pl. 42, 171

Excavation inv. ART 870281.20; AMS inv. 16/2/99

Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.8 cm; D 0.4 cm; D hole 0.1 cm.

Cat. 172 pl. 42, 172

Excavation inv. ART 870281.32; AMS inv. 16/2/99

Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Light red amber. H 0.8 cm; D 0.4 cm; D hole 0.1 cm.

Cat. 174 pl. 42, 174

Excavation inv. ART 870348.72; AMS inv. 17/2/99

Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Light red amber. H 0.8 cm; D 0.35 cm; D hole 0.2 cm.

Cat. 175 pl. 42, 175

Excavation inv. ART 870348.74; AMS inv. 17/2/99

Cylindrical bead with a central bore-hole and faceted surface. Intact. Red amber. H 0.8 cm; D 0.35 cm; D hole 0.2 cm.

Cat. 176 pl. 42, 176

Excavation inv. ART 870348.86; AMS inv. 17/2/99

Cylindrical bead with a longitudinal bore-hole and a prism-shaped cross-section. The bead appears short in relation to the width. Intact. Red amber. H 0.8 cm; D 0.35 cm; D hole 0.15 cm.

Cat. 177 pl. 42, 177

Excavation inv. ART 870354.3

Four fragments of cylindrical beads with a longitudinal bore-hole. All four fragments are longitudinally broken at the hole. Red amber. H 0.8 cm; D hole 0.15 cm.

Cat. 178 pl. 42, 178

Excavation inv. ART 870374.3

Cylindrical bead with a longitudinal bore-hole and faceted surface. Intact. Red amber. H 0.55 cm; D 0.3 cm; D hole 0.1 cm.

Cat. 179 pl. 42, 179

Excavation inv. ART 900434.1

Fragmented, cylindrical bead with a longitudinal bore-hole. Because of the poor state of preservation, the classification of the object as a cylindrical bead is not certain. Red amber. H 0.3 cm; D 0.5 cm; D hole 0.2 cm.

Type 4c: Spiral beads (cat. 180–199)

Cat. 180 pl. 43, 180

Excavation inv. ART 870246.14; AMS inv. 185/61/87 (A 14, T 12)

Long, cylindrical bead with a longitudinal bore-hole. The ends are smooth and the cross-section is oval. The bead is covered with spiral carvings. Intact. Red amber. H 1.6 cm; D 0.4 cm; D hole 0.15 cm.

Cat. 181 pl. 43, 181

Excavation inv. ART 870352.5; AMS inv. 186/61/87 (A 14, T 12)

Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 1.6 cm; D 0.4 cm; D hole 0.15 cm.

Cat. 182 pl. 43, 182

Excavation inv. ART 870352.6; AMS inv. 187/61/87

Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 1.6 cm; D 0.4 cm; D hole 0.15 cm.

Cat. 183 pl. 43, 183

Excavation inv. ART 870352.7; AMS inv. 188/61/87

Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 1.6 cm; D 0.4 cm; D hole 0.15 cm.

Cat. 184 pl. 43, 184

Excavation inv. ART 870352.8; AMS inv. 189/61/87

Long, cylindrical bead with a longitudinal bore-hole. The
ends are smooth and the cross-section is oval. Intact. Red amber. H 1.6 cm; D 0.5 cm; D hole 0.15 cm.

cat. 185 pl. 43, 185
Excavation inv. ART 870252.9; AMS inv. 190/61/87
Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 1.6 cm; D 0.4 cm; D hole 0.15 cm.

cat. 186 pl. 43, 186
Excavation inv. ART 880974.111; AMS inv. 86/54/88
Cylindrical bead with five deep grooves. The bore-hole runs longitudinally through the object. The surface shows small chips. Red amber. H 1.5 cm; D 0.4 cm; D hole 0.2 cm.

cat. 187 pl. 43, 187
Excavation inv. ART 892645.2; AMS inv. 91/68/89
Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 1.2 cm; D 0.3 cm; D hole 0.15 cm.

cat. 188 pl. 43, 147
Excavation inv. ART 930697; AMS inv. 45/42/93 (A 23)
Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth. Intact. Red amber. H 2.1 cm; D 0.3 cm; D hole 0.15 cm.

cat. 189 pl. 43, 189
Excavation inv. ART 870246.109; AMS inv. 14/2/99
Cylindrical bead with a longitudinal bore-hole and regular spiral grooves, similar to cat. 180. Both ends are broken, one end is very fragmented. Red amber. H 1.4 cm; D 0.35 cm; D hole 0.1 cm.

cat. 190 pl. 43, 190
Excavation inv. ART 870246.110; AMS inv. 14/2/99
Fragment of a cylindrical bead in the form of a spiral. Only three sections of the coil have survived, as one end is broken. Red amber. H 0.35 cm; D 0.25 cm; D hole 0.1 cm.

cat. 191 pl. 43, 191
Excavation inv. ART 870232.27; AMS inv. 15/2/99
Fragment of a cylindrical bead in the form of a spiral, similar to cat. 180. One end is broken. Red amber. H 1.6 cm; D 0.5 cm; D hole 0.14 cm.

cat. 192 pl. 43, 192
Excavation inv. ART 870232.60; AMS inv. 15/2/99
Fragment of a cylindrical bead in the form of a spiral, similar to cat. 180. One end is broken. Red amber. H 1.6 cm; D 0.5 cm; D hole 0.18 cm.

cat. 193 pl. 43, 193
Excavation inv. ART 870232.61; AMS inv. 15/2/99
Fragment of a cylindrical bead in the form of a spiral, similar to cat. 180. One end is broken. Red amber. H 0.9 cm; D 0.4 cm; D hole 0.12 cm.

cat. 194 pl. 43, 194
Excavation inv. ART 870232.78; AMS inv. 15/2/99
Long, cylindrical bead with a longitudinal bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 1 cm; D 0.4 cm; D hole 0.14 cm.

cat. 195 pl. 43, 195
Excavation inv. ART 870119.50; AMS inv. 16/2/99
Cylindrical bead with centre bore-hole, similar to no. 180. The ends are smooth and the cross-section is oval. Red amber. H 0.7 cm; D 0.4 cm; D hole 0.15 cm.

cat. 196 pl. 43, 196
Excavation inv. ART 870281.60; AMS inv. 16/2/99
Long, cylindrical bead with a central bore-hole, similar to cat. 180. The ends are smooth and the cross-section is oval. Intact. Red amber. H 2.3 cm; D 0.7 cm; D hole 0.15 cm.

cat. 197 pl. 43, 197
Excavation inv. ART 870246.62; AMS inv. 14/2/99
Fragment of a spiral bead. One half along the broken bore-hole. Red-orange amber. H 0.4 cm; D 0.25 cm.

cat. 198 pl. 43, 198
Excavation inv. ART 870348.78; AMS inv. 17/2/99
Long, cylindrical bead with a longitudinal bore-hole. The ends are smooth and the cross-section is oval. A spiral decoration covers the bead's surface. Intact. Red amber. H 2.3 cm; D 0.7 cm; D hole 0.2 cm.

cat. 199 pl. 43, 199
Excavation inv. ART 910496.2*
Fragment of a cylindrical bead in the form of a spiral. One end is broken. The central bore-hole extends through the entire object. Red amber. H 0.5 cm; D 0.35 cm; D hole 0.1 cm.

Type 4d: Cylindrical beads with spiral ends (cat. 200–211)

cat. 200 pl. 10, 7; 43, 200
Excavation inv. ART 870246.16; AMS inv. 14/2/99
Cylindrical bead with spiral carvings on both ends. The carvings run three times around the bead. The surface is slightly faceted. Intact. Red amber. H 1.4 cm; D 0.35 cm; D hole 0.1 cm.
cat. 201 pl. 43, 201 Excavation inv. ART 870246.33; AMS inv. 14/2/99 Cylindrical bead with spiral carvings on one end. The carvings run three times around the bead. The surface is slightly faceted and one end is broken. Red amber. H 0.7 cm; D 0.25 cm; D hole 0.1 cm.

cat. 202 pl. 43, 202 Excavation inv. ART 870246.34; AMS inv. 14/2/99 Cylindrical bead with spiral carvings on both ends. The carvings run three times around the bead. The surface is slightly faceted and the middle portion is narrow and less pronounced. Intact. Red amber. H 1 cm; D 0.25 cm; D hole 0.1 cm.

cat. 203 pl. 43, 203 Excavation inv. ART 870246.32; AMS inv. 14/2/99 Cylindrical bead with spiral carvings on one end. The carvings run three times around the bead. The surface is slightly faceted and one end is broken. Red amber. H 0.7 cm; D 0.25 cm; D hole 0.1 cm.

cat. 204 pl. 43, 204 Excavation inv. ART 870232.24; AMS inv. 15/2/99 Fragment of a cylindrical bead with spiral carvings on one end. The object is broken on one side. Red amber. H 0.65 cm; D 0.3 cm; D hole 0.1 cm.

cat. 205 pl. 43, 205 Excavation inv. ART 870232.29; AMS inv. 15/2/99 Cylindrical bead with spiral carvings on one end. The carvings run three times around the bead. The surface is slightly faceted and the middle portion is narrow and less pronounced. Red amber. H 0.9 cm; D 0.3 cm; D hole 0.08 cm.

cat. 206 pl. 43, 206 Excavation inv. ART 870232.30; AMS inv. 15/2/99 Cylindrical bead with spiral carvings on one end. The carvings run three times around the bead. The surface is slightly faceted and the middle portion is narrow and less pronounced. Red amber. H 1.2 cm; D 0.35 cm; D hole 0.12 cm.

cat. 207 pl. 43, 207 Excavation inv. ART 870232.71; AMS inv. 15/2/99 Fragment of a cylindrical bead with spiral carvings on one end. The object is broken on one side. Red amber. H 0.6 cm; D 0.35 cm; D hole 0.09 cm.

cat. 208 pl. 43, 208 Excavation inv. ART 870281.23; AMS inv. 16/2/99 Cylindrical bead with spiral carvings on both ends. The carvings run three times around the bead. The surface is slightly faceted. Intact. Light red amber. H 1.2 cm; D 0.4 cm; D hole 0.1 cm.

cat. 209 pl. 43, 209 Excavation inv. ART 870281.24; AMS inv. 16/2/99 Cylindrical bead with spiral carvings on one end. The carvings run three times around the bead. The surface is slightly faceted. Intact. Light red amber. H 1.2 cm; D 0.4 cm; D hole 0.1 cm.

cat. 210 pl. 43, 210 Excavation inv. ART 870298.59; AMS inv. 16/2/99 Cylindrical bead with spiral carvings on both ends. The carvings run three times around the bead. The surface is slightly faceted and the cross-section is approximately diamond-shaped. Intact. Red-orange amber. H 1.2 cm; D 0.4 cm; D hole 0.1 cm.

cat. 211 pl. 43, 211 Excavation inv. ART 870348.74; AMS inv. 17/2/99 Cylindrical bead with spiral carvings on one end. The carvings run three times around the bead. The surface is slightly faceted and one end is broken. Red amber. H 0.8 cm; D 0.35 cm; D hole 0.2 cm.

Type 5: Conical beads (cat. 212–216)

cat. 212 pl. 43, 212 Excavation inv. ART 880807.125; AMS inv. 100/54/88 (A 15) Conical bead with a longitudinal bore-hole. The edges are rounded and the surfaces slope slightly towards the bore-hole. Small inclusions are visible in the amber. Intact. Red amber. D max. 1.3 cm; H 1.3 cm; D hole 0.25 cm.

cat. 213 pl. 10, 8; 43, 213 Excavation inv. ART 930984; AMS inv. 43/42/93 Conical bead with a vertical bore-hole. The edges are rounded and the surfaces slope slightly towards the bore-hole. The bead is broken off at the wider end. Red amber. D max. 1.7 cm; H 2.3 cm; D hole 0.3 cm.

cat. 214 pl. 43, 214 Excavation inv. ART 870246.17; AMS inv. 14/2/99 Conical bead with a small, longitudinal bore-hole. The edges are rounded and the surfaces slope slightly towards the bore-hole. Intact. Red amber. D max. 2.1 cm; H 1.9 cm; D hole 0.15 cm.

cat. 215 pl. 43, 215 Excavation inv. ART 870232.2; AMS inv. 15/4/99 Conical bead with a longitudinal bore-hole. The edges are rounded and surfaces slope slightly towards the hole.
Intact. Red amber. D max. 1.3 cm; H 0.65 cm; D hole 0.2 cm.

cat. 216 pl. 43, 216
Excavation inv. ART 870349.22; AMS inv. 17/2/99
Conical bead with a small, longitudinal bore-hole. Intact. Red amber. D max. 0.75 cm; H 0.5 cm; D hole 0.25 cm.

Type 6: Biconical beads (cat. 217–276)

Type 6a: Simple biconical beads (cat. 217–234)

cat. 217 pl. 44, 217
Excavation inv. ART 870352.21; AMS inv. 161/61/87
Roughly biconical bead with a central perforation running across the short axis. The maximum width of the bead is located in the centre, at the cone-base junction. One side of one of the bore-holes is slanted. Red amber. D max. 1.7 cm; H max 1.8 cm; D hole 0.4 cm.

cat. 218 pl. 44, 218
Excavation inv. ART 870352.22; AMS inv. 162/61/87
Biconical bead with a central perforation across the bead’s short axis. Intact. Red amber. D max. 1.7 cm; H 1.1 cm; D hole 0.4 cm.

cat. 219 pl. 44, 219
Excavation inv. ART 880947.117; AMS inv. 92/54/88
Small, biconical bead with a longitudinal bore-hole across the bead’s short axis. Intact. Red amber. D 0.8 cm; H 0.5 cm; D hole 0.15 cm.

cat. 220 pl. 44, 220
Excavation inv. ART 880943.135; AMS inv. 110/54/88
Small, biconical bead with a central bore-hole across the bead’s short axis. The edges are rounded. Intact. Red amber. D 1 cm; H 0.55 cm; D hole 0.2 cm.

cat. 221 pl. 44, 221
Excavation inv. ART 870232.1; AMS inv. 15/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The edges are rounded and the cross-section is lenticular. Intact. Red amber. D max. 0.8 cm; H 0.4 cm; D hole 0.15 cm.

cat. 222 pl. 44, 222
Excavation inv. ART 870232.12; AMS inv. 15/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The edges are rounded and the cross-section is lenticular. Intact. Red amber. D max. 0.8 cm; H 0.3 cm; D hole 0.3 cm.

cat. 223 pl. 44, 223
Excavation inv. ART 870281.5; AMS inv. 16/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular. Intact. Red amber. D max. 0.7 cm; H 0.35 cm; D hole 0.25 cm.

cat. 224 pl. 44, 224
Excavation inv. ART 870281.40; AMS inv. 16/2/99
Irregular, biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular. Intact. Light red amber. D max. 1.6 cm; H 1.2 cm; D hole 0.25 cm.

cat. 225 pl. 44, 225
Excavation inv. ART 870281.43; AMS inv. 16/2/99
Biconical bead with a central bore-hole across the bead’s short axis. The edges are well defined and the cross-section is lenticular. Intact. Red amber. D max. 1.2 cm; H 0.8 cm; D hole 0.15 cm.

cat. 226 pl. 44, 226
Excavation inv. ART 870281.45; AMS inv. 16/2/99
Biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular and one side is chipped. Red amber. D max. 0.9 cm; H 0.8 cm; D hole 0.1 cm.

cat. 227 pl. 44, 227
Excavation inv. ART 870281.47; AMS inv. 16/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular. Intact. Red amber. D max. 0.8 cm; H 0.4 cm; D hole 0.1 cm.

cat. 228 pl. 44, 228
Excavation inv. ART 870281.51; AMS inv. 16/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular and one side is chipped. Red amber. D max. 0.7 cm; H 0.4 cm; D hole 0.1 cm.

cat. 229 pl. 44, 229
Excavation inv. ART 870298.56; AMS inv. 16/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular and one side is chipped. Red amber. D max. 0.7 cm; H 0.4 cm; D hole 0.1 cm.

cat. 230 pl. 44, 230
Excavation inv. ART 870298.57; AMS inv. 16/2/99
Small, biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular and one side is chipped. Red amber. D max. 0.9 cm; H 0.4 cm; D hole 0.15 cm.
6.1 Ephesos Archaeological Museum in Selçuk

Type 6b: Compressed biconical beads (cat. 235–260)

cat. 231
- Excavation inv. ART 870348.61; AMS inv. 17/2/99
- Biconical bead with a central bore-hole across the bead’s short axis. Intact. Red amber. D max. 1.4 cm; H 0.8 cm; D hole 0.3 cm.

cat. 232
- Excavation inv. ART 870348.62; AMS inv. 17/2/99
- Biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular. Intact. Light red amber. D max. 0.9 cm; H 0.5 cm; D hole 0.25 cm.

cat. 233
- Excavation inv. ART 870341.79; AMS inv. 17/2/99
- Simple, biconical bead with a central bore-hole. Intact. Light red amber. D max. 1.1 cm; H 0.7 cm; D hole 0.3 cm.

cat. 234
- Excavation inv. ART 870341.82; AMS inv. 17/2/99
- Biconical bead with a central bore-hole across the bead’s short axis. The cross-section is lenticular. Intact. Red amber. D max. 1.2 cm; H 0.6 cm; D hole 0.3 cm.

cat. 235
- Excavation inv. ART 870353.7; AMS inv. 82/61/87
- Biconical bead with a central perforation across the bead’s short axis, with circular flattened areas surrounding the perforation bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 2.2 cm; H 1 cm; D hole 0.4 cm.

cat. 236
- Excavation inv. ART 870352.23; AMS inv. 163/61/87
- Biconical bead with a central perforation across the bead’s short axis. Large flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 2.2 cm; H 0.7 cm; D hole 0.4 cm.

cat. 237
- Excavation inv. ART 870352.24; AMS inv. 164/61/87
- Biconical bead with a central perforation across the bead’s short axis, with circular, flattened areas surrounding the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 2.2 cm; H 1.7 cm; D hole 0.4 cm.

cat. 238
- Excavation inv. ART 870233.51; AMS inv. 191/61/87
- Biconical bead with a central perforation across the bead’s short axis. Large flat areas surround the holes. Intact. Red amber. D max. 1.9 cm; H 0.8 cm; D hole 0.3 cm.

cat. 239
- Excavation inv. ART 880946.113; AMS inv. 88/54/88
- Biconical bead with a central perforation across the bead’s short axis. Large flat areas surround the bore-holes. The bead has a hexagonal cross-section and one edge is broken off. Red amber. D max. 0.9 cm; H 1.2 cm; D hole 0.15 cm.

cat. 240
- Excavation inv. ART 880946.114; AMS inv. 89/54/88
- Biconical bead with a central perforation across the bead’s short axis. Large flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 0.9 cm; H 0.35 cm; D hole 0.2 cm.

cat. 241
- Excavation inv. ART 870246.18; AMS inv. 14/2/99
- Flat, biconical bead with a central perforation across the bead’s short axis. Large flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 0.9 cm; H 0.3 cm; D hole 0.2 cm.

cat. 242
- Excavation inv. ART 870246.19; AMS inv. 14/2/99
- Flat, biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Orange amber. D max. 0.9 cm; H 0.3 cm; D hole 0.2 cm.

cat. 243
- Excavation inv. ART 870246.31; AMS inv. 14/2/99
- Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 0.9 cm; H 0.5 cm; D hole 0.2 cm.

cat. 244
- Excavation inv. ART 870246.20; AMS inv. 14/2/99
- Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section and a striking grain. Intact. Red amber. D max. 1 cm; H 0.7 cm; D hole 0.3 cm.

cat. 245
- Excavation inv. ART 870232.9; AMS inv. 15/2/99
- Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 1.2 cm; H 0.6 cm; D hole 0.2 cm.

cat. 246
- Excavation inv. ART 870281.1; AMS inv. 16/2/99
- Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The
bead has a hexagonal cross-section. Intact. Red amber. D max. 1.8 cm; H 0.7 cm; D hole 0.2 cm.

cat. 247 pl. 45, 247
Excavation inv. ART 870281.6; AMS inv. 16/2/99
Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section and the edges are clearly outlined. Intact. Light red amber. D max. 0.7 cm; H 0.35 cm; D hole 0.2 cm.

Excavation inv. ART 870352.112; AMS inv. 17/2/99
Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Red amber. D max. 0.6–0.8 cm; H 0.4 cm; D hole 0.1 cm.

cat. 248 pl. 45, 248
Excavation inv. ART 870281.62; AMS inv. 16/2/99
Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section. Intact. Light red amber. D max. 1.8 cm; H 0.6 cm; D hole 0.15 cm.

Excavation inv. ART 870352.115; AMS inv. 17/2/99
Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section and one edge is chipped. Red amber. D max. 1.4 cm; H 0.6 cm; D hole 0.2 cm.

cat. 254 pl. 45, 254
Large, biconical bead with a central perforation across the short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section and the edges are clearly outlined. Intact. Orange amber. D max. 1.4 cm; H 0.8 cm; D hole 0.2 cm.

Excavation inv. ART 870348.89; AMS inv. 17/2/99
Large, biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section and the edges are clearly outlined. Intact. Orange amber. D max. 1.4 cm; H 0.8 cm; D hole 0.2 cm.

Excavation inv. ART 850316; AMS inv. 244/8/07
Biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The bead has a hexagonal cross-section and the edges are clearly outlined. Intact. Red amber. D max. 1.1 cm; H 0.75 cm; D hole 0.1 cm.

Excavation inv. ART 850314
Fragment of a biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The edges are clearly outlined. One side is broken off; the broken edge is smooth. Red amber. D max. 0.9 cm; H 0.7 cm; D hole 0.18 cm.

Excavation inv. ART 860203*
Large fragment of a biconical bead with a central perforation across the bead’s short axis. Flat areas surround the bore-holes. The edges are clearly outlined; one side is broken off. Red amber. D max. 2.6 cm; H 1.9 cm; D hole 0.4 cm.

Excavation inv. ART 931010.2*
Fragment of a biconical bead with a central perforation. Flat areas surround the bore-holes. The edges are clearly outlined and one side is broken. About half of the object is preserved. Red amber. H 1.9 cm; D hole 0.2 cm.

Excavation inv. ART 940110*
Fragment of a biconical bead with a central perforation. Flat areas surround the bore-holes. The edges are clearly outlined and one side is broken. Approximately one-third of the object is preserved. Red amber. D 1.3 cm; H 0.9 cm; D hole 0.15 cm.
Type 6c: Long biconical beads (cat. 261–274)

Beads cat. 261–274 belong to one and the same subgroup, with no variations as to appearance or size.

cat. 261
Exca. ART 870246.42; AMS inv. 14/2/99
Long, biconical bead with a central perforation across the bead’s maximum width. The edges are clearly outlined. The cross-section is angular and characterised as lenticular. Intact. Red amber. D 0.7 cm; H 0.35 cm; D hole 0.2 cm.

cat. 262
Exca. ART 870246.43; AMS inv. 14/2/99
Similar to cat. 261. Intact. Red amber. D 0.7 cm; H 0.4 cm; D hole 0.2 cm.

cat. 263
Exca. ART 870272.18; AMS inv. 16/2/99
Similar to cat. 261. Intact. Red amber. D 1 cm; H 0.4 cm; D hole 0.2 cm.

cat. 264
Exca. ART 870352.102; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.2 cm.

cat. 265
Exca. ART 870352.103; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 266
Exca. ART 870352.104; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 267
Exca. ART 870352.105; AMS inv. 17/2/99
Similar to cat. 261. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 268
Exca. ART 870352.106; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 269
Exca. ART 870352.107; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 270
Exca. ART 870352.108; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 271
Exca. ART 870352.109; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.1 cm.

cat. 272
Exca. ART 870352.110; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 273
Exca. ART 870352.111; AMS inv. 17/2/99
Similar to cat. 261. Intact. Red-orange amber. H 0.7–1.2 cm; D hole 0.15 cm.

cat. 274
Exca. ART 870349.20; AMS inv. 17/2/99
Similar to cat. 261. Some chips are visible on the bead’s surface. Red amber. D 1 cm; H 0.7 cm; D hole 0.15 cm.

Type 6d: Rosette-shaped beads (cat. 275–276)

cat. 275
Exca. ART 860000.1; AMS inv. 66/41/86
Rosette-shaped, biconical bead with a central bore-hole. Grooves run across the entire object from one end of the bore-hole to the other. The edges are clearly outlined, with a roughly lenticular cross-section. The bead is whole and well preserved. Red amber. D 1.1 cm; H 1.4 cm; D hole 0.1 cm.

cat. 276
Exca. ART 860000.2; AMS inv. 67/41/86 T 13
Rosette-shaped, biconical bead with a central bore-hole. Grooves run across the entire object from one end of the bore-hole to the other. The edges are clearly outlined with a roughly lenticular cross-section. The bead is whole and well preserved. Red amber. D 2 cm; H 2 cm; D hole 0.1 cm.

Type 7: Square beads (cat. 277–293)

cat. 277
Exca. ART 860000.27; AMS inv. 167/61/87
Square bead with a hole through the long side. The object has an approximately rectangular shape, with rounded edges. The cross-section is slightly oval. Intact. Red amber. L 2.7 cm; W 1.3 cm; H 0.8 cm; D 0.45 cm.

cat. 278
Exca. ART 870233.52; AMS inv. 192/61/87
Square bead with a hole through the long side. The object has a rectangular shape and a rectangular cross-section. Red amber. Intact. L 2.8 cm; W 2 cm; H 1 cm; D hole 0.3 cm.

cat. 279
Excavation inv. ART 870232.8; AMS inv. 15/2/99
Square bead with a hole through the long side. The object has an approximately rectangular shape, but the long sides drag onto the narrow sides. The cross-section is slightly oval. Intact. Red amber. L 2.3 cm; W 1.1 cm; H 0.2 cm; D hole 0.3 cm.

cat. 280
Excavation inv. ART 870232.10; AMS inv. 15/2/99
Fragment of a square bead with a hole through the long side. The object has a rectangular shape and a rectangular cross-section. The bead is broken on one of its longer sides. Red amber. L 1.1 cm; W 0.9 cm; D hole 0.2 cm.

cat. 281
Excavation inv. ART 870232.92; AMS inv. 15/2/99
Square bead with a hole through the long side. The bead has a long rectangular shape and a triangular cross-section. The object has a distinct patina. Intact. Red amber. L 2.1 cm; W 0.9 cm; D hole 0.2 cm.

cat. 282
Excavation inv. ART 870281.14; AMS inv. 16/2/99
Fragment of a square bead with a hole through the long side. The object has an approximately rectangular shape and the cross-section is slightly oval. The bead is broken on one of its longer sides. Intact. Red amber. L 0.9 cm; W 1.1 cm; H 0.5 cm; D hole 0.3 cm.

cat. 283
Excavation inv. ART 870281.15; AMS inv. 16/2/99
Fragment of a square bead with a hole through the long side. The object has an approximately rectangular shape and the cross-section is slightly oval. The bead is broken on one of its longer sides. Red amber. L 0.9 cm; W 1.1 cm; H 0.5 cm; D hole 0.3 cm.

cat. 284
Excavation inv. ART 870104.16; AMS inv. 16/2/99
Fragment of a square bead with a hole through the long side. The object has an approximately rectangular shape and the cross-section is irregularly hexagonal. Intact. Red amber. L 0.8 cm; W 0.5 cm; H 0.35 cm; D hole 0.1 cm.

cat. 285
Excavation inv. ART 870281.46; AMS inv. 16/2/99
Fragment of a square bead with a hole through the long side. The basic shape and the cross-section of the bead are rectangular. The edges are clearly defined. The bead is broken on one of its long sides. Red amber. L 1 cm; W 0.9 cm; H 0.7 cm; D hole 0.3 cm.

cat. 286
Excavation inv. ART 870281.48; AMS inv. 16/2/99
Square bead with a hole through the long side. The basic shape and the cross-section of the bead are rectangular. The edges are clearly defined. Chipping is visible here and there on the object’s surface. Red amber. L 0.7 cm; W 1 cm; H 0.45 cm; D hole 0.15 cm.

cat. 287
Excavation inv. ART 870281.67; AMS inv. 16/2/99
Square bead with a hole through the long side. The object has a long rectangular shape and a triangular cross-section. One long side is convex. Intact. Light red amber. L 1.9 cm; W 1.7 cm; H 0.7 cm; D hole 0.15 cm.

cat. 288
Excavation inv. ART 870349.18; AMS inv. 17/2/99
Square bead with a hole through the long side. The object has a rectangular shape and the cross-section is slightly oval. Intact. Red amber. L 1.5 cm; W 0.8 cm; H 0.45 cm; D hole 0.2 cm.

cat. 289
Excavation inv. ART 870349.19; AMS inv. 17/2/99
Square bead with a hole through the long side. The object has a rectangular shape and the cross-section is slightly oval. One long side is convex. Intact. Red amber. L 1.6 cm; W 0.7 cm; D hole 0.3 cm.

cat. 290
Excavation inv. ART 870349.60; AMS inv. 17/2/99
Square bead with a hole through the long side. The object has a rectangular shape and the cross-section is slightly oval. Intact. Red amber. L 1.5 cm; W 0.8 cm; D hole 0.2 cm.

cat. 291
Excavation inv. ART 870349.90; AMS inv. 17/2/99
Square bead with a hole through the long side. The object has a rectangular shape and the cross-section is triangular. Intact. Red amber. L 2.1 cm; W 1.7 cm; D hole 0.3 cm.

cat. 292
Excavation inv. ART 900486.1*
Fragmented square bead with a former central bore-hole. The bead is broken along the hole. The hole was drilled to two-thirds of one narrow side and one-third of the other narrow side of the bead. The bead has a trapezoidal shape and a triangular cross-section. Red amber. L 1.6 cm; W 0.5 cm; D hole 0.1 cm.
6.1 Ephesos Archaeological Museum in Selçuk

199

Square bead with a hole through the long side. The bead has a long rectangular shape and a triangular cross-section. The bead is broken on one side. Red amber. L 1.4 cm; W 0.6–0.7 cm; D hole 0.15 cm. The following beads cannot be assigned to a type because of the poor state of preservation:

Excavation inv. ART 870246.15
Fragments of one or more beads. Red-yellow amber.

Pendants (cat. 297–349)

Type 1: Drop-shaped pendants (cat. 297–298)

Excavation inv. ART 870232.48; AMS inv. 15/2/99
Elongated, flattened, oval pendant, with an oval section. The slanted, peripheral perforation runs from the top of the object to the front of the object. Clear yellow amber. H 1.9 cm; L 1.3 cm; W 0.35 cm; D hole 0.1 cm.

Excavation inv. ART 900374.4
Two fragments of amber beads. Yellow amber. L 1.1 cm; W 1.2 cm; H 0.6 cm.

Type 2: Elongated pendant

Excavation inv. ART 900402.2*
Upper globular part of a pendant with a protruding neck, surmounted by an elaborate, horizontally perforated, gauble-shaped top. The lower part of the artefact is missing. Red amber. D 0.6 cm; H 0.4 cm; D hole 0.2 cm.

Type 3: Bulla-shaped pendants (cat. 300–317)

Type 3a: Cylindrical projection with a round section (cat. 300–311)

Excavation inv. 870232.7; AMS inv. 15/2/99
Flat, rounded pendant with an oval section, with a slightly protruding neck, surmounted by a cylindrical, reduced projection with a horizontal perforation. The front of the pendant is convex, the back is rather concave. Opaque red amber. H 2 cm; L 1 cm; W 0.4 cm; D hole 0.15 cm.

Excavation inv. ART 870232.95; AMS inv. 15/2/99
Flat, rounded pendant with an oval section with a slightly protruding neck, surmounted by a cylindrical, reduced projection with a horizontal perforation. The projection is rather small in comparison with the rest of the object. Opaque red amber. H 0.95 cm; L 0.7 cm; D hole 0.15 cm.

Martina Ott
CATALOGUE OF THE AMBER FINDS FROM THE ARTEMISION

cat. 306
Excavation inv. ART 870281.66; AMS inv. 16/2/99
Flat, oval pendant with an oval section with a protruding neck decorated by two grooves, and which is surmounted by a cylindrical, horizontally perforated projection with a round section. Red amber. H 1.6 cm; D 1 cm; D hole 0.2 cm.

cat. 307
Excavation inv. ART 870348.58; AMS inv. 17/2/99
Flat, rather rounded pendant with an oval section with a slightly protruding neck, surmounted by a cylindrical, largely reduced projection with a horizontal perforation. Red amber. H 2.3 cm; L 1.6 cm; W 0.5 cm, D hole 0.15 cm.

cat. 308
Excavation inv. ART 880594.107; AMS inv. 82/54/88
Squat, rather round pendant with a flat oval section, with a protruding neck, surmounted by a cylindrical, horizontally perforated projection with a square section with rounded edges. Red amber. H 1.2 cm; L 1 cm; W 0.6; D hole 0.1 cm.

cat. 309
Excavation inv. ART 880943.134; AMS inv. 109/54/88
Flat, oval pendant with an oval section, with a slightly protruding neck, surmounted by a horizontally perforated cylindrical projection with a round section, whose upper section is broken off. The front is convex, the back rather flattened. Red opaque amber. H 1.4 cm; L 1 cm; W 0.5 cm; D hole 0.2 cm.

cat. 310
Excavation inv. ART 900380; AMS inv. 245/8/07
Oval, flat pendant with an oval section with a protruding neck, surmounted by a trapezoidal, horizontally perforated projection with a round section. Red amber. H 1.2 cm; L 0.9 cm; W 0.5 cm. D hole 0.15 cm.

cat. 311
Excavation inv. ART 940014*
Flat, rather rounded pendant with an oval section, with a slightly protruding neck, surmounted by a cylindrical, horizontally perforated projection with a round section. The projection is partly fractured, the bottom is also partly broken. Opaque red amber. H 1 cm; L 0.9 cm; W 0.55 cm.

Type 3b: Bulla-shaped pendants with decorated top (cat. 312–314)

cat. 312
Excavation inv. ART 870233.1; AMS inv. 175/61/87
Flat, oval pendant with an oval section with a protruding neck. The cylindrical projection shows a horizontal drilling and is characterised by a horizontal incision, as well as three moulded knobs on its top. Red amber. H 1.8 cm; L 1.2 cm; W 0.6 cm; D hole 0.15 cm.

cat. 313
Excavation inv. ART 870352.12; AMS inv. 152/61/87
Flat, slightly elongated, oval pendant with an oval section; its neck is decorated with two grooves, surmounted by a cylindrical, horizontally perforated projection, which is only partly preserved. Red amber. H 2.6 cm; L 1.5 cm; W 0.8 cm; D hole 0.15 cm.

cat. 314
Excavation inv. ART 870352.20; AMS inv. 160/61/87
Flat, oval pendant with an oval section with a neck characterised by two grooves, surmounted by a rather big cylindrical, horizontally perforated projection, showing several vertical grooves. Two straight incisions at each side, as well as two slightly curved ones in the middle, converge at the top of the projection. Transparent yellow amber. H 2.25 cm; L 1.5 cm; W 0.7 cm; D hole 0.2 cm.

Fragments (cat. 315–317)

Body fragments

cat. 315
Excavation inv. ART 870362*
Oval, flat pendant with an oval section, which is fractured at the top, where no traces of the projection are preserved. Red amber. H 0.7 cm; L 0.9 cm; W 0.5 cm.

cat. 316
Excavation inv. ART 870409*
Oval, flat pendant, which is fractured at its bottom as well as at the top. Red amber. H 0.9 cm; L 1 cm; W 0.5 cm.

Projection fragments

cat. 317
Excavation inv. ART 870281.52; AMS inv. 16/2/99
Fragment of the projection of a pendant of indeterminable shape, with a horizontal bore-hole. Red amber. L 0.5 cm; D hole 0.15 cm.

Type 4: Bottle-shaped pendants (cat. 318–319)

cat. 318
Excavation inv. ART 870233.3; AMS inv. 174/61/87
Flat, round pendant with an oval section followed by a distinct, protruding neck with a round projection, which is perforated sideways from the top to the front. At its bottom some traces of a failed drilling can be seen. Red amber. H 1.2 cm; L 0.9 cm; W 0.7 cm; D hole 0.1 cm.
6.1 Ephesos Archaeological Museum in Selçuk

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–322, 340–342, 345)

cat. 319
Exca. ART 880871.124; AMS inv. 99/54/88
Round, flat pendant with an oval section and a rectangular flat projection at its top. The object is perforated twice with two intersecting drillings: once horizontally from its front to its back, right beneath the projection, and once vertically with a perforation running from the top to the base. Red amber. D 1.6 cm; W 0.9 cm; D hole 0.18 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 320
Exca. ART 870353.3; AMS inv. 81/61/87
Oval pendant with an oval section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a round, floral, decorated projection which resembles the calyx of a pomegranate. Red amber. H 1.8 cm; L 0.9 cm; W 0.6 cm; D hole 0.1 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 321
Exca. ART 870352.13; AMS inv. 153/61/87
Oval pendant with an oval section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a round, floral, decorated projection which resembles the calyx of a pomegranate. Red amber. H 1.7 cm; L 1.7 cm; W 0.1 cm; D hole 0.1 cm.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 322
Exca. ART 870352.14; AMS inv. 154/61/87
Oval pendant with a round section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a round, floral, decorated projection which resembles the calyx of a pomegranate. Red amber. H 1.5 cm; L 0.8 cm; W 0.7 cm; D hole 0.13 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 323
Exca. ART 870352.15; AMS inv. 155/61/87
Oval pendant with an oval, flat section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a flat, oval, floral, decorated projection which resembles the calyx of a pomegranate. Red amber. H 1.6 cm; L 1 cm; W 0.6 cm; D hole 0.15 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 324
Exca. ART 870352.16; AMS inv. 156/61/87
Oval pendant with an oval, flat section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a flat, oval, floral, decorated projection, which resembles the calyx of a pomegranate. Orange amber. H 1.6 cm; L 0.8 cm; W 0.6 cm; D hole 0.1 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 325
Exca. ART 870352.17; AMS inv. 157/61/87
Oval pendant with an oval, flat section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a flat, oval, floral, decorated projection which resembles the calyx of a pomegranate. Red amber. H 1.6 cm; L 1 cm; W 0.5 cm; D hole 0.13 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 326
Exca. ART 870352.18; AMS inv. 158/61/87
Oval pendant with an oval, flat section, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a round, floral, decorated projection which resembles the calyx of a pomegranate. Red amber. H 1.7 cm; L 0.9 cm; W 0.6 cm; D hole 0.15 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 327
Exca. ART 870352.19; AMS inv. 159/61/87
Oval pendant with a round section, which is perforated from its bottom to its top. At its lower end the object shows a protruding neck and is characterised by a round, floral projection which resembles the calyx of a pomegranate. Red amber. H 1.5 cm; L 0.9 cm; W 0.6 cm; D hole 0.15 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 328
Exca. ART 870352.42; AMS inv. 182/61/87
Oval pendant with an oval section, which is perforated from its bottom to its top. At its lower end the object shows a slightly protruding neck and is characterised by a round, floral projection which resembles the calyx of a pomegranate. The colour of the amber is red. H 1.15 cm; L 0.5 cm; W 0.4 cm; D hole 0.07 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 329
Exca. ART 880222.106; AMS inv. 81/54/88
Oval pendant with a flat, oval section and a flattened upper part, which is perforated from its bottom to its top. In its lower section the object shows a protruding neck and is characterised by a round, floral, decorated projection which resembles the calyx of a pomegranate. The colour of the amber is red. H 1.6 cm; L 1.1 cm; W 0.7 cm; D hole 0.2 cm.

Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Type 5: Fruit pendants (cat. 320–345)

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 330
Exca. ART 870281.49; AMS inv. 162/99
Oval, squat pendant with a round section, which is
perforated from its bottom to its top. In its lower section
the object shows a protruding neck and is characterised
by a round, floral, decorated projection which resembles
the calyx of a pomegranate. The colour of the amber is
yellow. H 0.9 cm; L 0.6 cm; D hole 0.15 cm.

cat. 331
Excavation inv. ART 870352.117; AMS inv. 17/2/99
Fragment of the button-top of a pomegranate pendant,
round, with a vertical perforation through its centre. It is
elaborated in a shape that resembles the calyx of a pome-
granate or apple. Red amber. H 0.4 cm; D 0.5 cm; D hole
0.1 cm.

cat. 332
Excavation inv. ART 870341.80; AMS inv. 17/2/99
Oval, rather big but squat pendant with a round section,
which is perforated by a rather small hole from its bottom
to its top. In its lower section the object shows a slight-
ly protruding neck and is characterised by a round, flora-
dal, decorated projection which resembles the calyx of a
pomegranate. The colour of the amber is dark yellow. H
1.4 cm; L 1 cm; D hole 0.15 cm.

Type 5b: Pomegranate pendants with
horizontal bore-hole (cat. 333–339, 343–344)

cat. 333
Excavation inv. ART 870232.13; AMS inv. 15/2/99
Elongated oval pendant, rather small, with an oval sec-
tion and a protruding neck, surmounted by a button-top,
characterised by two deep notches, so the projection re-
sembles the calyx of a pomegranate or apple. At its base,
the pendant is perforated horizontally. H 1.3 cm; L 0.6
cm; D hole 0.1 cm.

cat. 334
Excavation inv. ART 870232.16; AMS inv. 15/2/99
Oval, rather small pendant, with an oval section and a
protruding neck, surmounted by a round button-top, charac-
terised by two deep notches so the projection resembles
the calyx of a pomegranate. The base is perforated hori-
zontally. Red amber. H 0.9 cm; L 0.6 cm; D hole 0.1 cm.

cat. 335
Excavation inv. ART 870352.156; AMS inv. 17/2/99
Oval, rather small and squat pendant, with a round sec-
tion with a protruding neck, surmounted by a round pro-
jection with three deep notches which together equate
to the calyx of a pomegranate. The base of the object is
perforated horizontally. Yellow amber. H 1 cm; L 0.5 cm;
D hole 0.1 cm.

cat. 336
Excavation inv. ART 870348.57; AMS inv. 17/2/99
Oval, rather small and squat pendant, with a round sec-
tion and a protruding neck, surmounted by a round pro-
jection with three deep notches which together equate to
the calyx of a pomegranate. The base of the object is
perforated horizontally. Yellow amber. H 1 cm; L 0.5 cm;
D hole 0.1 cm.

cat. 337
Excavation inv. ART 870352.43; AMS inv. 183/61/87
Oval, elongated, small pendant, with an oval section with
a protruding neck, surmounted by a round projection with
two deep notches which equate to the calyx of a pome-
granate. The base of the pendant is perforated horizontally.
Red amber. H 0.95 cm; L 0.5 cm; W 0.5 cm; D hole
0.09 cm.

cat. 338
Excavation inv. ART 870352.44; AMS inv. 184/61/87
Oval, elongated, small pendant, with an oval section with
a protruding neck, surmounted by a round projection with
two deep notches which equate to the calyx of a pome-
granate. The base of the pendant is perforated horizontally.
Red amber. H 0.9 cm; L 0.5 cm; D hole 0.1 cm.

Type 5a: Pomegranate pendants with
a vertical bore-hole (cat. 320–332, 340–342, 345)

cat. 339
Excavation inv. ART 940135; AMS inv. 31/43/94
Elongated oval pendant, with an oval section with a pro-
truding neck, surmounted by a round projection, charac-
terised by two grooves, partly chipped, and which
resembles the calyx of a pomegranate/apple. The base of
the pendant is perforated horizontally. Red amber. H 1.7
cm; L 0.95 cm; D hole <0.1 cm.

cat. 340
Excavation inv. ART 870353.5; AMS inv. 79/61/87
Globular pendant, with a round section and a protruding
neck, which is characterised by two grooves. The pen-
dant features a round button-top, which is decorated with
radiating incisions at its top; a perforation runs vertically
through the whole object. Red amber. H 2.2 cm; D 1.6
cm; D hole 0.25 cm.

cat. 341
Excavation inv. ART 892609.1; AMS inv. 2/71/89
Globular pendant with a round section and a protruding
neck characterrised by two grooves, surmounted by an
oval button-top with twelve triangular notches. The ob-
ject itself is perforated by a vertical, rather slanted, de-
centralised drilling. Red amber. H 1.4 cm; L 1.7 cm; W
1.1 cm; D hole 0.2 cm.
6.1 Ephesos Archaeological Museum in Selçuk

Type 5b: Pomegranate pendants with a horizontal bore-hole (cat. 333–339. 343–344)

cat. 342
Excavation inv. ART 870281.39; AMS inv. 16/2/99.39
Fragment of an elongated oval pendant with an oval section and a cylindrical neck, surmounted by a round button-top, characterised by four surviving radiating grooves. The object is fractured vertically lengthwise, so only half of the pendant is preserved. There are two drillings, one perforating the artefact lengthwise from bottom to top and one, probably secondary, boring just over the neck of the pendant, running horizontally from its front to its back. The fracture is covered by an ancient patina. Red amber. H 2.2 cm; D max. 1.2 cm; D hole 0.25 cm; D horizontal hole 0.3 cm.

cat. 343
Excavation inv. ART 892609.2; AMS inv. 7/2/90
Globular pendant with a round section with a protruding neck, characterised by two grooves, surmounted by a round button-top with radiating incisions. The pendant is perforated at its base with two intersecting drillings. Red amber. H 1.5 cm; L 1 cm; D hole 0.1 cm.

cat. 344
Excavation inv. ART 870353.6; AMS inv. 80/61/87
Globular pendant with a round section with a protruding neck, characterised by two grooves, followed by a round button-top with radiating incisions. The pendant is perforated at its base by intersecting drillings. Due to corrosion, the object has a massive hole at the front, which perforates almost half of the object. Red amber. H 1.4 cm; D 1.1 cm; D hole 0.1 cm.

Type 5a: Pomegranate pendants with a vertical bore-hole (cat. 320–332. 340–342. 345)

cat. 345
Excavation inv. ART 870353.4; AMS inv. 78/61/87
Drop-shaped, oval pendant with a round section, which features a protruding neck and a cylindrical button-top. The object is perforated vertically from its bottom to its top. Red amber. H 2.2 cm; D max. 1.4 cm; D hole 0.25 cm.

Fragments

cat. 346
Excavation inv. ART 870232.15; AMS inv. 15/2/99
Upper part of a fractured globular pendant with an oval section; its lower section is completely broken. The object is perforated horizontally at its base. Red amber. H 0.7 cm; L 0.7 cm; D hole 0.1 cm.

cat. 347
Excavation inv. ART 870232.96; AMS inv. 15/2/99
Fragment of a globular pendant with an oval section; its whole upper part is fractured, therefore no clear statement can be made regarding its shape. A vertical perforation runs through the whole object. Yellow amber, translucent. H 1.1 cm; L 1 cm; D hole 0.15 cm.

cat. 348
Excavation inv. ART 870281.55; AMS inv. 16/2/99
Possible fragment of a circular-shaped projection with an oval section, which features a horizontal drilling. The lower part of the object is fractured. Red amber. D 0.4 cm; D hole 0.1 cm.

cat. 349
Excavation inv. ART 900374.3*
Possible fragment of a pendant with remains of a horizontal drilling. A typological designation of this piece is not possible due to its bad state of conservation. Yellow amber. L 0.5 cm; W 0.3 cm.

Caroline Posch

Spacers (cat. 350–488)

Type 1: Triangular-shaped end spacers (cat. 350–351)

cat. 350
Excavation inv. ART 870352.29; AMS inv. 169/61/87
Triangular-shaped spacer with five through-borings from the base to the top, one in the centre, two on each side. One boring is visible in the fracture; the end of one side is slightly fractured. Red amber. H 0.9 cm; L 3.7 cm; T 0.5 cm; D bore-holes 0.1 cm.

cat. 351
Excavation inv. ART 870352.30; AMS inv. 170/61/87
Triangular-shaped spacer with four through-borings, one in the centre, two on one side and one on the opposite side. One end is missing. Dark yellow amber. H 1.3 cm; L max. 4.25 cm; T 0.6 cm; D bore-holes 0.08–0.09 cm.
Type 2: Rectangular-shaped spacer-plates (cat. 352–353)
cat. 352 pl. 49, 352
Excavation inv. ART 870232.93; AMS inv. 15/2/99
Fragment of a rectangular-shaped spacer, corresponding to an end, with two through-borings on the long side. A corner is missing. Red amber. L 2.1 cm; T 0.9 cm; D bore-holes 0.2 cm.
cat. 353 pl. 49, 353
Excavation inv. ART 870352.128; AMS inv. 17/2/99
Fragment of a rectangular-shaped spacer, corresponding to an end with two through-borings on the long side. Truncated at both ends. The sections of the broken sides are quite polished. Red amber. L 1.7 cm; W 1.7 cm; D bore-holes 0.2 cm.

Type 3: Uniquely shaped spacer-plates (cat. 354–356)
cat. 354 pl. 49, 354
Excavation inv. ART 870281.54; AMS inv. 16/2/99
Tiny fragment corresponding to an end of a two-row spacer, similar to no. 355 (excavation inv. 870341.77) with a through-boring. Red amber. H 0.5 cm; D hole 0.1 cm.
cat. 355 pl. 49, 355
Excavation inv. ART 870341.77; AMS inv. 17/2/99
Spacer, almost cylindrically shaped, with a central part and two sides, divided by two grooves; a through-boring on the length of each side. Whole. Red amber. H max. 1.1 cm; W max. 0.6 cm; T 0.5 cm; D holes 0.1 cm.
cat. 356 pl. 49, 356
Excavation inv. ART 870352.28; AMS inv. 168/61/87
Large triangular-shaped spacer with three through-borings, one larger in the middle of the long side and intersecting the other two, which are on the short side, and smaller. A fracture runs through one of the bore-holes on the short side. An end is missing, the surface is scratched. Matt, red amber. L max. 4.6 cm (originally 5.1 cm); W 2.3 cm; T 0.6 cm; D holes 0.25–0.4 cm.

Types 4–6: Bird-shaped spacers (cat. 357–417)
cat. 357 pl. 50, 357
Excavation inv. ART 900486.3*
Fragment of the projection of a triangular application. The object features a triangular section and a horizontal drill hole, visible in fracture. Translucent red amber. H. 0.6 cm; W 0.5 cm; D hole 0.15 cm.
cat. 358 pl. 50, 358
Excavation inv. ART 870352.4; AMS inv. 144/61/87
The element has a triangular base, which is perforated by one horizontal boring on each corner. The upper part is at a 45° angle to the base. Translucent yellow amber. L max. 1.2 cm; H 0.9 cm; T 0.6 cm; D holes 0.1 cm.
cat. 359 pl. 50, 359
Excavation inv. ART 870352.5; AMS inv. 145/61/87
Similar to cat. 358. Whole. Translucent yellow amber. L max. 1.4 cm; H 0.9 cm; T 0.4 cm; D holes 0.05 cm.
cat. 360 pl. 50, 360
Excavation inv. ART 870352.6; AMS inv. 146/61/87
Similar to cat. 358. Whole. Translucent yellow amber. L max. 1.4 cm; H 0.9 cm; T 0.5 cm; D holes 0.05 cm.
cat. 361 pl. 50, 361
Excavation inv. ART 870352.7; AMS inv. 147/61/87
Similar to cat. 358. Whole. Translucent yellow amber. L max. 1.1 cm; H 0.9 cm; T 0.5 cm; D holes 0.05 cm.
cat. 362–378 pls. 18, 3; 50, 364, 366–378
excavation inv. ART 870246.121; AMS inv. 14/2/99
Excavation inv. ART 870246.122; AMS inv. 14/2/99
Excavation inv. ART 870246.123; AMS inv. 14/2/99
Excavation inv. ART 870246.124; AMS inv. 14/2/99
Excavation inv. ART 870246.125; AMS inv. 14/2/99
Excavation inv. ART 870246.126; AMS inv. 14/2/99
Excavation inv. ART 870246.127; AMS inv. 14/2/99
Excavation inv. ART 870246.128; AMS inv. 14/2/99
Excavation inv. ART 870246.129; AMS inv. 14/2/99
Excavation inv. ART 870246.130; AMS inv. 14/2/99
Excavation inv. ART 870246.131; AMS inv. 14/2/99
Excavation inv. ART 870246.132; AMS inv. 14/2/99
Excavation inv. ART 870246.133; AMS inv. 14/2/99
Excavation inv. ART 870246.134; AMS inv. 14/2/99
Excavation inv. ART 870246.135; AMS inv. 14/2/99
Excavation inv. ART 870246.136; AMS inv. 14/2/99
Excavation inv. ART 870246.137; AMS inv. 14/2/99
Seventeen bird-shaped elements similar to cat. 358, but with two different boring systems on the base. The first type, to which belong cat. 362, 364, 366, 368, 370–371, 373–378, has three through-borings: two are transversal and one longitudinal. The transversal boring on the front is connected to the longitudinal boring. Cat. 368, 370, 373–374, 376 belong to the first type, although they have two borings, because they are not whole and some parts are missing. Cat. 363, 365, 367, 369, 372 belong to the second type and actually have one transversal boring, but they are not whole and some parts of the back are missing: the original presence of a second boring is highly probable.

In both types the upper part is at a 45° angle to the base. Translucent yellow and translucent red amber. The dimensions vary from max. (cat. 362) L 1 cm; H 0.9 cm; T 0.6 cm to min. (cat. 363) L 0.8 cm; H 0.5 cm; T 0.35 cm; D holes 0.1 cm.

cat. 379 psls. 18, 3; 50, 379
Excavation inv. ART 870246.138; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and with three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Translucent yellow amber. L max. 1 cm; H 0.9 cm; T 0.4 cm; D hole 0.1 cm.

cat. 380 psls. 18, 3; 50, 380
Excavation inv. ART 870246.118; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole, red amber. L max 1 cm; H 0.6 cm; T 0.2 cm; D hole 0.1 cm.

cat. 381–388 psls. 18, 3; 50, 381–388

cat. 381
Excavation inv. ART 870246.100; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and with three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.9 cm; T 0.4 cm; D hole 0.1 cm.

cat. 382
Excavation inv. ART 870246.101; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.6 cm; T 0.2 cm; D hole 0.1 cm.

cat. 383
Excavation inv. ART 870246.102; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.9 cm; T 0.35 cm; D hole 0.1 cm.

cat. 384
Excavation inv. ART 870246.103; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.9 cm; T 0.35 cm; D hole 0.1 cm.

cat. 385
Excavation inv. ART 870246.104; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.9 cm; T 0.35 cm; D hole 0.1 cm.

cat. 386
Excavation inv. ART 870246.105; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.9 cm; T 0.35 cm; D hole 0.1 cm.

cat. 387
Excavation inv. ART 870246.106; AMS inv. 14/2/99
Bird-shaped element, similar to cat. 362 and pierced by three borings: the transversal boring on the front is connected to a longitudinal boring. Whole. Yellow, matt amber. L max 1 cm; H 0.9 cm; T 0.35 cm; D hole 0.1 cm.

cat. 388
Eight bird-shaped elements similar to cat. 358, but with two different boring systems on the base. The first type, to which belong cat. 381, 387 and 388, has three borings: the transversal boring on the front is connected to the longitudinal boring. The elements cat. 382–386 actually have one transversal boring, but they belong to the second type with two transversal borings, because all are incomplete and some parts are missing.

In both types the upper part is at a 45° angle to the base. Translucent yellow and translucent red amber. L max. (cat. 387) 0.6 cm; H 0.7 cm; D holes 0.1 cm.

cat. 389 pl. 50, 389
Excavation inv. ART 870232.35; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 362, with three borings: the transversal boring on the front is connected to the longitudinal boring; traces of the boring on the back are visible in fracture. The upper part is at a 45° angle to the base. Both ends of the base are broken and missing. Dark yellow amber. L max. 0.8 cm; H max. 0.7 cm; T 0.3 cm; D hole 0.1 cm.

cat. 390 pl. 50, 390
Excavation inv. ART 870232.36; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 362, with three borings: the transversal boring on the front is connected to the longitudinal boring; the back of the element, a fracture runs through the bore-hole. The upper part is at a 45° angle to the base. One end is missing. Red amber. L max. 0.9 cm; H max. 0.7 cm; T 0.3 cm; D hole 0.1 cm.

cat. 391 pl. 50, 391
Excavation inv. ART 870232.37; AMS inv. 15/2/99 (5)
Fragment of a bird-shaped element, with a transversal boring on the base. Remains of the upper section have survived. Yellow, matt amber. L max. 0.5 cm; H max. 0.7 cm; T 0.2 cm; D hole 0.1 cm.

cat. 392 pl. 50, 392
Excavation inv. ART 870232.38; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 362, with a transversal boring on the base. The upper part is at a 45° angle to the base. One end is missing. Yellow, matt amber. L max. 0.7 cm; H max. 0.5 cm; T 0.3 cm; D hole 0.1 cm.

cat. 393 pl. 50, 393
Excavation inv. ART 870232.39; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 362, with three borings: the transversal boring on the front is connected to a longitudinal boring; on the back of the element, a fracture runs through the bore-hole. The upper part is at a 45° angle to the base and its top is missing. Red amber. L max. 0.8 cm; H 0.9 cm; T 0.3 cm; D holes 0.1 cm.

cat. 394 pl. 50, 394
Excavation inv. ART 870232.40; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 362, with three borings: the transversal boring on the front is connected to a longitudinal boring; on the back of the element, a fracture runs through the bore-hole. The upper part is at a 45° angle to the base. One end is missing. Dark yellow amber. L 0.7 cm; H max. 0.5 cm; T 0.3 cm; D holes 0.1 cm.
cat. 395 pl. 50, 395
Excavation inv. ART 870232.49; AMS inv. 15/2/99 (5)
Bird-shaped element, similar to cat. 363 with a transversal boring on the base. The upper part and the back are missing. Yellow, matt amber. L max. 0.6; H max. 0.7 cm; T 0.2 cm; D hole 0.1 cm.

cat. 396 pl. 50, 396
Excavation inv. ART 870232.50; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 363 with a transversal boring on the base. The upper part is at a 45° angle to the base. Translucent, yellow amber. L max. 0.9 cm; H 0.7 cm; T. 0.3 cm; D hole 0.1 cm.

cat. 397 pl. 50, 397
Excavation inv. ART 870232.51; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 358. The upper part is missing. Translucent, yellow amber. L. max. 1.1 cm; H 0.8 cm; T 0.6 cm; D holes 0.1 cm.

cat. 398 pl. 50, 398
Excavation inv. ART 870232.52; AMS inv. 15/2/99 (3)
Bird-shaped element, similar to cat. 358. The upper part is at a 45° angle to the base. The top of the upper part is missing. Translucent, yellow amber. L 1.2 cm; H 0.7 cm; T 0.6 cm; D holes 0.1 cm.

cat. 399–405 pls. 50, 399–51, 405
cat. 399
Excavation inv. ART 870232.101; AMS inv.15/2/99
Bird-shaped element, with two different boring systems on the base. The first type, to which belong cat. 399–403 and 405, has three borings: the transversal boring on the front is connected to the longitudinal boring. The second type, to which belongs cat. 404, has one boring on the base. The upper part is at a 45° angle to the base and is missing or broken in some pieces. Translucent yellow amber. L max. 1 cm; H 0.9 cm; T max. 0.6 cm; D holes 0.1–0.15 cm.

cat. 404
Excavation inv. ART 870232.108; AMS inv. 15/2/99
Bird-shaped element, similar to cat. 358; fractures run through two bore-holes. The upper part and the back are missing. Translucent yellow amber. L max. 1 cm; H 1.3 cm; T max. 0.6 cm; D hole 0.1 cm.

cat. 406 pl. 51, 406
Excavation inv. ART 870232.7; AMS inv. 16/2/99
Bird-shaped element, with a transversal boring on the base. The upper part is at a 45° angle to the base. Yellow, matt amber. L max. 1.2 cm; T 0.3 cm; D holes 0.1 cm.

cat. 407 pl. 51, 407
Excavation inv. ART 870281.4; AMS inv. 16/2/99
Fragment of the base of a bird-shaped element, with traces of the borings at both ends. Yellow, matt amber. L max. 1.2 cm; T 0.3 cm; D holes 0.1 cm.

cat. 408 pl. 51, 408
Excavation inv. ART 870281.75; AMS inv. 16/2/99
Bird-shaped element, with a boring on the base. The upper part is at a 45° angle to the base. The back area is missing. Yellow, matt amber. L 1.1 cm; H 0.7 cm; T 0.2 cm; D holes 0.1 cm.

cat. 409 pl. 51, 409
Excavation inv. ART 870281.13; AMS inv. 16/2/99
Bird-shaped element, of a particular size and shape, with one vertical bore-hole and one horizontal bore-hole running through the base. The horizontal boring has been drilled across the vertical boring. The upper part is at a 90° angle to the base. Red, matt amber. H 1.4 cm; W 1.1 cm; D holes 0.15 cm.

cat. 410 pl. 51, 410
Excavation inv. ART 870281.21; AMS inv. 16/2/99
Bird-shaped element, with a transversal boring on the base. The upper part is at a 45° angle to the base. Whole. Yellow, matt amber. L max. 1 cm; H max. 0.6 cm; T 0.3 cm; D hole 0.1 cm.

cat. 411–415 pl. 51, 411–415
cat. 411
Excavation inv. ART 870281.27; AMS inv. 16/2/99
Bird-shaped element, with two different boring systems on the base. The first type, to which belong cat. 411 and 414, has three borings: the transversal boring on the front is connected to the longitudinal boring. The second type, to which belong cat. 412–413 and 415, has one boring on the base. Cat. 415 shows traces of a further blind hole in the front part of the base. The upper part is at a 45° angle to the base and in some pieces is broken. The colours vary from dark red to translucent yellow. L max. 1 cm; H 0.6 cm; T 0.3 cm; D holes 0.1 cm.
6.1 Ephesos Archaeological Museum in Selçuk

Cat. 416
Excavation inv. ART 870349.25; AMS inv. 17/2/99
Bird-shaped element, with a transversal boring on the base. The upper part is at a 45° angle to the base. Whole. Translucent, yellow amber. L max. 1.1 cm; H 0.8 cm; D hole 0.1 cm.

Cat. 417
Excavation inv. ART 870352.125; AMS inv. 17/2/99
Fragment of a bird-shaped element, with a transversal boring on the base. The upper part is missing. Cracked surface. Translucent, yellow amber. L max. 1 cm; H 0.5 cm; D hole 0.1 cm.

Type 7: Triangle-shaped spacer-plates (cat. 418–472)

Cat. 418
Excavation inv. ART 870281.17; AMS inv. 16/2/99
Triangle-shaped spacer, flat and rounded, with two horizontal through-borings on the top and on the base; at the centre of the base, a third vertical through-boring is connected to the lower horizontal one. The top and the base are partly missing. Red amber. H 0.9 cm; W max. 0.6 cm; T 0.4 cm; D holes 0.15 cm.

Cat. 419
Excavation inv. ART 870352.8; AMS inv. 148/61/87
Triangle-shaped spacer, with a horizontal through-boring in each corner. On the main face a circle with a central point is incised. Yellow amber. H 1.3 cm; D holes 0.1 cm. Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Cat. 420
Excavation inv. ART 870352.9; AMS inv. 149/61/87
Triangle-shaped spacer, with a horizontal through-boring in each corner. Two lower corners are missing. Red amber. H 1.2 cm; W max. 0.95 cm; T 0.2 cm; D holes 0.05 cm. Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Cat. 421
Excavation inv. ART 870352.10; AMS inv. 150/61/87
Similar to cat. 420. The top is missing. Red amber. H 1.3 cm; W max. 0.9 cm; T 0.2 cm; D holes 0.06 cm. Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Cat. 422
Excavation inv. ART 870352.11; AMS inv. 151/61/87
Similar to cat. 420. Yellow amber. H 1.25 cm; W max. 0.95 cm; T 0.5 cm; D holes 0.07 cm. Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

Cat. 423–429

Cat. 430–441

Cat. 442

Excavation inv. ART 870232.114; AMS inv. 15/2/99
Tiny fragment of a triangular element, similar to cat. 419, corresponding to the central/upper part. Yellow amber. H max. 0.7 cm; W max. 0.4 cm; T 0.25 cm; D holes 0.1 cm.
cat. 443 pl. 51, 443
Excavation inv. ART 870232.41; AMS inv. 15/2/99
Fragment of a triangular element, similar to cat. 419. Red amber. H max. 0.8 cm; W max. 0.5 cm; T 0.25 cm; D holes 0.1 cm.

cat. 444 pl. 52, 444
Excavation inv. ART 870232.42; AMS inv. 15/2/99
Similar to cat. 419. The top is missing. Red amber. H max. 1 cm; W max. 1 cm; T 0.4 cm; D holes 0.1 cm.

cat. 445 pl. 52, 445
Excavation inv. ART 870232.43; AMS inv. 15/2/99
Similar to cat. 419. Red amber. The top is missing. H max. 0.8 cm; W max. 0.9 cm; T 0.25 cm; D holes 0.1 cm.

cat. 446 pl. 52, 446
Excavation inv. ART 870232.44; AMS inv. 15/2/99
Similar to cat. 419. Red amber. Whole. H 1 cm; W max. 0.8 cm; T 0.25 cm; D holes 0.1 cm.

cat. 447 pl. 52, 447
Excavation inv. ART 870232.45; AMS inv. 15/2/99
Similar to cat. 419. Red amber. Whole. H 1.2 cm; W max. 0.8 cm; T 0.2 cm; D holes 0.1 cm.

Two triangle-shaped elements, similar to cat. 419. Yellow amber. The top is missing on both pieces. H max. 0.9 cm; W max. 0.9 cm; T 0.25 cm; D holes 0.1 cm.

cat. 454–471 pl. 52, 454–471
cat. 454 Excavation inv. ART 870352.135; AMS inv. 17/2/99
cat. 455
Excavation inv. ART 870352.136; AMS inv. 17/2/99
cat. 456
Excavation inv. ART 870352.137; AMS inv. 17/2/99
cat. 457
Excavation inv. ART 870352.138; AMS inv. 17/2/99
cat. 458
Excavation inv. ART 870352.139; AMS inv. 17/2/99
cat. 459
Excavation inv. ART 870352.140; AMS inv. 17/2/99
cat. 460
Excavation inv. ART 870352.141; AMS inv. 17/2/99
cat. 461
Excavation inv. ART 870352.142; AMS inv. 17/2/99
cat. 462
Excavation inv. ART 870352.143; AMS inv. 17/2/99
cat. 463
Excavation inv. ART 870352.144; AMS inv. 17/2/99
cat. 464
Excavation inv. ART 870352.145; AMS inv. 17/2/99
cat. 465
Excavation inv. ART 870352.146; AMS inv. 17/2/99
cat. 466
Excavation inv. ART 870352.147; AMS inv. 17/2/99
cat. 467
Excavation inv. ART 870352.148; AMS inv. 17/2/99
cat. 468
Excavation inv. ART 870352.149; AMS inv. 17/2/99
cat. 469
Excavation inv. ART 870352.150; AMS inv. 17/2/99
cat. 470
Excavation inv. ART 870352.151; AMS inv. 17/2/99
cat. 471
Excavation inv. ART 870352.152; AMS inv. 17/2/99
Seventeen triangle-shaped elements, similar to cat. 419. Except for cat. 457, 461 and 470, all elements are incomplete. Yellow amber. Cat. 461: H 1.3 cm; W max. 1 cm; T 0.3 cm; D holes 0.1 cm.

cat. 472 pl. 52, 472
Excavation inv. ART 870352.175; AMS inv. 17/2/99
Similar to cat. 419. Yellow amber. The top is missing. H max. 0.7 cm; D holes 0.1 cm.

Type 8: Round spacer-plates (cat. 473–488)

cat. 473 pl. 52, 473
Excavation inv. ART 870232.2; AMS inv. 15/2/99 (5)
Disc with one horizontal through-boring. Red amber. Whole T 0.5 cm; D 1.1 cm; D hole 0.15 cm.
6.1 Ephesos Archaeological Museum in Selçuk

cat. 474
Excavation inv. ART 940146; AMS inv. 32/43/94
Disc with two horizontal through-borings connected to one another in the centre of the disk. Red amber. Whole. D 1.1 cm; T 0.4 cm; D holes > 0.1 cm.

cat. 475
Excavation inv. ART 870352.133; AMS inv. 17/2/99
Disc with two horizontal through-borings connected to one another in the centre of the disk, similar to no. 474. Red amber. Whole. D 1.1 cm; T 0.35 cm; D holes 0.2 cm.

cat. 476
Excavation inv. ART 870246.97; AMS inv. 14/2/99
Tiny, almost oval disc with two horizontal through-borings, not connected to one another. On the main face a circle with a central point is incised. Red amber. Whole. L 0.9 cm; W 0.7 cm; T 0.2 cm; D holes 0.1 cm.

cat. 477
Excavation inv. ART 870246.98; AMS inv. 14/2/99
Similar to cat. 476. Red amber. Whole. L 0.6 cm; W 0.5 cm; T 0.2 cm; D holes 0.1 cm.

cat. 478
Excavation inv. ART 870246.99; AMS inv. 14/2/99
Similar to cat. 476. Red amber. One part is missing. L 0.6 cm; W 0.5 cm; T 0.2 cm; D holes 0.1 cm.

cat. 479
Excavation inv. ART 870246.80; AMS inv. 14/2/99
Similar to cat. 476. Red amber. Whole. L 0.7 cm; W 0.5 cm; T 0.2 cm; D holes 0.1 cm.

cat. 480
Excavation inv. ART 870246.77; AMS inv. 14/2/99
Similar to cat. 476. Red amber. One part is missing. L max. 0.6 cm; W max. 0.5 cm; T 0.2 cm; D hole 0.1 cm.

cat. 481
Excavation inv. ART 870246.78; AMS inv. 14/2/99
Similar to cat. 476. Red amber. Whole. L 0.7 cm; W 0.6 cm; T 0.2 cm; D holes 0.1 cm.

cat. 482
Excavation inv. ART 870246.79; AMS inv. 14/2/99 (3)
Similar to cat. 476. Red amber. Whole. L 0.7 cm; W 0.6 cm; T 0.2 cm; D holes 0.1 cm.

cat. 483
Excavation inv. ART 870232.17; AMS Inv. 15/2/99 (5)
Similar to cat. 476. Dark yellow amber. Whole. D 0.7 cm; T 0.2 cm; D hole 0.1 cm.

cat. 484
Excavation inv. ART 870281.22; AMS inv. 16/2/99
Similar to cat. 476. Yellow amber. Whole. D 0.7 cm; T 0.3 cm; D holes 0.1 cm.

cat. 485
Excavation inv. ART 870352.176; AMS inv. 17/2/99
Fragment of a disc similar to cat. 476. Yellow amber. D 0.6 cm; T 0.2 cm; D holes 0.1 cm.

cat. 486
Excavation inv. ART 870246.38; AMS inv. 178/61/87
Similar to cat. 476. Red amber. Whole. L. 0.8 cm; W 0.7 cm; T 0.3 cm; D hole 0.11 cm.
Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

cat. 487
Excavation inv. ART 870246.39; AMS inv. 179/61/87
Similar to cat. 476. Red amber. Whole. L 0.8 cm; W 0.7 cm; T 0.3 cm; D hole 0.11 cm.
Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

cat. 488
Excavation inv. ART 870246.40; AMS inv. 180/61/87
Similar to cat. 476. Red amber. Whole. L 0.8 cm; W 0.7 cm; T 0.3 cm; D holes 0.1 cm.
Lit.: Bammer 1990, fig. 24; Bammer 1992b, fig. 5 c.

The bow of the bronze fibula is coated alternately with four amber and three conical bone segments; the central bone segment has a circular amber inlay on each side and one rectangular amber plaque on the top. The central section of the bow is not visible because the upper rectangular amber plaque is glued. Chipped surface.

Fibulae (cat. 489–523)

Type 1: **Composite Fibulae with Amber and Bone Segments Inlaid with Amber (cat. 489–490)**

cat. 489
Excavation inv. 870246.53; AMS inv. 193/61/87

Alessandro Naso
Red amber, yellowish-white bone. H 1.8 cm; L 3.8 cm; W 2.3 cm.
Lit.: Bammer 1990, pl. 20 b; Bammer 1992b, fig. 9; Naso 2000, fig. 4; Naso 2001, 173 fig. 3; Naso 2006a, 358 fig. 4; Naso 2007, 28 f. fig. 11; Muss 2008c, 14 fig. 6 (the caption does not correspond to this fibula); Naso 2011, 124 f.; Naso 2012, 319 f. fig. 4.

cat. 490
Excavation inv. unknown; AMS inv. unknown
The bow of the fibula is similar to cat. 489, and is coated with two conical amber segments and one conical bone segment; the central bone segment has a circular cavity for an amber inlay. Remains of the metal bow.
Lit.: Muss 2008c, 22 fig. 5 (the caption does not correspond to this fibula); Naso 2012, 319 f.

Type 2: Composite fibulae with amber segments (cat. 491–502)

cat. 491
Excavation inv. ART 870352.25; AMS inv. 165/61/87
Segment with gradually varying thickness and central perforation for the bow of a fibula. Side surfaces are flat. A scratch is visible on one side. Red amber. H 1.4 cm; T 1–1.4 cm; W 2.3 cm; D hole 0.5 cm.

cat. 492
Excavation inv. ART 931107; AMS inv. 44/42/93
Cylindrical disc with gradually varying thickness and central hole for the bow. Side surfaces are flat. Yellow amber. H 1.9 cm; T 1.9 cm; W 2.3 cm; D hole 0.3 cm.

cat. 493
Excavation inv. ART 900427; AMS inv. 2/2/1999
Thin disc with gradable thickness and irregular central hole for the bow. Side surfaces are flat. Yellow amber with impurities. H 3.4 cm; T 0.2–0.8 cm; W 3.4 cm; D hole 0.5–0.6 cm.

cat. 494
Excavation inv. ART 870246.54; AMS inv. 14/2/99.1
Segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. H 2.4 cm; T 0.9–1.4 cm; W 2.4 cm; D hole 0.4 cm.

cat. 495
Excavation inv. ART 880949.118; AMS inv. 93/54/88 (A 15)
Segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. T 0.5–0.3 cm; D 1.2 cm; D hole 0.3 cm.

cat. 496
pl. 53, 496
Excavation inv. ART 892645.1; AMS inv. 90/68/89 (A 19) Segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. T 0.45–0.5 cm; W 0.9 cm; D hole 0.3 cm.

cat. 497
pl. 20, 2; 53, 497
Excavation inv. ART 870232.3; AMS inv. 15/2/99 (3) Oval segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. H 1.3 cm; T 0.4–0.6 cm; W 0.9 cm; D hole 0.4 cm.

cat. 498
pl. 20, 3; 53, 498
Excavation inv. ART 870232.4; AMS inv. 15/2/99 (3) Conical segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. H 1.1 cm; T 0.25–0.6 cm; W 0.8 cm; D hole 0.4 cm.

cat. 499
pl. 20, 4; 54, 499
Excavation inv. ART 870232.89; AMS inv. 15/2/99 (3) Segment with gradable thickness and central hole for the bow. Side surfaces are flat. It could be the lateral segment of a composite fibula. Red amber. H 0.9 cm; T 0.3–0.65 cm; W 1.1 cm; D hole 0.4 cm.

cat. 500
pl. 20, 5; 54, 500
Excavation inv. ART 870232.90; AMS inv. 15/2/99 (3) oval segment with gradable thickness and central hole for the bow. Side surfaces are flat. It could be the central disc of a composite fibula. Red amber. H 1 cm; T 0.6–0.7 cm; W 0.8 cm; D hole 0.4 cm.

cat. 501
pl. 54, 501
Excavation inv. ART 870281.65; AMS inv. 16/2/99 Oval segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. H 1.3 cm; T 0.3–0.6 cm; W 1.7 cm; D hole 0.5 cm.

cat. 502
pl. 54, 502
Excavation inv. ART 870352.134; AMS inv. 17/2/99 Circular segment with gradable thickness and central hole for the bow. Side surfaces are flat. Red amber. H 1.2 cm; T 0.2–0.5 cm; W 1.1 cm; D hole 0.4 cm.

Type 3: Fibulae with an amber bead on the bow (cat. 503–523)

cat. 503
Excavation inv. ART 870281.82; AMS inv. 74/61/87 Triangular, elongated core with a central perforation for the bow running through its length. Well-polished surfaces. Red amber. H 1.8 cm; L 3.6 cm; W 3.1 cm; D hole 0.3 cm.
6.1 Ephesos Archaeological Museum in Selçuk

cat. 504
Excavation inv. 870353.1; AMS inv. 76/61/87
Triangular-shaped core with a central perforation for the bow running through its length. Slightly chipped. Red amber. H 1.6 cm; L 5.1 cm; W 3.4 cm; D hole 0.35 cm.

cat. 505
Excavation inv. ART 880915.110; AMS inv. 85/54/88 (A 16)
Elongated and shapeless core with one straight and one rounded margin. A double oval hole on the upper side and a second regular and circular hole in the centre, along the longest side. Two assembled fragments, showing recent breaks and one old scratch next to the upper hole. Yellow amber. H 1.6 cm; L 5.3 cm; W 2.9 cm; D first double hole 0.6 cm, D second hole 0.3 cm.

cat. 506
Excavation inv. 870352.33; AMS inv. 173/61/87 (A 14, T 13)
Trapezoidal element with a central hole for the bow along the longest side. Intact; small cavities on the polished surface. Opaque yellow amber. H 1.35 cm; L 5.6 cm; W 4.1 cm; D hole 0.3 cm.

cat. 507
Excavation inv. ART 870281.2; AMS inv. 75/61/87
Triangular-shaped core with a central hole for the bow along the short side. Red amber. H 1.4 cm; L 3.4 cm; W 2.7 cm; D hole 0.3 cm.

cat. 508
Excavation inv. ART 870352.31; AMS inv. 171/61/87
Trapezoidal-shaped pearl with rounded and polished corners. Central hole for the bow along the actually shortest axis. Flat lower and weakly convex upper surface. Dark yellow amber. H 0.7 cm; L 2.5 cm; W 2.1 cm; D hole 0.4 cm.

cat. 509
Excavation inv. ART 870353.2; AMS inv. 77/61/87
Rectangular core with a central hole for the bow along the longest side; rounded corners. Lines engraved on the upper surface (no scratches). Red amber. H 1.7 cm; L 2.7 cm; W 2.8 cm; D hole 0.5 cm.

cat. 510
Excavation inv. ART 880947.116; AMS inv. no 91/54/88 (A 15)
Rectangular core with a central hole for the bow along the longest side; rounded corners. Convex upper and weakly convex lower surface. Crack on the upper surface. Red amber. H 0.8 cm; L 2.1 cm; W 1.5 cm; D hole 0.35 cm.

cat. 511
Excavation inv. ART 870352.126; AMS inv. 17/2/99
Rectangular pearl with a central hole for the bow along the longest side; rounded corners. Natural crack on the upper surface, which is polished. Red amber. H 0.7 cm; L 1.8 cm; W 1.5 cm; D hole 0.35 cm.

cat. 512
Excavation inv. ART 870352.184; AMS inv. 17/2/99
Rectangular pearl with a central hole for the bow along the longest side; rounded corners. Flat lower and weakly convex upper surface. Partially preserved, chipped on one side and open crack around a hole. Red amber. H 0.6 cm; L 1.7 cm; W 1.1 cm; D hole 0.35 cm.

cat. 513
Excavation inv. ART 870352.131; AMS inv. 17/2/99
Rectangular pearl with a central hole along the longest axis. On the upper margin there is a hole with gradable diameter (0.2–0.4 cm) from a previous use. Red amber. H 0.5 cm; L 1.1 cm; W 0.9 cm; D hole 0.3 cm.

cat. 514
Excavation inv. ART 870281.38; AMS inv. 16/2/99
Rectangular and elongated pearl with a central hole along the longest side; rounded corners. Red amber. H 0.8 cm; L 2.7 cm; W 1.4 cm; D hole 0.35 cm.

cat. 515
Excavation inv. ART 870352.159; AMS inv. 17/2/99
Rectangular and elongated pearl with big central hole along the longest side; rounded corners. Flat lower and convex upper surface. Partially preserved, broken on both sides; chipped on one side. Red amber. H 0.8 cm; L 2.1 cm; W 1.6 cm; D hole 0.4 cm.

cat. 516
Excavation inv. ART 870352.129; AMS inv. 17/2/99
Shapeless pearl with only a short margin preserved. Central hole along the longest axis. Broken on both sides. Yellow amber. H 0.9 cm; L 2 cm; W 1.7 cm; D hole 0.35 cm.

cat. 517
Excavation inv. ART 870352.32; AMS inv. 172/61/87
Rectangular-shaped pearl with one irregular margin and central hole along the longest axis. H 0.9 cm; L 2.3 cm; W 1.5 cm; D hole 0.35 cm.

cat. 518
Excavation inv. ART 870281.61; AMS inv. 16/2/99
Fragment of a rectangular-shaped pearl, drilling carried out at a distance from the object’s main axis. A natural small appendage on one side. Flat lower and convex upper surface. Red amber. H 1 cm; L 1.5 cm; W 1.3 cm; D hole 0.35 cm.
6 CATALOGUE OF THE AMBER FINDS FROM THE ARTEMISION

cat. 519 pl. 56, 519
Excavation inv. ART 870352.153; AMS inv. 17/2/99
Fragment of a triangular, elongated pearl with a central hole along the longest axis. Flat lower and weakly convex upper surface. Red amber. H 0.8 cm; L 2.5 cm; W 1.5 cm; D hole 0.35 cm.

cat. 520 pl. 56, 520
Excavation inv. ART 870352.188; AMS inv. 17/2/99
Rectangular-shaped pearl with an off-centre hole along the longest axis. The surface shows an old coating and is broken and chipped on one side. Red amber. H 0.5 cm; L 1.6 cm; W 1.3 cm; D hole 0.35 cm.

cat. 521 pl. 56, 521
Excavation inv. ART 870281.37; AMS inv. 16/2/99
Oval-shaped pearl with three parallel bore-holes along the longest axis, the largest in the centre shows remains of the bronze bow. Flat lower surface and convex upper. Red amber, shaded. H 1.3 cm; L 2.6 cm; W 2 cm; D central hole 0.4 cm; D side holes 0.35 cm.

Inlays (cat. 524–533)

cat. 524 pl. 57, 524
Excavation inv. ART 800006; AMS inv. 46/38/81
Disc-shaped. One face is matt, one is translucent. Red amber. D 0.8 cm; T 0.15 cm.

cat. 525 pl. 57, 525
Excavation inv. ART 880128.121; AMS inv. 96/54/88 (A 15)
Round inlay, polished and convex on the upper side, flat on the lower side. Red amber. H 0.4 cm; D 1.2 cm.

cat. 526 pl. 57, 526
Excavation inv. ART 870081*
Fragment of a round inlay. Upper face convex and polished, lower face flat and smooth. Red amber. D 1.1 cm; T 0.3 cm; weight 0.22 g.

cat. 527 pl. 57, 527
Excavation inv. ART 870246.13
Round inlay, with a small round cavity on each face. Each cavity shows remains of a metallic dark substance, also present outside the cavity. A fluorescence analysis has revealed that the metallic substance is composed of iron and copper in a ratio of 4 to 1, and identified traces of other metals (silver and lead)\(^{139}\). Yellow amber, consolidated chemically. D inlay 1.4 cm; T 0.6 cm; D cavity 0.6 cm.

Red amber, shaded. H 1.3 cm; L 2.6 cm; W 2 cm; D central hole 0.4 cm; D side holes 0.35 cm.

cat. 522 pl. 57, 522
Excavation inv. ART 870352.130; AMS inv. 17/2/99
Rectangular-shaped pearl with three parallel bore-holes along the longest axis, the largest in the centre shows remains of the bronze bow. Partially preserved, missing a small piece on one side. Red amber. H 0.5 cm; L 1.6 cm; W 1 cm; D central hole 0.3; D side holes 0.2 cm.

cat. 523 pl. 57, 523
Excavation inv. ART 870352.91; AMS inv. 17/2/99
Fragment of a rectangular core with two holes of different sizes for the bow along the longest axis; the element is broken and one portion is missing, likely to have included a third perforation. Yellow amber. H 1 cm; L 2.3 cm; W 2.2 cm; D first hole 0.35 cm; D second hole 0.25 cm.

Nunzia Laura Saldalamacchia

cat. 528 pl. 57, 528
Excavation inv. ART 809431*
Tiny bone disc, quite irregular, containing a round amber inlay. The profile of the bone disc identifies its function as an inlay. Polished, particularly in the upper part. D disc 1 cm; H disc 0.3 cm; D inlay 0.65 cm.

cat. 529 pl. 57, 529
Excavation inv. ART 860155*
Fragment of an inlay in the shape of a flower petal, having a straight pattern and a rounded ending. The upper side is convex, the lower is flat. Red amber. Almost half is missing. H max. 1.6 cm, W max. 0.8 cm, T 0.2 cm; weight 0.19 g.

cat. 530 pl. 57, 530
Excavation inv. ART 910611*
Fragment of an inlay in the shape of a flower petal, which has a rounded form. The upper side is convex, the lower is flat. The fragment corresponds to the central part. Red amber. W max. 1.7 cm, L max. 1.5 cm; T 0.4 cm; weight 0.65 g.

Nunzia Laura Saldalamacchia

\(^{139}\) We wish to thank Prof. Manfred Schreiner and Dr. Michael Melcher (Institute for Natural Sciences and Technology in the Art at the Academy of Fine Arts, Vienna) for their kind collaboration in the fluorescence analysis of this piece.
is flat and smooth. Red amber. W 1.2 cm; L max. 1.7 cm, T 0.3 cm; weight 0.60 g.

cat. 532 pl. 57, 532
Excavation inv. ART 930672; AMS inv. 22/42/93 Bone inlay containing an amber inlay (astragalus)\(^{306}\).
Object composed of two bobbins, each containing an amber disc on one side, one still preserved. The upper sides of the bobbins are identical: concave, showing an engraved design with single lines along the rim and in the middle. In the middle of each bobbin, a round cavity is destined to be filled with an amber inlay; one is still in position, the other contains remains of a black substance, probably the glue (bolus \(\text{[?]}\)) used to fix the amber. A line is engraved along the rim on the lower side of both bobbins. Red amber. Whole, with small fractures. L 2.4 cm; W 1.4 cm; H 1.3 cm.
Lit.: Muss 2008c, 14 (classified as ivory with amber inlay) fig. 3.

Alessandro Naso

Pinhead

cat. 534 pl. 57, 534
Excavation inv. ART 809433*
Fragment of the upper part of a bone pin with the amber head still in position. The head is well polished and globular: the bead is sustained by a ring-shaped relief on the pin. The lower stem of the pin is broken and missing. H 1.9 cm; D pin 0.15 cm; D head 0.8 cm; D hole of the head 0.2 cm.

Caroline Posch

Raw amber

cat. 535 pl. 25, 3
Excavation inv. ART 880943.132; AMS inv. 107/54/88 (A 15)
Natural piece of raw amber, shapeless and badly broken on two sides. A centre through-boring and a second deep hole are visible in section and are artificial, having perhaps been drilled to cut away a smaller piece. The sections of the broken sides are shiny and polished; the section with a hole is translucent and seems more recent than the other. The amber is red, with several patches of dark yellow. L max 4.2 cm; W max. 4.6 cm; T max. 1.9 cm.

Alessandro Naso

Indeterminable fragments (cat. 536–539)

cat. 536 pl. 57, 536
Excavation inv. ART 900380.3*
Very small segment, fragment of unknown designation. The object shows a quite smooth surface. Red amber with yellow bands. H max. 0.6 cm; W 0.5 cm.

Alessandro Naso

cat. 537 pl. 57, 537
Excavation inv. ART 900380.4*
Fragment of a rather circular object with a horizontal perforation. Less than half of the object is preserved, so a clear attribution to a typological group is not possible. Red amber. L 1 cm; W 0.6 cm; D hole 0.1 cm.

Alessandro Naso

cat. 538 pl. 57, 538
Excavation inv. ART 870246.46; AMS inv. 14/2/99
Fragment of a cylindrical element, perforated vertically through its centre. A typological designation of this piece is not possible (pendant \(\text{[?]}\), spacer \(\text{[?]}\)). Possible remains of a second bore-hole are visible at the break point. Dark yellow amber. H 1.4 cm; D 0.5–0.6 cm.

Caroline Posch

\(^{306}\) The typical structure of animal bone is clearly visible in the fractures.
6.2 ARCHAEOLOGICAL MUSEUM ISTANBUL – BRITISH MUSEUM LONDON (CAT. 540–659)

The carved amber is listed according to the following categories:

- Figured: cat. 540
- Beads: cat. 541–591
- Pendants: cat. 592–630
- Spacers: cat. 631–634
- Fibulae: cat. 635–652
- Inlays: cat. 653–655
- Pinheads: cat. 656–658
- Indeterminable: cat. 659

Figured

cat. 540 Female statuette pls. 8, 3; 58, 540

AMI inv. 2912

The statuette reproduces a standing woman. The carving is very roughly executed. The face is triangular, the facial features are indicated schematically: the eyes as two dots, the nose as a vertical line in low relief and the mouth as a slight horizontal groove. A grid of engraved lines runs over the ears and the head, to suggest a veil. The body is cylindrical; the work lacks any suggestion of arms, hands and legs, while breasts, abdomen and glutes are evident; the feet are well defined, and gouged grooves indicate the toes (six on the right foot). The lower back is smooth and lacks any detail. A deep central groove separates the feet at the base. Intact, with slight chipping on the face and the right foot.

Dark red amber. H 3.7 cm; W 1.6 cm; T 1.4 cm.

Lit.: Hogarth 1908, 214 pl. 48, 20–21; Muss 2008a, 96; 100 fig. 41; Muss 2008b, 115; Robino 2009, 72 n. 37; Naso 2013, 262 n. 29.

Serena Privitera

Beads

Type 1: Globular beads (cat. 541–543)

cat. 541 pl. 58, 541

AMI inv. 2907.53

Globular bead with a central, vertical bore-hole. Intact. D 1 cm; D hole 0.15 cm. Red amber.

cat. 542 pl. 58, 542

AMI inv. 2907.75

Small, globular bead with circumferential grooves on the surface. The object has a central, through-bore. Intact. Red amber. D 0.3 cm; D hole 0.1 cm.

cat. 543 pl. 58, 543

AMI inv. 2907.80

Small, globular to oval bead with a smooth surface. The object has a central, continuous perforation. Intact. Red amber. D 1.1 cm; D hole 0.1 cm.

Type 2: Ring-shaped beads (cat. 544–546)

cat. 544 pl. 58, 544

BM inv. 1907.12–1.496

Large ring-shaped bead with a central bore-hole. The edges are rounded. Intact. Red amber. D 3.25 cm; H 1.3 cm; D hole: 0.3 cm.

cat. 545 pl. 58, 545

BM inv. 1907.12–1.626

Large ring-shaped bead with a central bore-hole. The edges are rounded. Intact. Red amber. D 1.8 cm; H 1.3 cm; D hole 0.3 cm.

cat. 546 pl. 58, 546

AMI inv. 2907.49

Large ring-shaped bead with a central bore-hole. The edges are rounded. Intact. Red amber. D 1.4 cm; H 1.7 cm; D hole 0.3 cm.

Type 3: Disc-shaped beads (cat. 547–551)

Type 3a: Round, disc-shaped bead

cat. 547 pl. 58, 547

BM inv. 1907.12–1.506

Round disc-shaped bead with a central bore-hole. The edges are well defined. Intact. Red amber. D 0.7 cm; H 0.4 cm; D hole 0.2 cm.

Type 3b: Angular, disc-shaped beads (cat. 548–550)

cat. 548

AMI inv. 2907.1

Small, angular, disc-shaped bead with a central bore-
hole. The corners are rounded and irregular. Intact. Red amber. D 1 cm; H 0.5 cm; D hole: 0.2 cm.

cat. 549
AMI inv. 2907.66
Small angular disc-shaped bead with a central bore-hole. Shaped like a flat cube. Intact. Red amber. D 0.6 cm; H 0.55 cm; D hole 0.2 cm.

Type 3c: Disc-shaped bead with horizontal bore-hole

cat. 550
AMI inv. 2907.71
Small angular disc-shaped bead with a central bore-hole. Shaped like a flat prism. Intact. Red amber. D 0.6 cm; H 0.5 cm; D hole: 0.15 cm.

Type 4: Cylindrical beads (cat. 552–566)

Type 4a: Simple cylindrical beads (cat. 552–556)

cat. 551
AMI inv. 2911.4
Disc-shaped round-oval bead with a horizontal bore-hole through the whole object. Edges are sharply defined. Intact. Dark red amber. L1.5 cm; W 1.1 cm; H 0.3 cm; D hole 0.1 cm.

cat. 552
AMI inv. 2911.6
Cylindrical bead with a central bore-hole. The object tapers towards the holes. Two parallel lines decorate the bead. Intact. Red amber. H 2 cm; D 0.7 cm; D hole 0.1 cm.

cat. 553
AMI inv. 2931.8
Cylindrical bead with a central bore-hole. The object tapers towards the holes. The cross-section of the bead shows multiple edges. Intact. Red amber. H 1 cm; D 0.6 cm; D hole 0.15 cm.

cat. 554
AMI inv. 2931.10
Cylindrical bead with a central bore-hole. The cross-section of the bead is triangular, and on a narrow side a breaking point is visible. Red amber. H 1.1 cm; D 0.6 cm; D hole 0.2 cm.

cat. 555
AMI inv. 2931.11
Cylindrical bead with a central bore-hole. The cross-section of the bead is oval and a break is visible at one end. Red amber. H 0.8 cm; D 0.5 cm; D hole: 0.2 cm.

cat. 556
AMI inv. 2931.12
Cylindrical bead with a central bore-hole. The cross-section of the bead is round and one end is broken. Red amber. H 0.9 cm; D 0.45 cm; D hole 0.1 cm.

Type 4c: Spiral beads (cat. 557–566)

cat. 557
AMI inv. 2931.1
Two fragments of a cylindrical bead with circular, spiral-shaped carvings and a central perforation. The cross-section is oval and the bead is chipped at various points. Red amber. H 2.7 cm; D 0.7 cm; D hole 0.2 cm.

cat. 558
AMI inv. 2931.2
Spiral-shaped cylindrical bead. The cross-section is round, and one end is broken. The perforation extends through the entire object. Orange amber. H 2.4 cm; D 0.6 cm; D hole 0.4 cm.

cat. 559
AMI inv. 2931.3
Spiral-shaped cylindrical bead. The cross-section is round, and one end is broken. The central perforation extends through the entire object. Orange amber. H 1.3 cm; D 0.5 cm; D hole 0.2 cm.

cat. 560
AMI inv. 2931.4
Spiral-shaped cylindrical bead. The cross-section is round, and one end is broken. The central perforation extends through the entire object. Orange amber. H 1.1 cm; D 0.45 cm; D hole 0.15 cm.

cat. 561
AMI inv. 2931.5
Spiral-shaped cylindrical bead. The cross-section is slightly triangular, and the carvings are less pronounced. The central perforation extends through the entire object. Intact. Red amber. H 2 cm; D 0.6 cm; D hole 0.2 cm.

cat. 562
AMI inv. 2931.6
Spiral-shaped cylindrical bead. The cross-section is round and both ends are broken. The central perforation
extends through the entire object. Red amber. H 1.3 cm; D 0.3 cm; D hole 0.1 cm.

cat. 564
AMI inv. 2931.7
Spiral-shaped cylindrical bead. The cross-section is slightly triangular, and one end is broken. The central perforation extends through the entire object. Red amber. H 0.9 cm; D 0.3 cm; D hole 0.1 cm.

Type 6: Biconical beads (cat. 572–582)

Type 6a: Simple biconical beads (cat. 572–576)

cat. 572
BM inv. 1907.12–1.498
Biconical bead with a central perforation. The bead’s central section is the widest, showing a well-defined edge and sloping towards the bore-holes. The cross-section is lenticular. Two perforations intersect at the widest point. Intact. Red amber. D max. 2.2 cm; H 1 cm; D hole 0.2–0.3 cm.

cat. 573
BM inv. 1907.12–1.499
Biconical bead with a central bore-hole. The bead’s central section is the widest, showing a well-defined edge and sloping towards the bore-holes. The cross-section is asymmetrical. Intact. Red amber. D max. 2.2 cm; H 1 cm; D hole 0.2–0.3 cm.

cat. 574
AMI inv. 2907.50
Biconical bead with a central hole. The bead’s central section is the widest, showing a well-defined edge. The edges are well defined. Intact. Red amber. D max. 1.6 cm; H 0.9 cm; D hole 0.3 cm.

cat. 575
AMI inv. 2907.78
Fragment of a biconical bead with a central bore-hole. The bead’s central section is the widest, showing a well-defined edge. The edges are rounded. Red amber. D max. 1.5 cm; H 1 cm; D hole 0.4 cm.

cat. 576
AMI inv. 2907.79
Biconical bead with a central bore-hole. The bead’s central section is the widest, showing a well-defined edge. The edges are rounded, and one side is chipped. Red amber. D max. 1 cm; H 0.5 cm; D hole 0.25 cm.

Type 6b: Compressed biconical beads (cat. 577–578)

cat. 577
BM inv. 1907.12–1.641
Biconical bead with a central bore-hole. The bead’s central section is the widest. The bead has a hexagonal cross-section, and the edges are well defined. Intact. Red amber. D max. 1.3 cm; H 1.15 cm; D hole 0.1 cm.

Type 5: Conical beads (cat. 567–571)

cat. 567
BM inv. 1907.12–1.497
Large, conical bead with a vertical bore-hole. The bead expands towards a perforation, assuming a cone-shaped appearance. The edges are rounded. Intact. Red amber. D max. 2.75 cm; H 2.1 cm; D hole 0.25 cm.

cat. 568
BM inv. 1907.12–1.500
Large, conical bead with a vertical bore-hole. The edge is rounded. Intact. Red amber. D max. 1 cm; H 1.2 cm; D hole 0.2 cm.

cat. 569
BM inv. 1907.12–1.505
Small, conical bead with a vertical bore-hole. The edge is rounded. The cross-section is very irregular and shows some indents. Intact. Red amber. D max. 0.9 cm; H 0.5 cm; D hole 0.08 cm.

cat. 570
AMI inv. 2907.45
Conical bead with a vertical bore-hole. The edges are sharply defined. Intact. Red amber. D max. 1 cm; D hole 0.2 cm.

cat. 571
AMI inv. 2909.4
Conical bead with a vertical bore-hole. The edges are sharply defined. Intact. Red amber. D max. 2.3 cm; H 1 cm; D hole 0.25 cm.

Type 5a: Simple conoidal beads (cat. 567–571)

AMI inv. 2931.9
Cylindrical bead with a central bore-hole. The surface of the bead is decorated with a circumferential spiral scoring. Breaks can be identified at both ends. Red amber. H 0.9 cm; D 0.3 cm; D hole 0.1 cm.

cat. 566
AMI inv. 2931.14
Twenty slivers of cylindrical beads covered with spiral carvings. Red amber.
cat. 578
AMI inv. 2914
Large, biconical bead with a central bore-hole. The bead's central section is the widest. The bead has a hexagonal cross-section, and the edges are well defined. Intact. Red amber. D max. 2.6 cm; H 2.2 cm; D hole 0.4 cm.

Type 6c: Long biconical beads (cat. 579–580)
cat. 579
AMI inv. 2909.5
Large, long, biconical bead with a central bore-hole. The bead's central section is the widest. The cross-section is angular and can be described as lenticular. Intact. Red amber. D 2.3 cm; H 1.55 cm; D hole 0.3 cm.

cat. 580
AMI inv. 2931.13
The edges are well defined. The cross-section is angular and can be described as lenticular. Intact. Red amber. D 1 cm; H 0.5 cm; D hole 0.2 cm.

Type 6d: Rosette-shaped beads (cat. 581–582)
cat. 581
BM inv. 1907.12–1.501
Rosette-shaped biconical bead with a central bore-hole. Grooves run across the entire object. The bead's shape is irregular, and the surface somewhat chipped. Red amber. D 1.35–1.45 cm; H 0.9 cm; D hole 0.3–0.4 cm.

cat. 582
BM inv. 1907.12–1.502
Rosette-shaped biconical bead with a central bore-hole. Grooves run across the entire object. The edges are well defined, and the cross-section can be characterised as lenticular. Some chipping is visible on the bead's surface. Red amber. D 1.2 cm; H 1.15 cm; D hole 0.15 cm.

Type 7: Square beads (cat. 583–590)
cat. 583
BM inv. 1907.12–1.504
Square bead with a bore-hole through the long side. The object has an approximately rectangular shape. The cross-section is slightly oval. Intact. Red amber. L 1.8 cm; W 1.35 cm; H 0.55 cm; D hole 0.3 cm.

cat. 584
AMI inv. 2909.2
Square bead with a bore-hole through the long side. The object has a rectangular shape and a rectangular cross-section. Intact. Red amber. L 1.6 cm; W 1.4 cm; D hole 0.3 cm.

cat. 585
AMI inv. 2909.3
Square bead with a perforation through the long side. The bead has a trapezoidal shape and a triangular cross-section. The bead's surface is partly chipped. Red-orange amber. L 2.2 cm; W 1.6 cm; D hole 0.3 cm.

cat. 586
AMI inv. 2911.7
Oblong bead with a perforation through the long side. The bead has a long, rectangular shape and a triangular cross-section. The object is broken on one side along the bore-hole. Red amber. L 2.3 cm; W 1.1 cm; H 1 cm; D hole 0.25 cm.

cat. 587
AMI inv. 2911.9
Fragment of a squarish bead with a bore-hole through the long side. The basic shape and the cross-section of the bead are rectangular. The edges are clearly defined. The bead is broken on one side. Red amber. L 1.1 cm; W 0.7 cm; H 0.6 cm; D hole 0.15 cm.

cat. 588
AMI inv. 2911.10
Fragment of a square bead with a bore-hole through the long side. The bead has a long, rectangular shape, and the cross-section is rectangular. The edges are clearly defined. Intact. Red amber. L 1.1 cm; W 0.6 cm; H 0.25 cm; D hole 0.1 cm.

cat. 589
AMI inv. 2911.11
Squarish bead with a bore-hole through the long side. The bead has a long, rectangular shape and a triangular cross-section. Small chips are present around the bore-hole. Red amber. L 1.2 cm; W 0.7 cm; H 0.35 cm; D hole 0.1 cm.

cat. 590
AMI inv. 2911.12
Fragment of a square bead with a bore-hole through the long side. The bead has a long, rectangular shape and a triangular cross-section. The object is broken on several sides. Red amber. L 1.1 cm; W 1.2 cm; H 0.45 cm; D hole 0.2 cm.

Other bead
cat. 591
AMI inv. 2907
Sixty-six amber beads on a modern-day string. The beads are stored by being strung on a thread. It is not possible to document each bead individually, as undoing the string has proved impossible. Ten examples from this string were typologically documented.

Martina Ott
Pendants (cat. 592–630)

Type 1: Drop-shaped pendants (cat. 592–593)

cat. 592 pl. 12, 2, 60, 529
BM inv. 1907.12–1.508
Elongated, oval pendant with an oval section. The pendant is somewhat flattened with a peripheral, horizontal perforation of the upper section. The surface is covered with a smooth, even patina. Little parts are missing. Opaque orange-brown amber. H 1.7 cm; L 1 cm; W 0.7 cm; D hole 0.2 cm.

cat. 593 pl. 60, 593
AMI inv. 2911.5
Oval pendant, its upper section completely missing. It shows two horizontal through-borings, one at the base and another, broken one at the top. A vertical, blind hole is drilled into the base, partly intersecting the lower horizontal boring; this can probably be linked to the first, and as yet unknown, use of the amber piece. Then the piece was probably reused twice: the first time when the upper bore-hole was drilled, and a second time when this bore-hole broke, and a further, lower perforation was carried out. Red amber. H 1.5 cm; L 0.9 cm.

Type 2: Elongated pendants (cat. 594–595)

cat. 594 pl. 12, 3, 60, 594
BM inv. 1907.12–1.509
Elongated pendant with a circular section and an inserted neck, surmounted by a horizontally perforated projection, which is slightly fractured on one side. An additional projection with a circular, flattened form is located at the bottom of the pendant. The object features an even, rather smooth patina. Opaque Dark red to dark orange amber. H 2 cm; L 0.8 cm; W 0.8 cm; D hole 0.1 cm.

cat. 595 pl. 60, 595
AMI inv. 2919
Elongated pendant with a circular section and a slightly inserted neck, surmounted by a small, elaborate, fractured projection. The horizontal fracture runs along a former horizontal drill hole. Here two parallel vertical borings were started, but not completed. At the bottom of the pendant, there is an additional circular, floral attachment. The artefact is badly fractured on three sides, the remaining side showing only superficial fractures. The object is opaque with a smooth, even patina, except in the fracture areas. Brown-red amber. H 2.7 cm; L 1.5 cm; D of the broken upper part – former horizontal drill hole 0.2–0.3 cm.

Type 3: Bulla-shaped pendants (cat. 596–624)

Type 3a: Bulla-shaped pendants with a cylindrical projection (cat. 596–608)

cat. 596 pl. 60, 596
AMI inv. 2910.1
Flat, oval pendant with an oval section and a slightly inserted neck, surmounted by a horizontally perforated cylindrical projection with a square section. The object is entirely covered by a smooth, even patina. Opaque red amber. H 2.2 cm; L 1.4 cm; W 0.5 cm; D hole 0.2 cm.

cat. 597 pl. 60, 597
AMI inv. 2910.2
Flat, oval pendant with an oval section and a slightly inserted neck, surmounted by a horizontally perforated cylindrical projection with a square section. The object is covered by a smooth, even patina and shows a fracture at the back, where the projection’s right side is also fractured. The fracture on the back of the pendant must be older as it is covered by patina. Red translucent amber. H 1.9 cm; L 1.3 cm; W 0.7 cm; D hole 0.25 cm.

cat. 598 pl. 60, 598
BM inv. 1907.12–1.520
Flat, slightly elongated, oval pendant with an oval section surmounted by a horizontally perforated cylindrical projection. Opaque, dark red to brown amber. H 1.7 cm; L 1.2 cm; W 0.45 cm; D hole 0.2 cm.
Lit.: Strong 1966, 44 pl. 2, 5.

cat. 599 pl. 60, 599
BM inv. 1907.12–1.522
Flat, rounded pendant with an oval section and a slightly inserted neck, which is surmounted by a horizontal perforated cylindrical projection with a square section and flattened edges. The patina is thick but smooth. Dark red amber. H 1.4 cm; L 1 cm; D hole 0.1 cm.
Lit.: Strong 1966, 44 pl. 2, 5.

cat. 600 pl. 60, 600
BM inv. 1907.12–1.528
Flat, oval pendant with an oval section, fractured on its left side and at the bottom. The neck is slightly inserted and surmounted by a horizontal perforated cylindrical projection with a round section. Only half of the projection is left; the rest is fractured. The object is covered by a heavy, rather rough patina. Dark red amber. H 1.75 cm; L 1.5 cm; W 0.8 cm; D hole 0.2 cm.
Lit.: Strong 1966, 44.

cat. 601 pl. 60, 601
BM inv. 1907.12–1.529
Flat, oval pendant with an irregular, slightly oval section
with an inserted neck surmounted by a cylindrical, horizontally perforated projection with a round section. Orange amber. H 2.6 cm; L 1.45 cm; W 1 cm; D hole 0.2 cm.
Lit.: Strong 1966, 44 pl. 2, 5.

cat. 602
pl. 60, 602
BM inv. 1907.12–1.530
Flat, oval pendant with an oval section and a slightly inserted neck, surmounted by a horizontal, perforated cylindrical projection with a square section with rounded edges. The projection is well preserved, with a smooth and even patina. Dark red amber. H 2.5 cm; L 1.45 cm; W 1 cm; D hole 0.2 cm.
Lit.: Strong 1966, 44 pl. 2, 5.

cat. 607
pl. 61, 607
BM inv. 1907.12–1.535
Flat, oval pendant with an oval section and a clearly inserted neck, surmounted by a horizontal, perforated cylindrical projection with an oval section. The object is covered by an even, rather rough patina. Opaque, dark red amber. H 1.7 cm; L 1 cm; W 0.5 cm; D hole 0.15 cm.
Lit.: Strong 1966, 44 pl. 2, 5.

cat. 608
pl. 61, 608
BM inv. 1907.12–1.536
Flat, rather rounded pendant with an oval section and a slightly inserted neck, surmounted by a horizontal perforated cylindrical projection with a round section, which is broken. The surface is covered by a rough, uneven patina, the object itself is rather badly conserved. Red to opaque, dark orange amber. H 1.8 cm; L 1.35 cm; W 0.6 cm.
Lit.: Strong 1966, 44.

Type 3b: Bulla-shaped pendants with decorated top (cat. 609–610)

cat. 609
pls. 12, 6; 61, 609
BM inv. 1907.12–1.519
Rather elongated, flat, oval pendant with an oval section with two grooves defining the neck, surmounted by a cylindrical, horizontal perforated projection, which has only partly survived. The surface of the object is covered by a rather smooth patina, which also features some fresh superficial fractures. Opaque, dark orange amber. H 1.9 cm; L 1.2 cm; W 1 cm; D hole 0.2 cm.
Lit.: Strong 1966, 44.

cat. 610
pl. 61, 610
BM inv. 1907.12–1.523
Flat, rounded pendant with an oval section with two grooves defining the neck, surmounted by a cylindrical, horizontal perforated projection, partly fractured, decorated with three vertical, slightly slanted incisions. The amber is covered by a smooth, even patina. Opaque, dark orange amber. H 1.55 cm; L 1.1 cm; W 0.5 cm; D hole 0.1 cm.
Lit.: Strong 1966, 44 pl. 2, 5.

Fragments (cat. 611–624)

cat. 611
pl. 61, 611
BM inv. 1907.12–1.517
Oval pendant with an oval section and an inserted neck, surmounted by a projection of uncertain nature; the pendant is fractured at the lower end of the drilling. The patina is quite thick and rough, with superficial fractures on the back of the object. Opaque, brown-orange amber. H 1.4 cm; L 1.2 cm; W 1 cm.
Lit.: Strong 1966, 44.
220

6 CATALOGUE OF THE AMBER FINDS FROM THE ARTEMISION

cat. 612
BM inv. 1907.12-1.518
Oval, flattened pendant with an oval section and an inserted neck, surmounted by a projection of uncertain nature which is fractured directly at the bottom of the drilling. The amber is covered by a thick but smooth patina. Opaque, dark brown-orange amber. H 1.4 cm; L 1.2 cm; W 0.9 cm.
Lit.: Strong 1966, 44.

cat. 613
BM inv. 1907.12-1.521
Round, flat pendant with an oval section and an inserted neck, surmounted by a projection of uncertain nature, which is fractured directly at the bottom of the drilling. The object features a thick, rough patina. Opaque, Dark red amber. H 1.35 cm; L 1.1 cm; W 0.5 cm.
Lit.: Strong 1966, 44.

cat. 614
BM inv. 1907.12-1.524
Round, flat pendant with an oval section, where no neck could be identified; the upper part of the object is badly preserved and fractured, so that no clear statement can be made concerning the original form of the projection. Beneath the fracture, a semicircular perforation is visible at the top right of the object. The surface is covered by a rough, thick patina with capillary cracks. Opaque, Dark red amber. H 1.45 cm; L 1.1 cm; W 0.9 cm; D hole 0.15 cm.
Lit.: Strong 1966, 44.

cat. 615
BM inv. 1907.12-1.525
Round, flat pendant with an oval section and traces of an inserted neck, surmounted by the remains of a projection and a horizontal boring, which are both badly fractured, so that no statement can be made concerning the original nature of the projection. The amber features a thick but smooth patina. Opaque red amber with orange inclusions. H 1.55 cm; L 1.2 cm; W 0.8 cm.
Lit.: Strong 1966, 44.

cat. 616
BM inv. 1907.12-1.526
Round, rather flattened pendant with a circular section and an inserted neck, surmounted by a projection of uncertain nature which is fractured directly at the bottom of the drilling. The object and the fracture at the drilling level are covered by a thick, rather smooth patina. The colour of the amber is an opaque orange. H 1.1 cm; L 1.1 cm; W 0.7 cm.
Lit.: Strong 1966, 44.

cat. 617
BM inv. 1907.12-1.527
Round, flat pendant with an oval section. The object’s whole upper section is missing, including the neck and the projection, so that no clear statement can be made concerning their shape. Both the surface and the fracture are covered by a smooth patina. Opaque, dark red amber. H 1 cm; L 1.1 cm; W 0.6 cm.
Lit.: Strong 1966, 44.

cat. 618
BM inv. 1907.12-1.537
Oval, flat pendant with an oval section. The whole upper section, including the neck and the projection, is missing, so that no clear statement can be made concerning their shape. The whole amber is covered by a rough but even patina. Opaque, Dark red amber with an orange stripe along the middle. H 1.8 cm; L 1.3 cm; W 0.8 cm.
Lit.: Strong 1966, 44.

cat. 619
BM inv. 1907.12-1.538
Oval, flat pendant with an oval section. The object features a clean, almost even fracture at its top. Its whole upper part, including the neck and the projection, is missing, so that no clear statement can be made concerning their shape. The amber has a very thin, smooth patina; its colour is a translucent dark red. H 1.6 cm; L 1.25 cm; W 0.7 cm.
Lit.: Strong 1966, 44.

cat. 620
BM inv. 1907.12-1.539
Very small, oval, flat pendant with an oval section and an inserted neck, surmounted by a projection of uncertain nature, which is fractured directly beneath the drilling. The whole surface is covered by a rough but rather even patina. Opaque amber. H 0.95 cm; L 0.85 cm; W 0.4 cm.

cat. 621
BM inv. 1907.12-1.596a
Small, flat but asymmetrical rounded pendant with an oval section and an inserted neck; its top is completely fractured. The drilling from its front to its back is unusual. The surface is covered by a rough, uneven patina, which does not cover the fracture at its top. Dark red amber. H 1.5 cm; L 1.3 cm; W 0.75 cm.

cat. 622
BM inv. 1907.12-1.596b
Small round, rather flattened pendant with an oval section and pointed edges, surmounted by an inserted neck. The upper part is completely fractured. The surface is covered by a rough, uneven patina, which does not cover the fracture at the top. Dark red amber. H 1.1 cm; L 1.2 cm; W 0.6 cm.

cat. 623
AMI inv. 2910.3
A cylindrical projection with a horizontal perforation and an oval section. The lower part of the object is broken. The surface is covered by a rather smooth patina. Orange translucent amber. D hole 0.25 cm.

Type 5: Fruit pendants (cat. 625–629)

Type 5a: Pomegranate pendants with vertical bore-hole (cat. 625–627)

cat. 624
AMI inv. 2910.4
A cylindrical projection with a horizontal perforation and a square section. The lower part of the object is broken. The surface is covered by a rather smooth patina. Orange translucent amber. D hole 0.25 cm.

cat. 625
BM inv. 1907.12–1.512
Globular pendant with an inserted neck, surmounted by a circular, rosette-shaped button-top, with five triangular grooves. The object is perforated by a drilling running lengthwise. Dark red amber. H 1.45 cm; L 1.1 cm; W 0.9 cm; D hole 0.1 cm.
Lit.: Strong 1966, 45 pl. 2 a.

cat. 626
BM inv. 1907.12–1–513
Oval pendant with an oval section, perforated from the base up to the chipped top. The object’s lower section shows an inserted neck and is decorated by a round, floral projection which resembles the calyx of a pomegranate fruit and is partly fractured. A rough patina covers the whole object, including the fractures. Opaque, dark orange amber. H 1.4 cm; L 1 cm; W 0.9 cm; D hole 0.05 cm.
Lit.: Strong 1966, 45 pl. 2 f.

cat. 627
BM inv. 1907.12–1.514
Oval pendant with an oval section, perforated from its bottom to its top. The object’s lower section shows an inserted neck and is decorated by a round, floral projection which resembles the calyx of a pomegranate fruit. The surface of the object is covered by a thick but smooth patina. Opaque, dark red amber. H 1.3 cm; L 0.9 cm; W 0.7 cm; D hole 0.1 cm.
Lit.: Strong 1966, 45 pl. 2 d.

Type 5b: Pomegranate pendant with horizontal bore-hole

cat. 628
BM inv. 1907.12–1.511
Globular pendant with an inserted neck, surmounted by a circular button-shaped top decorated with eight radiating incisions. The artefact features two intersecting borings at the base; the middle section between the two bore-holes is fractured. Nevertheless, traces of the two distinct drillings are still visible. Dark red amber. H 1.5 cm; L 1 cm; W 1 cm; D hole 0.2 cm.
Lit.: Strong 1966, 45 pl. 2 b.

Type 6: Wineskin-shaped pendant

cat. 630
AMI inv. 2911.2
Square pendant with a rectangular section, broken at its base. From the pendant’s middle, the upper section shows two bulges and a horizontally perforated gable, decorated with a row of vertical incisions. The projection is fragmented. Yellowish patina and otherwise red amber. H 2.7 cm; L 2.3 cm; W 1.3 cm.
Lit.: Hogarth 1908, 215 pl. 47, 5.

Spacers (cat. 631–634)

cat. 631
AMI inv. 2911.2
Almost rectangular-shaped, flat on one side and convex on the other. Three small through-borings on the short side and one large through-boring on the long side, cutting the small ones. Orange amber with yellowish stripes. A corner is missing. L. 2.7 cm; W max. 1.2 cm; T 0.6 cm; D holes 0.2 and 0.4 cm.
Lit.: Hogarth 1908, 214 pl. 47, 20 (flat side).

cat. 632
AMI inv. 2911.3
Disc-shaped, flat on one side and convex on the other. Two cross through-borings run through its width: one boring has a notch on both ends, to give the wire a certain direction; one notch is broken through use. Red and transparent amber. H 0.5 cm; D 1.8 cm; D hole 0.2 cm.
Lit.: Hogarth 1908, 214 f. pl. 47, 21.

Caroline Posch
CATALOGUE OF THE AMBER FINDS FROM THE ARTEMISION

Type 2: Composite Fibulae with Amber Segments (Cat. 635-646)

Cat. 635
AMI inv. 2907.12
Conical disc with variable thickness and central hole for the bow. Intact. Red amber. T 0.3–0.6 cm; D 1 cm; D hole 0.3 cm.

Cat. 636
AMI inv. 2907.7
Conical disc with gradable thickness and central hole for the bow. Two flat surfaces. Intact. Orange amber. T 0.3–0.4 cm; D 0.3 cm; D hole 0.3 cm.

Cat. 637
AMI inv. 2907.10
Probable cylindrical disc with gradable thickness and central bore-hole for the bow. Two flat surfaces. Intact. Red amber. T 0.5 cm; D 0.85 cm; D hole 0.2 cm.

Cat. 638
AMI inv. 2907.15
Conical disc with gradable thickness and central bore-hole for the bow. Two slightly flat surfaces. Partially preserved, chipped on one side. Red amber. T 0.3–0.4 cm; D 0.85 cm; D hole: 0.3 cm.

Cat. 639
AMI inv. 2907.18
Probable conical disc with gradable thickness and central bore-hole for the bow. Two slightly flat surfaces. Two fragments reassembled. Red amber. T 0.4–0.5 cm; D 1.05 cm; D hole 0.35 cm.

Cat. 640
AMI inv. 2907.22
Conical disc with gradable thickness and central hole for the bow. Two flat surfaces. Intact. Red amber. T 0.2–0.5 cm; D 0.9 cm; D hole 0.4 cm.

Cat. 641
AMI inv. 2907.34
Probable cylindrical disc with gradable thickness and central bore-hole for the bow. Two slightly flat surfaces. Intact. Orange amber. T 1.1 cm; D 0.85 cm; D hole 0.25 cm.

Cat. 642
AMI inv. 2907.43
Conical disc with gradable thickness and central bore-hole for the bow. Two flat surfaces. Intact. Red amber. T 0.8–1 cm; D 1.2 cm; D hole 0.5 cm.

Cat. 643
AMI inv. 2907.56
Probable cylindrical disc with central bore-hole for the bow. Two flat surfaces. Intact. Orange amber. T 0.15–0.2 cm; D 0.9 cm; D hole 0.3 cm.

Cat. 644
AMI inv. 2907.59
Conical disc with gradable thickness and central bore-hole for the bow. Two flat surfaces. Intact. Red amber. T 0.35 cm; D 0.7 cm; D hole 0.25 cm.

Cat. 645
AMI inv. 2907.65
Conical disc with gradable thickness and central bore-hole for the bow. Two flat surfaces. Intact. Red amber. T 0.2 cm; D 0.6 cm; D hole 0.3 cm.

Cat. 646
AMI inv. 2907.76
Probable conical disc with gradable thickness and off-centre bore-hole for the bow. Red amber. T 0.1–0.2 cm; D 0.6 cm; D hole 0.3 cm.

Type 3: Fibulae with an Amber Bead on the Bow (Cat. 647-652)

Cat. 647
AMI inv. 2907.29
Oval-shaped pearl with central bore-hole for the bow.
along the longest axis. Chipped sides. Red amber. T 0.4–0.9 cm; D 1.1 cm; D hole 0.5 cm.

cat. 648

AMI inv. 2907.38

Shapeless pearl with central bore-hole for the bow along the shortest axis. Cracked on one side. Yellow amber. L 1.9 cm; H 1 cm; W 1.3 cm; D hole 0.35 cm.

cat. 649

AMI inv. 2909.6

Shapeless pearl with central bore-hole along the longest axis. The surface is convex. Red amber. L 5.2 cm; H 2.35 cm; W 4.15 cm; D hole 0.35 cm.

Lit.: Hogarth 1908, 214 pl. 47, 11.

cat. 650

AMI inv. 2911.8

Shapeless pearl with central bore-hole along the longest axis. Partially preserved, chipped on one side. Red amber. L 2.4 cm; W 1.6 cm; D hole 0.4 cm.

Lit.: Hogarth 1908, 214 pl. 47, 19.

Inlays (cat. 653–655)

cat. 653

BM inv. 1907.12–1.596d

Disc-shaped, not perfectly round artefact, flat and rough on one side (base [?]), convex and smooth on the other side (upper surface [?]). Horizontal bore-hole. Dark red amber. D 0.75 cm; D hole 0.15 cm.

Lit.: Hogarth 1908, 215 pl. 47, 9.

cat. 654

AMI inv. 2916

Disc-shaped amber, flat and rough on one side (base [?]), convex and smooth on the other (upper surface [?]). Five through-borings, the middle one is larger (0.4 cm), the side ones smaller (0.25–0.3 cm); one of the lateral borings is not correctly distanced from the others. On the smooth side there are small ancient gaps, with the same patina as the surface. Almost intact. Red amber. D 3.7 cm; H 0.8–1 cm.

Lit.: Hogarth 1908, 215 pl. 47, 2.

cat. 655

AMI inv. 2918

Disc-shaped amber, not perfectly round, flat and rough on one side (base [?]), convex and smooth on the other (upper surface [?]). Three vertical through-borings in the middle; a further horizontal boring connects two vertical borings. Red amber. D 2.5 × 2.3 cm; H 0.6–0.4 cm.

Lit.: Hogarth 1908, 215 pl. 47, 9.

Pinheads (cat. 656–658)

cat. 656

BM inv. 1907.12–1.510

Globular amber pinhead with an inserted neck, followed by a circular rosette button-top, which is partly fractured. The base of the object is also deeply fractured. The artefact features a central boring at its base which perforates about a quarter of the object’s thickness. The object features a rather thick patina. Dark red amber. H 1.5 cm; D 0.9 cm.

Lit.: Hogarth 1908, 216 pl. 47, 12; Strong 1966, 45.

cat. 657

BM inv. 1907.12–1.515

Globular pinhead with an inserted neck, followed by a circular floral button-top. The artefact’s lowest section features a cylindrical ending, characterised by a bulge. The pinhead shows a vertical boring, which does not perforate the whole object. Rough patina, dark red amber. H 1.25 cm; L 0.9 cm; D 0.7 cm; D hole 0.18 cm.

Lit.: Hogarth 1908, 216 pl. 48, 19; Strong 1966, 45 pl. 2 c.
cat. 658
AMI inv. 2909.7
Globular pinhead with a grooved surface, followed by a protruding neck and a flat cylindrical bottom. At its base is a vertical blind hole. Red amber. H 0.4 cm; D 0.7 cm; D hole 0.3 cm.
Lit.: Hogarth 1908, 216 pl. 48, 15.

Indeterminable item
cat. 659
AMI inv. 2911.1
Carved, cylindrical amber artefact with a flat base which forms a peg, probably to attach the object to a base. It features a large horizontal perforation of the cylindrical-shaped portion, probably to insert a bolt made of wood, bone or ivory. The object itself could be part of a hinge or the sheath of an unknown polymateric object. Its surface is very smooth and lightly chipped in some places. Red transparent amber. L 2.3 cm; W 1.7 cm; D hole 0.5 cm; L peg 2.1 cm; H peg 0.4 cm; W peg 0.3 cm.
Lit.: Hogarth 1908, 215 pl. 47, 14.

Caroline Posch
Almost 700 amber objects, which are outstanding both in number and quality, have been found in
the sanctuary of Artemis at Ephesos during the excavations of the British Museum in 1905 and the
research campaigns carried out by the Austrian Archaeological Institute from the 1960s.

M. Kerschner and A. M. Pülz discuss the stratigraphy and the context of the amber finds
(chap. 1). Two large assemblages have been discovered in the rectangular foundations of the
hearth in the sanctuary. Periodical flooding damaged the earliest stone buildings of the temple of
Artemis and necessitated reparations on the structures by raising the floor levels with clay layers.
Subsequent phases and subphases of the structures called Naos 1, Naos 1a, and Naos 2 have been
recognized and dated from 660–640 BC onwards. On the floor of the Naos 1a, several objects be-
longing to a hoard were deposited as a foundation offering around 650–640 BC, and they include
precious materials such as gold jewels and amber finds. The hoard, which also contained amber
objects, belongs definitively to an earlier construction phase than the so-called Foundation Depos-
it found by D. G. Hogarth in 1905 and connected to the temple Naos 2, built around 640–620 BC.

Further amber finds have been recovered in smaller clusters inside the sanctuary.

L. Ambrosini, A. Naso, M. Ott, C. Posch and N. L. Saldalamacchia review the amber finds
from the Artemision according to the typology (chap. 2). The finds include 6 shaped figures, 342
beads, 92 pendants, 143 spacers, 52 fibulae, 14 inlays, 4 pin heads, 2 raw amber pieces and 4
indeterminable remains (cat. 537–539. 659). Including tiny fragments, 659 entries are classified,
and the total number of the amber finds, although not exactly determinable, is almost 700 items.
Among the figured amber (cat. 1–5. 540), the earliest datable objects (cat. 2–3) belong to the late
Geometric style and show the skill of Greek carvers able to work a new material. As usually hap-
pens with amber, the high value of the exotic material from the Baltic Sea (see below) propelled
the reuse of these objects, reworking them to a new shape (cat. 1–3).

The beads, pendants, spacers, fibulae, inlays, and pinheads are of different shapes. The shapes
are documented mostly in the western and eastern coasts of the Adriatic basin, where from the
Bronze Age onwards Baltic amber came into the Central Mediterranean. In the 8th and 7th centuries
BC, the Etruscan Verucchio in modern-day Romagna, was the main hub for the amber trade in all
the Italian peninsula and local workers developed particularly high capacities in amber carving.

Beads are the most numerous amber artefacts (cat. 6–296. 541–591), and they can belong to a
necklace, collar, pectoral, or girdle. The beads themselves have been divided into eight types. The
comparisons identified for each shape demonstrate the substantial coincidence in the chronology
among main types because beads of different shapes often belong to the same ornament also out-
side Ephesos.

Pendants feature the third largest amber artefact group in the Artemision (cat. 297–349. 592–
630). The pendants themselves have been divided into six types. Depending on the direction of
the through-borings, one can distinguish between horizontal and vertical pendants, which might
occur in different positions in the same ornament.

Spacers are amber plates of various shapes which show parallel through-borings drilled from
side to side through their thickness (cat. 350–488. 631–634). The purpose of the spacer-plates is
to act as intermediary pieces and separate the different strings of beads of a suspended ornament,
such as a necklace, collar, pectoral, girdle.

Among the fibulae (cat. 489–523. 635–650. 652) two examples (cat. 489–490), whose bows
are decorated with alternated segments of amber and bone, filled with amber discs, are very simi-
lar to objects from Verucchio and they might have been imported to Ionia from Verucchio.

The amber inlays (cat. 524–534. 653–655) from the Artemision are stylistically rooted in the
Eastern Greek tradition of ornaments for wooden furniture (κλίναι ?, boxes ?). As the recovered inlays are too few to belong to a complete ornamentation set, they probably testify to the work in progress of a local workshop for wooden inlaid artefacts.

Pins are a peculiar votive offering to Artemis; the Heraion at Argos and the Artemision at Ephesos yielded the largest ensembles of bronze pins in the Aegean belonging to the Archaic Period. At Ephesos, next to pins made from electrum, gold, silver, bronze, ivory, and bone, four examples of amber heads (cat. 534. 656–658) for ivory (?)-, bone (?)-pins were found.

Two raw ambers are enough to show that, with high probability, the Baltic amber was imported raw to Ephesos and cut in the Artemision (cat. 535. 651).

V. Estridge, S. Kaur, T. Kaur and E. Stout analyze the results of infrared spectroscopy on amber samples from Ephesos and prove the amber is of Baltic origin (chap. 3).

S. Alaura and M. Bonechi review the amber in the cuneiform sources from the Ancient Near East (chap. 4). Sumerian, Akkadian, and Old Babylonian texts datable to the 2nd and the 1st millennium BC mention the word elmēšu(m) and derivated terms, referring with high probability to amber.

A. Naso summarizes the main knowledges about the use of amber in pre-Roman time in the Central and Eastern Mediterranean and suggests a general interpretation of the finds from the Artemision (chap. 5). Beads, pendants, and spacers make up a total of 577 specimens and are the most numerous of all: 426 of them have been found in the hoard of the Naos 1a. They characterize this hoard as the main amber context in the sanctuary of Artemis at Ephesos, and the largest in all the Eastern Mediterranean. The shapes of the amber finds, particularly regarding the spacers, are similar to one another and are closely connected to beads, pendants, and spacers from Southern Italy. From the late 8th century BC amber became very popular in Southern Italy among the native people in the modern-day Basilicata, the Oenotrians. Rich female Oenotrian graves yielded very elaborate parures of amber ornaments still in their original position and can include necklaces, pectorals, and girdles in the same burial. The richest ornaments are composed by several rows of hundreds of amber items. The original presence of a multi-row ornament in the Artemision provides an explanation for both the high number and similar shapes of amber carvings: they belong to one and the same object. The most probable identifiable ornament is a girdle, a common votive offering to Artemis at Ephesos from the 7th century BC. Greek women offered girdles, mostly in bronze, to the female deity as a symbol of one of their most important capacities, the generation of a human life. The discovery of an amber ornament, probably a girdle, in the Artemision at Ephesos throws new light on this sanctuary that is traditionally connected to votive offerings from Ionia and Anatolia, allowing to identify close relationship also with the Central Mediterranean area, particularly with southern Italy, where amber was popular among native people from the Early Iron Age. A connection between Southern Italy and Ionia is not surprising due to the role played by the colony of Siris, which was founded in 7th century BC in Southern Italy in the modern-day Basilicata by Ionian settlers from Colophon. Archaeological finds from Southern Italy show native Oenotrians on the hinterland were in touch with Greeks settled on the coast. The relationship between Siris and Ionia favoured the dissemination of the Oenotrian taste for amber ornaments to Ephesos. Raw Baltic amber (cat. 535 and 651) came from Italy to Ionia and skilled workers composed a multi-row ornament, according to Italic tradition but developed new shapes for the beads (beads types 4b and 4c) and pendants (pendants types 4 and 6), and new decoration for the spacers (spacers type 7). The new shapes of beads, pendants, and spacers together with other finds from the Artemision, like the aforementioned inlays, show the activity of an amber workshop at Ephesos.

A. Naso, M. Ott, C. Posch, S. Privitera and N. L. Saldalamacchia describe the amber items in the catalogue, according to the place of conservation and to the typology: the finds from the 1905 excavation are preserved in the Archaeological Museum in Istanbul and in the British Museum in London, while the finds from the recent Austrian excavations are in the Ephesos Museum in Selçuk (chap. 6).

Alessandro Naso
ÖZET

L. Ambrosini, A. Naso, M. Ott, C. Posch ve N. L. Saldalamacchia Artemision’dan gelen kehribar buluntuları tipolojilerine bakımından ele almaktadırlar (Bölüm 2). Buluntular 6 figürlü kehribar, 342 boncuk, 144 pandantif, 143 ara parça, 143 fibula, 14 kakma, 4 iğne başı, 2 ham kehribar parçası ve 2 tanımlamamış kalıntıyı kapsamaktadır (Kat. 537–539, 659). Minik parçalarla beceri gösteren mühendislikteki bu türlerin yeniden şekil verilip dönüştürülerek tekrar kullanılmasına yol açmıştır (Kat. 1–3).

Boncuklar, pandantifler, ara parçalar, fibulalar, kakma işleri ve iğne başları farklı formlara sahiplardır. Bu formlar özellikle, Bronz Çağı’ndan itibaren Baltık Bölgesinden gelen kehribarların Akdeniz bölgesindeki uses bezemelerinin bir parçası olduğunu gösterir. Kehribar bulunlarının toplam sayısı kesin olarak tespit edilememesi de 700’e yakındır. Bu grup Pandantifler (Kat. 1–5, 540) arasındaki tarihebeli en eski parçalar (Kat. 2–3). Geç Geometrik Dönem stilinden çıkan malzeme ve Yunan oymacılığının yaygınlaştırılmasıyla birlikte, kehribar işleyicileri bir araya gelmişlerdir.

Boncuklar, en fazla ele geçen kehribar buluntu grubunu oluşturmaktadır (Kat. 6–296, 541–591). Bunlardan en çok kehribarın bir kolyeye, tasma kolyeye, bir göğüs/vücut takısına ya da bir kemere ait olabileceği düşünülmektedir. Bu kehribarlarla bağlı olarak, kehribar buluntuların birlikte bulunması, kehribarın bir araya gelebileceği ve bunlarla bir araya gelenes konusunda zanaatkarın veya oymacının bilgisiahlığını teşvik eder.

geleneğine dayanmaktadır. Ele geçen kakma parçalarının sayısı bir süslemenin tamamını oluşturacak kadar az olduğundan, ahsap kakma işleri yapan yerel bir atölyesinin devam eden henüz birimleme çalışmaları yansıtıyor olabilirler.

İğneler Artemis için özel adak hediyeleridir. Argos’taki Heraion ve Efes Artemis Kutsal Alanı Ege Bölgesi Arkaik dönemine ait en kapsamlı bronz iğne buluntu gruplarını sağlarlar. Efes’te elektron, altın, gümuş, bronz, fildişi ve kemikten yapılmış iğnelerin yanı sıra fildişi (?) ve kemik (?) iğnelere ait dört adet kehrivbern iğne başı (Kat. 534. 656–658) örneği bulunmuştur.

İkili ham kehrivbern parçası, Baltık Bölgesi’nden gelen kehrivbernin büyük olasılıkla işlememiş olarak Efes’e geldiğini ve Artemision’da (Kat. 535. 651) işlendiğini kantlamak için yeterlidir.

V. Estridge, S. Kaur, T. Kaur ve E. Stout, Efes’ten alınan kehrivbern örnekleri üzerinde yapılan kızılötesi spektroskopi sonuçlarını analiz ederek kehrivbernin Baltık kökenli olduğunu kanıtlar (Bölüm 3).

S. Alaura ve M. Bonechi, Antik Yakın Doğu’nun çivi yazısı kaynaklarındaki kehrivbern kullanımını kanıtlayan bazı belgeleri ele alırlar (Bölüm 4). MÖ. 2. ve 1. bin yıllarda tarihlenen Sümü, Akad ve Eski Babil metinlerinde, büyük olasılıkla kehrivbern ile ilişkili olan elmēšu(m) sözcüğü ve bu sözcükten türetilmiş terimlerden bahsedilmektedir.

İkili ham kehrivbern parçası, Baltık Bölgesi’nden gelen kehrivbernin büyük olasılıkla işlememiş olarak Efes’e geldiğini ve Artemision’da (Kat. 535. 651) işlendiğini kantlamak için yeterlidir.

V. Estridge, S. Kaur, T. Kaur ve E. Stout, Efes’ten alınan kehrivbern örnekleri üzerinde yapılan kızılötesi spektroskopi sonuçlarını analiz ederek kehrivbernin Baltık kökenli olduğunu kanıtlar (Bölüm 3).

S. Alaura ve M. Bonechi, Antik Yakın Doğu’nun çivi yazısı kaynaklarındaki kehrivbern kullanımını kanıtlayan bazı belgeleri ele alırlar (Bölüm 4). MÖ. 2. ve 1. bin yıllara tarihlenen Sümü, Akad ve Eski Babil metinlerinde, büyük olasılıkla kehrivbern ile ilişkili olan elmēšu(m) sözcüğü ve bu sözcükten türetilmiş terimlerden bahsedilmektedir.

Ara parçalar başta olmak üzere kehrivbern buluntu gruplarının formları birbirlerine benzerler ve Güney İtalya’dan gelen boncuk, pandantif ve ara parçalarla sıkı bir bağlantı içindeydiler. Kehrivber, MÖ. 8. yüzyılı sonunun itibaren Güney İtalya’da bugünkü Basilicata’nın yerleri olan Oenotrialı’lar arasında çok popüler hale gelmiştir. Oenotrialı zengin kadın mezarlarından, hala orjinal yerlerinde bulunan ve kolyeler, göğüs/vücut takılar ve kemerlerden oluşan, çok ince işlemiş kehrivbern taki setleri ortaya çıkarmıştır.

A. Naso, M. Ott, C. Posch, S. Privitera ve N. L. Saldalamacchia, katalogda listelenen kehrivbernleri tanımlar: 1905 kazısında elde geçen mezarın kemerlerini ve boncuları araştırmaları sonucunda bulunan geniş bir kehrivbern koleksiyonu olup, bu koleksiyonunun dominiyle bir oynadığı göz önune alınırsa Güney İtalya ve Ionia arasındaki bağlantı şaşırtmaz. Güney İtalya’dan gelen arkeolojik buluntular, hinterlandta yaşayan Oenotrialılar’ın kıyıda yaşayan Yunanlılarla temas halinde olduğunu gösterir.

Siris ve Ionia arasındaki bağlantı, Oinotrialıların kehrivbern takıları olmak üzere RKN’in Efes’e yuvalanması koyollarlaştırmıştır. Baltık kehrivbern parçaları (Kat. 535 ve 651) Ionia’ya gelmiş ve tecrübeli zanaatkarlar Ionia’nın zengin ve tanınmış bir kültürü ile maruz kalarak çok sıralı bir süsleme yapmışlardır, ancak bunu yaparken boncuklar (Boncuk Tip 4b ve 4c) ve pandantiflerde (Pandantif Tip 4 ve 6) yeni formlar ve ara parçalarla ise yeni bir süslemeler (Ara Parça Tip 7) geliştirilmişlerdir. Boncuk, pandantif ve ara parçalarla görülen yarnın yeni formlar ile daha önce de bahsi geçen Artabesi’den bulunan çok sıralı bir süsleme işleri, Efes’de bulunan bir kehrivbern atölyesinin etkinliğini göstermektedir.

A. Naso, M. Ott, C. Posch, S. Privitera ve N. L. Saldalamacchia, katalogda listelenen kehrivbern parçalarının içeriklerine göre taşınmaktadır: 1905 kazısında elde geçen
buluntular, İstanbul Arkeoloji Müzesi’nde ve Londra’daki British Museum’da bulunmaktadır. Efes’te son yapılan Avusturya kazılarından gelen buluntular ise Selçuk’taki Efes Müzesi’ndedir (Bölüm 6).

Tercüme: Neşe Kul-Berndt
8 REFERENCES AND INDEXES

CONCORDANCE LISTS

1 Ephesos Archaeological Museum Selçuk
2 Archaeological Museum Istanbul
3 British Museum London

1 Amber finds in the Ephesos Archaeological Museum Selçuk
The inventory number of the Artemision excavation (ART) consists of six numbers. The first two refer to the year of excavation, indicated by the last two numbers, and the remaining four are the serial numbers of the excavated metrical unit, in German called the »Fundkiste« (= metrical excavation box). In the following list the serial number of the object found in every metrical unit, usually put at the end of the six numbers and separated by a dot, has been omitted. This number is listed in the catalogue entries.

<table>
<thead>
<tr>
<th>Box</th>
<th>ART</th>
<th>Cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>760238</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>800006</td>
<td>524</td>
<td></td>
</tr>
<tr>
<td>809431</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>809433</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>850314</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>850316</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>860000</td>
<td>275,276</td>
<td></td>
</tr>
<tr>
<td>860155</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>860203</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>860217</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>860344</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>870081</td>
<td>526</td>
<td></td>
</tr>
<tr>
<td>870104</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>870119</td>
<td>38,39,195</td>
<td></td>
</tr>
<tr>
<td>870199</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>870233</td>
<td>86,238,278,312,318</td>
<td></td>
</tr>
<tr>
<td>870272</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>870298</td>
<td>210,229,230</td>
<td></td>
</tr>
<tr>
<td>870324</td>
<td>29,30,42</td>
<td></td>
</tr>
<tr>
<td>870341</td>
<td>43,77,78,79,80,111,233,234,290,291,332,355</td>
<td></td>
</tr>
</tbody>
</table>
Amber finds in the Archaeological Museum Istanbul

<table>
<thead>
<tr>
<th>AMI Inv.</th>
<th>Cat.</th>
<th>2907.50</th>
<th>2907.53</th>
<th>2907.56</th>
<th>2907.59</th>
<th>2907.65</th>
<th>2907.66</th>
<th>2907.71</th>
<th>2907.75</th>
<th>2907.76</th>
<th>2907.79</th>
<th>2909.2</th>
<th>2909.3</th>
<th>2909.4</th>
<th>2909.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2907</td>
<td>591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.1</td>
<td>548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.7</td>
<td>636</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.10</td>
<td>637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.15</td>
<td>638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.18</td>
<td>639</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.22</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.29</td>
<td>647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.34</td>
<td>641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.38</td>
<td>648</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.43</td>
<td>642</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.45</td>
<td>570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2907.49</td>
<td>546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes

- **AMI Inv.** refers to the inventory number in the Archaeological Museum Istanbul.
- **Cat.** refers to catalog numbers.
- The table lists various references and indexes including references 232, 870348, 870349, 870352, 870353, 870354, 870362, 870374, 870409, 88/Basis A 115, 880128, 880170, 880443, 880594, 880807, 880822, 880915, 880943, 880946, 880947, 880949, 880974, 892609, 892645, 900374, 900380, 900402, 900427, 900434, 900483, 900486, 901329, 910496, 910584, 910611, 930672, 930697, 930984, 931010, 931107, 931289, 940014, 940085, 940110, 940135, 940146, 940242, 940268, 940014, 940085, 940110, 940135, 940146, 940242, 940268, Unknown, 490, 574, 541, 643, 644, 645, 549, 550, 542, 564, 576, 584, 585, 571, 579.
| BM Inv. | Cat. | 1907.12–1.521 | 1907.12–1.522 | 1907.12–1.523 | 1907.12–1.524 | 1907.12–1.525 | 1907.12–1.526 | 1907.12–1.527 | 1907.12–1.528 | 1907.12–1.529 | 1907.12–1.530 | 1907.12–1.531 | 1907.12–1.532 | 1907.12–1.533 | 1907.12–1.534 | 1907.12–1.535 | 1907.12–1.536 | 1907.12–1.537 | 1907.12–1.538 | 1907.12–1.539 | 1907.12–1.540 | 1907.12–1.541 |
|----------|------|--------------|
| 2009.6 | 649 | 2916 | 654 | 2917 | 630 | 2918 | 655 | 2919 | 595 | 2921 | 633 | 2923 | 634 | 2924 | 652 | 2931.1 | 558 | 2931.2 | 559 | 2931.3 | 560 |
| 2009.7 | 658 | |
| 2010.1 | 596 | |
| 2010.2 | 597 | |
| 2010.3 | 623 | |
| 2010.4 | 624 | |
| 2011.1 | 659 | |
| 2011.2 | 631 | |
| 2011.3 | 632 | |
| 2011.4 | 551 | |
| 2011.5 | 593 | |
| 2011.6 | 552 | |
| 2011.7 | 586 | |
| 2011.8 | 650 | |
| 2011.9 | 587 | |
| 2011.10 | 588 | |
| 2011.11 | 589 | |
| 2011.12 | 590 | |
| 2012 | 540 | |
| 2014 | 578 | |
| 2015 | 651 | |

3 Amber finds in the British Museum London
BIBLIOGRAPHY

Albanese 2020 M. Albanese, Analisi di alcune azioni rituali per la regalità in CTH 479.2.1, Asia Anteriore Antica 2, 2020, 25–43.

Bachvarova 2016 M. Bachvarova, From Hittite to Homer. The Anatolian Background of Ancient Greek Epic (Cambridge 2016).

Bammer 1984 A. Bammer, Das Heiligtum der Artemis von Ephesos (Graz 1984).

Bammer 1988b A. Bammer, Neue Grabungen an der Zentralbasis des Artemision von Ephesos, ÖJh 58, 1988, Beibl. 1–32.

Beck 1928	H. C. Beck, Classification and Nomenclature of Beads and Pendants, Archaeologia 77, 1–76.
Beckman 1983	G. Beckman, Hittite Birth Rituals, StBoT 29 3 (Wiesbaden 1983).
Beckman 2019	G. Beckman, The Hittite Gilgamesh, JCS Suppl. 6 (Atlanta, GA 2019).

Bergmann 1964 E. Bergmann, Untersuchungen zu syllabisch geschriebenen sumerischen Texten, ZA 56, 1964, 1–43.

Blinkenberg 1926 C. Blinkenberg, Fibules grecques et orientales (Copenhagen 1926).

Cavigneaux – Krebernik 2001a

Cavigneaux – Krebernik 2001b

Ceccarelli 2019

Çeçen – Erol 2018
S. Çeçen – H. Erol, Kültepe’den değişik bir tikari mal listesi (Kt n/k 1697), Archivum Anatolicium 12, 1, 2018, 53–75.

Cellarosi et al. 2016

Cesano – Bellintani 2012

Charpin 1986

Charpin 2014

Charpin 2016

Chiaramonte Trerè – d’Ercole 2003

Chiartano 1994

Chieco Bianchi – Calzavara Capuis 1985

Chiodi 1999

Christiansen – Petersen 2017
J. Christiansen – N. M. Petersen, Catalogue Etruria II. Sculpture, bronzes, ceramics, bucchero, figure decorated ceramics, complete tomb finds: I. Tarquinia, II. Bologna, III. Cerveteri, Ny Carlsberg Glyptotek (Copenhagen 2017).

Cicirelli 2012

Çilingir Cesur 2020
S. Çilingir Cesur, Zamanın Tanımı. Hitit Metinlerinde ›meḫur‹ Kavramı, Archivum Anatolicum 14, 1, 2020, 51–82.

Çınardalı-Karaaslan 2012

Cinquantasei 2001

Civil 1964

Civil 1967

Civil 2008

Close-Brooks 1965
J. Close-Brooks, Proposta per una suddivisione in fasi della necropoli veiente di Quattro Fontanili, NSc 65, 53–64.

Cohen 1981

Cohen 2005
8 REFERENCES AND INDEXES

de La Genière 2012 J. de La Genière, Amendolara. La necropole de Paladino Ouest (Naples 2012).
del Monte 2003 G. del Monte, Antologia della letteratura ittica (Pisa 2003).
Bibliography

de Marinis 2017

de Martino 1998

de Martino 2007

de Martino 2016

de Martino 2017

de Martino 2023

de Navarro 1925
J. M. de Navarro, Prehistoric routes between northern Europe and Italy defined by the amber trade, The Geographical Journal 66, 1925, 481–503.

Denti 2019

Déonna 1938

De Puma 2013

Dercksen 1999

Dercksen 2019

Dercksen 2021

de Ridder – Sassmannshausen 2021

Deroy – Halleux 1974

De Stefano 2022
F. De Stefano, Da Taranto a Sibari tra VIII e VII secolo a. C., Hesperia 40, 2022, 7–43. DOI: 10.48255/2283-7531.HESP.40.2022.01

Devoto – Molayem 1990

Dhorme 1961

Dijkstra 2015

Dmitrić 2006

Donder 1994

Donnellan et al. 2016a

Donnellan et al. 2016b

Dore 2010

Dore – Marchesi 2010

Falchi 1891 I. Falchi, Vetulonia e la sua necropoli antichissima (Florence 1891).

Feder 2011 Y. Feder, Blood expiation in Hitite and biblical ritual. Origins, context, and meaning, Writings from the Ancient World Suppl. 2 (Atlanta, GA 2011).

Filow 1927 B. D. Filow, Die archaische Nekropole von Trebnischte am Ochrida-See (Berlin 1927).
Bibliography

Firsov – Zhuravlev 2007

Fischer 1990

Fischer-Hansen 2009

Focke 2000

Fontan 2014

Fontan – Affanni 2018

Forbeck – Heres 1997

Forstenpointner 2001

Foster 1987

Foster 1997

Foster 2005
B. R. Foster, Before the Muses. An Anthology of Akkadian Literature (Bethesda, MA 2005).

Foxvog 2001/2002

Foxvog 2011

Frayne 1993

Frayne 1997

Frey – Gabrovec 1971

Friberg 2000
J. Friberg, Mathematics at Ur in the Old Babylonian Period, RAssyr 94, 2000, 97–188.

Friedrich 1952–1954

Furtwängler 1890
A. Furtwängler, Die Bronzen und die übrigen kleineren Funde von Olympia, Olympia 4 (Berlin 1890).

Fuscagni 2007

Gabbay 2015

Gabrovec et al. 2006

Gabrovec – Teržan 2010

Gachet-Bizollon 2007

Gadotti 2010
REFERENCES AND INDEXES

Gander 2022 M. Gander, Geschichte und Geographie Westkleinasiens in der Hethiterzeit, Texte der Hethiter 33 (Heidelberg 2022).
Gedl 2004 M. Gedl, Die Fibeln in Polen, PBF 14, 10 (Stuttgart 2004).
Giusfredi 2017 F. Giusfredi, On Sumerian ku(.g)-an (a metal) and some allegedly derived words, Nouvelles Assyriologiques Brèves et Utilitaires 7, 2017, 13–16.
Bibliography

Gleba 2008 M. Gleba, Textile production in pre-Roman Italy (Oxford 2008).

Goetze 1957 A. Goetze, Old Babylonian Documents from Sippar in the Collection of the Catholic University of America, JCS 11, 1957, 15–40.

Guggisberg 2004

Guidi 1993
A. Guidi, La necropoli veiente dei Quattro Fontanili nel quadro della fase recente della prima età del Ferro italiana (Florence 1993).

Guzzo 1982

Guzzo 1993

Guzzo 2013

Guzzo 2014
P. G. Guzzo, Oreficerie dell’Italia antica (Rossano 2014).

Guzzo 2017
P. G. Guzzo, Le fondazioni greche di Magna Grecia e di Sicilia in rapporto con gli insediamenti indigeni preesistenti, Aristonothos 18, 2022, 47–69.

Haas 1984
V. Haas, Die Serien itkaḫi und itkalzi des AZU-Priesters, Rituale für Tašmišarri und TutʉIPA sowie weitere Texte mit Bezug auf Tašmišarri, Corpus der hurritischen Sprachdenkmäler I 1 (Rome 1984).

Haas 2002

Haas 2003

Haas – Thiel 1978

Haas – Wegner 1988

Haas – Wilhelm 1974

Haupt 1923

Harrell et al. 2017

Harris 1989

von Hase 1989

Harrell et al. 2017

Harris 1989

Hawkins 1995
J. D. Hawkins, The Hieroglyphic inscription of the sacred pool complex at Hattusa (SÜDBURG), StBoT Beih. 3 (Wiesbaden 1995).

Hawkins 2009

Hawkins 2019
Bibliography

Hoernes 1921 M. Hoernes, Das Gräberfeld von Hallstatt, seine Zusammensetzung und Entwicklung (Leipzig 1921).

Högström 1996 J. Högström, The Finer Structure of the Old Babylonian Mathematical Corpus. Elements of Classification, with Some Results (Filosofi och Videnskapsteori på Roskilde Universitetscenter. 3. Række, Preprints of Reprints 1996 no. 4) (Roskilde 1996).

Hogarth 1908e D. G. Hogarth, Other Ivory and Bone Objects, in: Hogarth 1908a, 186–198.

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>W. Horowitz</td>
<td>Mesopotamian Cosmic Geography, Mesopotamian Civilizations 8 (Winona Lake, IN 1998).</td>
</tr>
<tr>
<td>2013</td>
<td>M. B. Hundley</td>
<td>Gods in dwellings. Temples and divine presence in the ancient Near East, Writings from the Ancient World Suppl. 3 (Atlanta, GA 2013).</td>
</tr>
<tr>
<td>1951</td>
<td>P. Jacobsthal</td>
<td>The Date of the Ephesian Foundation-Deposit, JHS 71, 1951, 85–95.</td>
</tr>
<tr>
<td>1956</td>
<td>P. Jacobsthal</td>
<td>Greek pins and their connexions with Europe and Asia (Oxford 1956).</td>
</tr>
<tr>
<td>1932</td>
<td>G. Jacopi</td>
<td>Clara Rhodos 6–7, Esplorazione archeologica di Camiro 2 (Bergamo 1932).</td>
</tr>
<tr>
<td>2016</td>
<td>P. Kaplan</td>
<td>The Ring of Polycrates: friendship and alliance in the east Mediterranean, Journal of Ancient History 4, 2, 2016; DOI: 10.1515/jah-2016-0009</td>
</tr>
</tbody>
</table>

Kilmer 1960 A. D. Kilmer, Two New Lists of Key Numbers for Mathematical Operations, Or NS 29, 273–308.

Kourouniotes 1916 K. Kourouniotes, Ἀνασκαφαὶ καὶ ἔρευναι ἐν Χίῳ 2, ADelt 2, 1916, 190–212.

Malayeri 2014 M. Malayeri, Schüllertexte aus Susa (Diss. University of Tübingen 2014).

Marchesi 2011 M. Marchesi, Le sculture di età orientalizzante in Etruria padana (Bologna 2011).

Massaro 1943 D. Massaro, Le ambre di Vetulonia, StEtr 17, 1943, 31–46.

REFERENCES AND INDEXES

Michalowski 1988 P. Michalowski, Magan and Meluḫḫa Once Again, JCS 40, 1988, 156–164.

Michalowski 1989 P. Michalowski, The Lamentation over the Destruction of Sumer and Ur, Mesopotamian Civilizations 1 (Winona Lake, IN 1989).

Miller 2004 J. L. Miller, Studies in the Origins, Developments and Interpretations of the Kizzuwatna Rituals, StBoT 46 (Wiesbaden 2004).

Minto 1922 A. Minto, Populonia. La necropoli arcaica (Florence 1922).

Montanaro 2010 A. C. Montanaro, Una principessa daunia del VII secolo a.C. La tomba principesca di Cupola Beccarini (Manfredonia) (Foggia 2010).

Bibliography

Mouton 2016

Müller 1994

Müller-Karpe 1959
H. Müller-Karpe, Beiträge zur Chronologie der Urnenfelderzeit nördlich und südlich der Alpen (Berlin 1959).

Mukherjee et al. 2008

Murray et al. 1900

Muscarella 2000

Muss 2001

Muss 2008a

Muss 2008b

Muss 2008c

Naso 2000

Naso 2001

Naso 2006a

Naso 2006b

Naso 2007

Naso 2011

Naso 2012

Naso 2013

Naso 2015

Naso 2019

Negroni Catacchio 2020

Nava – Salerno 2007

Negroni Catacchio 1975/1976

Negroni Catacchio 1978
<table>
<thead>
<tr>
<th>References</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neu 1968</td>
<td>E. Neu, Interpretation der hethitischen mediopassiven Verbalformen, StBoT 5 (Wiesbaden 1968).</td>
</tr>
</tbody>
</table>

Oppert 1880 J. Oppert, L’ambre jaune chez les Assyriens, RecTrav 2, 2, 1880, 33–47.

Orsi 1893 P. Orsi, Siracusa. Scavi eseguiti nella necropoli del Fusco, NSc 1893, 445–486.

Orsi 1926 P. Orsi, Le necropoli preelleniche calabresi di Torre Galli e di Canale, lanchina, Patariti, MonAnt 31, 1926, 1–376.

Pacciarelli 1999 M. Pacciarelli, Torre Galli. La necropoli della prima età del ferro (scavi di Paolo Orsi 1922–1923) (Soveria Mannelli 1999).

Palavestra 1993 A. Palavestra, Praistorijski čilibar na centralnom i zapadnom Balkanu (Belgrade 1993).

Papi 1979 R. Papi, Materiali archeologici da Villalfonsina (Chieti), ArchCl 31, 1979, 18–95.

Parker 2014

Parker – Steele 2021

Parpola 1997
S. Parpola, Assyrian Prophecies, States Archives of Assyria IX (Helsinki 1997).

Patera 2012

Peltz 2011

Percossi – Frapiccini 2004

Perna 2005

Pernier 1931

Peterson 2007

Peterson 2014

Pfälzner 2011

Pfälzner 2012

Pfuhl 1903
E. Pfuhl, Der archaische Friedhof am Stadtberge von Thera, AM 28, 1903, 1–288.

Piceni 2001

Pieniążek 2016

Pieniążek 2020

Pisani Sartorio 1977

Platz-Horster 2001

Pohl 1972

Poinar 1992

Poinar – Milki 2001

Poli – Privitera 2018

Polvani 1988
A. M. Polvani, La terminologia dei minerali nei testi ittiti. Parte prima, Eothen 3 (Florence 1988).

Polvani 1994

Pomponio 1987
F. Pomponio, La prosopografia dei testi presargonici di Fara, Studi Semitici n. s. 3 (Rome 1987).

Popović 2017
Bibliography

Potere 2008

Powell 1989

Praetzelis 1993

Preite 2016

Prentice 2010

Price 1983

Primas 1965/1966

Princesses 2012

Principi 2000

Pritchett 1956

Psoma 2020

Pulsinger 2008

Pulsinger – Pütz 2009

Pütz 2009
A. M. Pütz, Goldfunde aus dem Artemision von Ephesos, FiE 12, 5 (Vienna 2009).

Pugliese Carratelli 1971

Puhvel 1991

Puhvel 1996

Puhvel 1999

Puhvel 2002

Puhvel 2003

Pulak 2005

Quondam (forthcoming)

Radner 2001

Räder Knudsen 2012

Randall McIver 1924

Rausch 2013

Reade 1987

Reiner 2002
Reiter 1999 K. Reiter, Die Metalle im Alten Orient unter besonderer Berücksichtigung altbabyloni-
nerischer Quellen, AOAT 249 (Münster 1999).

Riccardi 2010 A. Riccardi, Ornamenti metallici e in ambra tra VI e IV secolo a.C., in: L. Todisco (ed.),
La Puglia centrale dall’età del bronzo all’alto medioevo. Archeologia e storia. Atti del

Richter 1999 T. Richter, Untersuchungen zu den lokalen Panthea Süd- und Mittelbabyloniens in alt-
babylonischer Zeit, AOAT 257 (Münster 1999).

Rieken 1999 E. Rieken, Untersuchungen zur nominalen Stammbildung des Hethitischen, StBoT 44
(Wiesbaden 1999).

Rizzo 2015 M. A. Rizzo, Principi etruschi. Le tombe orientalizzanti di San Paolo a Cerveteri. Bol-
lettino d’Arte volume speciale (Rome 2015).

Rizzo 2018 M. A. Rizzo, La necropoli del Laghetto tra vecchi e nuovi scavi, Scienze dell’Antichità
24, 2, 2018, 51–78.

Robino 2009 M. T. A. Robino, Una statuetta in ambra della collezione Grotto di Adria, in: M. Harari –
S. Palatiner – M. T. A. Robino (eds.), Icone del mondo antico. Un seminario di storia

Robinson 1951 E. S. G. Robinson. The Coins from the Ephesian Artemision Reconsidered, JHS 71,
1951, 156–167.

Robson 1999 E. Robson, Mesopotamian Mathematics, 2100–1600 BC. Technical Constants in Bu-

Rocco 2020 G. Rocco, Importazioni e produzioni di intagli di matrice laconica e ionica nel VII e VI

Rochberg 2009 F. Rochberg, »The Stars Their Likenesses«. Perspectives on the Relation Between Ce-
lestial Bodies and Gods in Ancient Mesopotamia, in: B. N. Porter (ed.), What is a god?
Anthropomorphic and non-anthropomorphic aspects of deity in ancient Mesopotamia
(Winona Lake, IN 2009) 41–91.

Romito 2019 M. Romito, Testimonianze dalla Lucania occidentale. Vecchi scavi, nuovi studi. Mate-
riale del Museo archeologico provinciale della Lucania occidentale, in: O. de Cazanove –
A. Duploy (eds.), La Lucanie entre deux mers. Archéologie et patrimoine. Actes du

Roncoroni 2006 P. Roncoroni, Le tombe del periodo orientalizzante, in: M. Romito (ed.), Vecchi scavi,
nuovi studi. Museo Archeologico Provinciale della Lucania occidentale nella Certosa
di San Lorenzo a Padula (Salerno 2006) 49–62.

Rosengarten 1960 Y. Rosengarten, Le concept sumérien de consommation dans la vie économique et re-
ligieuse. Étude linguistique et sociale d’après les textes présargoniens de Lagas (Paris
1960).

Rositani 2009 A. Rositani, Some RIm-Anum Texts from the bt atshi Kept in the British Museum, RSO
82, 2009, 97–121.

Roffberger 2015 E. Röfberger, Schmuck für Lebende und Tote. Form und Funktion des Schmuckinven-
tars der Königsgruft von Qaṭna in seinem soziokulturellen Umfeld, Qaṭna Studien 4
(Wiesbaden 2015).

Rottoli et al. 2015 M. Rottoli – P. Baraldi – M. Marchesini, Analisi archeobotaniche e chimiche in alcuni
Rodriguez (eds.), Immagini di uomini e di donne dalle necropoli villanoviane di Veruc-
chio. Atti delle giornate di studio dedicate a Renato Peroni, Verucchio 20.–22. 4. 2011
(Florence 2015) 109–117.
Bibliography

Saltini Semerari 2019 G. Saltini Semerari, Calcophones in context. Gender, ritual and rhythm in Early Iron Age Southern Italy, RM 125, 2019, 13–47.

Scheil 1921 J.-V. Scheil, Vocabulaire pratique – Suse, époque d’Ur, RAssyr 18, 1921, 49–78.
Solórzano-Kraemer et al. 2020

Soysal 2016

Soysal 2019

Spadea 2004

Spier 2000

Sprincz – Beck 1981

Stahl 2006

Stampolidis 1992

Stampolidis 1998

Stanco et al. 2012

Starke 1985
F. Starke, Die keilschrift-luwischen Texte in Umschrift, StBoT 30 (Wiesbaden 1985).

Stauffer 2012

Stauffer – Ræder Knudsen 2015

Steible 1975

Steinkeller 1988

Steinkeller 1999

Steinkeller 2006

Steinkeller 2016

Steinkeller 2019

Stibbe 2003
C. M. Stibbe, Trebenishte. The fortunes of an unusual excavation (Rome 2003).

Stingl 2000/2001

Studi 1975 Studi e ricerche sulla problematica dell’ambra. Atti della cooperazione interdisciplinare italo-polacca, Consiglio Nazionale delle Ricerche (Rome 1975).

Sundwall 1943 J. Sundwall, Die älteren italischen Fibeln (Berlin 1943).

Tabolli 2013 J. Tabolli, Narce tra la prima età del Ferro e l’Orientalizzante antico. L’abitato, i Tufi e La Petrina (Pisa 2013).

Bibliography

Virolleaud 1940 C. Virolleaud, Lettres et documents administratifs de Ras Shamra, Syria 21, 1940, 247–276.

Wagensonner 2020b K. Wagensonner, From Demons to a Slippery Slope: MLC 1948, a new list of Sumerian terms and their equivalents, JNearEastSt 79, 2020, 51–64.

Walter 1959 H. Walter, Ein samischer Elfenbeinjüngling, AM 74, 1959, 43–47.

Bibliography

Walter – Vierneisel 1959

Walters 1926

Warburton 2019

Ward-Perkins – Falconi Amorelli 1970

Warden 1994

Wartke 2005

Webb 1978

Webb 2016
V. Webb, Faience material from the Samos Heraion excavations, Samos 13 (Wiesbaden 2016).

Wegner 2004

Weickert 1929
C. Weickert, Typen der archaischen Architektur in Griechenland und Kleinasien (Augsburg 1929).

Weidig 2021

Weikart 2002

Weißl 2002

Weißl 2003/2004

Weißl 2005

Weißl 2006

Weißl 2011

Wells 1984

Wells 1985

Wenskus 1985

West 1992

Winter 2019 N. A. Winter, Finding a home for a roof in production within the building history of Poggio Civitate (Murlo), Etruscan and Italic Studies 22, 2019, 65–94.

Zimmern 1885 H. Zimmern, Babylonische Bußpsalmen, umschrieben, übers. und erklärt, Assyriologische Bibliothek 6 (Leipzig 1885).

EDITIONS AND ABBREVIATIONS OF CUNEIFORM DOCUMENTS

AbB Altbabylonische Briefe in Umschrift und Übersetzung, hrsg. von F. R. Kraus (Leiden 1964 ff.).
BA Beiträge zur Assyriologie (Leipzig).
BATSH Berichte der Ausgrabung Tall Šēē Hamad/Dūr katlimmu (Berlin).
BIN Babylonian Inscriptions in the Collection of James B. Nies (New Haven).
CHD The Hittite Dictionary of the Oriental Institute of the University of Chicago (Chicago 1980–).
CT Cuneiform Texts from Babylonian Tablets in the British Museum (London).
CUA Catholic University of America Cuneiform Texts (Washington).
CUSAS Cornell University Studies in Assyriology and Sumerology (Bethesda).
DP M.-F. Allotte de la Fuyé, Documents prêisargoniquestes (Paris 1908–1920).
Hh. Lexical series HAR.ra = hubullu (= MSL V–XI).
IBoT Istanbul Arkeoloji Müzelerinde bulunan Boğazköy tabletlerinden seçme metinler (İstanbul 1944 ff.).
ICK Inscriptions cunéiformes du Kultépé. 1: B. Hrozný (= Monografie Archivu Orientálního 14, Prag 1952); 2: L. Matouš (Prague 1962).
JCSSS Journal of Cuneiform Studies Supplemental Series.
KBo Keilschrifttexte aus Boghazköi (Leipzig 1916 ff.).
KUB Keilschrifturkunden aus Boghazköi (Berlin 1921–1990).
LKA L. Ebeling, Literarische Keilschrifttexte aus Assur (Berlin 1953).
MHET Mesopotamian History and Environment: Texts (Ghent).
MSL Materialien zum sumerischen Lexikon/Materials for the Sumerian Lexicon (Rome).
Nik 1 M. V. Nikol’skij, Dokumenty chojajstvennoj otčetnosti drevnejšej epoche Chaldei iz sobranija N. P. Lichačeva (St. Petersburg 1908).
OGBT Old Babylonian Grammatical Texts (MSL 4/2).
OBO Orbis Bibliicus et Orientalis (Fribourg).
SAA SAA (Helsinki).
SF A. Deimel, Schultexte aus Fara (Leipzig 1923).
TCL Textes cunéiformes. Musée du Louvre, Département des Antiquités Orientales (Paris 1910 ff.).
TSA H. de Genouillac, Tablettes sumériennes archaïques: matériaux pour servir à l’histoire de la société sumérienne (Paris 1909).
UCLMA Tablets in the collection of the Robert H. Lowie Museum of Anthropology of the Univ. of California at Berkeley.
UET Ur Excavations. Texts (London 1928 ff.).
UVB Vorläufiger Bericht über die von der Notgemeinschaft der Deutschen Wissenschaft in Uruk-Warka unternommenen Ausgrabungen (Berlin).
VAT Vorderasiatische Abteilung der Staatlichen Museen zu Berlin.
VS Vorderasiatische Schriftdenkmäler der Königlichen (Staatlichen) Museen zu Berlin (Leipzig).
YBC Yale Babylonian Collection (Yale University, New Haven).
YOS Yale Oriental Series, Babylonian Texts (New Haven/London/Oxford 1915 ff.)

ILLUSTRATIONS CREDITS
Pls. 1, 1–2; 2, 1–2: © OeAW-OeAI, photo A. Bammer
Pl. 3, 1: © OeAW-OeAI, graphics M. Kerschner and I. Benda-Weber 2018, based on Weißl 2002
Pl. 3, 2: © OeAW-OeAI, photo A. Bammer, phases and labelling M. Kerschner, graphics I. Benda-Weber
Pls. 4, 1–2; 5, 1: © OeAW-OeAI, photo A. Bammer
Pl. 5, 2: Photo © The British Museum, London
Pls. 5, 3; 6, 1: © OeAW-OeAI, photo J. Auinger
Pl. 6, 2–3: © OeAW-OeAI, photo A. Bammer
Pls. 7, 1–8, 3: © OeAW-OeAI, photo N. Gail
Pl. 8, 4: from Robino 2009, 78 f. pl. 19
Pl. 9: digital editing M. Ott
Pl. 10, 1–12: © OeAW-OeAI, N. Gail
Pl. 11: digital editing C. Posch
Pl. 12, 1, 4–5; 7–9: © OeAW-OeAI, photos N. Gail
Pl. 12, 2–3, 6, 10: Courtesy of the Trustees of the British Museum
Pls. 13, 1–14, 2: maps, digital editing and line-drawings C. Posch
Pl. 15: from Magie 2005, 74 f.
Pl. 16, 1: map, digital editing and line-drawings C. Posch
Pl. 16, 2: map A. Naso, digital editing I. Benda-Weber
Pl. 17: digital editing A. Naso
Pl. 18, 1–4: © OeAW-OeAI, photos N. Gail
Pls. 19, 1–2; 20, 1: drawings N. L. Saldalamacchia
Pl. 19, 3: © OeAW-OeAI, photo N. Gail
Pl. 20, 2–5: photos M. Ott
Pl. 21, 1: graphic design M. Bonadies 1 after Perna 2005, modified. – 2 after Knigge 1976, pls. 102–103. – 3 after Fischer 1990, Beil. 1. – 4 drawing M. Bonadies
Pl. 21, 2: after Zürn 1970, 14 fig. 6
Pl. 21, 3: after Forbeck – Heres 1997, fig. 28
Pl. 22, 1: digital editing N. Math
Pl. 22, 2: digital editing and line-drawings C. Posch
Silvia Alaura
Consiglio Nazionale delle Ricerche
Istituto di Scienze per il Patrimonio Culturale
Area della Ricerca di Roma 1
Strada della Neve s.n.c.
Via Salaria km 29.300
I-00010 Montelibretti

Laura Ambrosini
Consiglio Nazionale delle Ricerche
Istituto di Scienze per il Patrimonio Culturale
Area della Ricerca di Roma 1
Strada della Neve s.n.c.
Via Salaria km 29.300
I-00010 Montelibretti

Marco Bonechi
Consiglio Nazionale delle Ricerche
Istituto di Scienze per il Patrimonio Culturale
Area della Ricerca di Roma 1
Strada della Neve s.n.c.
Via Salaria km 29.300
I-00010 Montelibretti

Vanora Estridge
Vassar College
Department of Chemistry
Amber Research Laboratory
124 Raymond Avenue
US - Poughkeepsie, NY 12604

Sarjit Kaur
Vassar College
Department of Chemistry
Amber Research Laboratory
124 Raymond Avenue
US - Poughkeepsie, NY 12604

Tripta Kaur
Vassar College
Department of Chemistry
Amber Research Laboratory
124 Raymond Avenue
US - Poughkeepsie, NY 12604
PLATES
1 Artemision of Ephesos, excavation 1988, trench 583 east of Naos 1/2, view from northeast. In the left lower corner, the western part of Naos 1/2, enclosing the Large Western Basis of Sekos 1. At the upper edge, workmen leaning against the Inner Sekos Enclosure of Dipteros 1. At the right, workmen hoeing the earth with big hoes within the metric excavation units (»Fundkisten«) outlined by red cord and marked by wooden pegs with the number of the individual unit.

2 Artemision of Ephesos, excavation 1987. Green Schist Basis of Naos 2, seen from southwest. At the lower edge, the well-preserved western wall of green schist blocks (consolidated with concrete on top). Left of the workman’s left foot, the emerging Rectangular Basis of Naos 1. Right of the workman’s right foot, scarce remains of the former eastern wall of the Green Schist Basis before their removal: limestone slabs, possible of the foundation layer, and two reversed blocks of green schist. At the background, north and east walls of the cella of Naos 1 and 2.
Plate 2

1. Artemision of Ephesos, excavation 1987. Green Schist Basis of Naos 2, seen from northwest. At the lower right corner, part of the western wall of green schist blocks. Left of it, the eastern part of the Rectangular Basis of Naos 1. In the centre, scarce remains of the former eastern wall of the Green Schist Basis before their removal: limestone slabs, possible of the foundation layer (under the wooden box), and two reversed blocks of green schist (left of the hacking workman). At the lower left corner, north wall, at the background, east and south walls of the cella of Naos 1 and 2.

1 Artemision of Ephesos. Schematic representation of the Central Basis. Labelling according to Hogarth – Henderson 1908a. The colour of a certain structure indicates to which of the five successive Archaic temples it belongs.

2 Artemision of Ephesos, excavation 1988. Western part of the Central Basis, seen from the north. Structures belonging to Naos 1 (highlighted in blue), Naos 2 (green) and Sekos 1/2 (red).
Plate 4

1. Artemision of Ephesos. Excavation of the Central Basis in 1988. View from the west. In the centre, cella of Naos 1/2, surrounded by the Collateral Wall of Naos 2. On top of the rear part of the cella marble blocks of the naikos of Dipteros 1. Within the cella, the western side of the Green Schist Basis of Naos 2, in front of it the Large Western Basis of Sekos 1/2. Parallel to the cella at the left and right margins the Inner Sekos Enclosure of Sekos 2 and Dipteros 1.

2. Artemision of Ephesos, excavation 1988. Eastern part of Naos 1/2, seen from the north. Left, the rear wall of the cella, on top of it the remains of the naikos of Dipteros 1. In the centre, the western wall of the Green Schist Basis of Naos 2, later extended to the north and on top of its foundation blocks of the naikos of Dipteros 1. Beneath the Green Schist Basis, the Rectangular Basis, and column basis of Naos 1. At the eastern fringe, the Small Western Basis of Naos 2.
Plate 5

1 Artemision of Ephesus, excavation 1988. Green Schist Basis of Naos 2, seen from the west. In the middle, western wall, and north-western corner of the Green Schist Basis, built on top of the Rectangular Basis of Naos 1. Excavated clay floor of Naos 1. In the lower right corner, Small Western Basis of Naos 2. At the left and upper fringes, cella walls of Naos 1/2

2 Artemision of Ephesus, excavation 1905. Casts of the 19 electrum coins of the Pot Hoard (originals in the Arkeoloji Müzesi, Istanbul) and the original jug (British Museum, inv. 1907.12.1.686) in which they were found

3 Artemision of Ephesus, excavation 1994. Sacrificial deposit in the already dried up riverbed east of east of Naos 2/Sekos 1 seen from south. At the left, rubble embankment. In the centre, depositional layer G (ca. 630 BC) in situ, comprising pottery (a stemmed dish of Black-on-Red ware in the middle), cooking utensils (an iron implement, presumably part of a spit, to the left of the dish) and animal bones (a lower jaw at the back). At the right edge, Limestone Basis B which was built atop the infill
Plate 6

1 Artemision of Ephesos, excavation 1994. Sacrificial deposit in the nearly dried out riverbed east of Naos 2/Sekos 1. Central profile seen from southwest. From bottom to top: riverbed, depositional layers C–G (ca. 630–610 BC), infill A–B (ca. 600 BC), and Limestone Basis B on top of it. At the left embankment built of rubble and cobble.

2 Artemision of Ephesos, excavation 1990. In the centre, the Limestone Basis D (view from southwest), covered by the foundation of the northern krepidoma of Dipteros 1, here preserved its lowest layer. Above it, a longitudinal rib of the grid foundation of the northern krepidoma of the Late Classical Dipteros 2. The amber objects were found in the black ashy layer beneath the foundation of Dipteros 1, which adjoins Basis D from both sides, and possibly in the sandy layer beneath, which is just under excavation on this photo. The lowest excavated layer is a pavement of marly limestone slabs.

3 Artemision of Ephesos, excavation 1987. Limestone Basis D shortly after its discovery, view from southwest. On top of it, the debris of the construction layer of the northern krepidoma of the Late Classical Dipteros 2. In the upper left corner, a block of the foundation of the northern krepidoma of Dipteros 1.
1 Female bust cat. 1

2 Human head cat. 2

3 Human head cat. 3
Plate 8

1 Scarab cat. 4

2 Duck-shaped protome cat. 5

3 Statuette cat. 540

4 Amber statuette from Adria, lost
<table>
<thead>
<tr>
<th>Type</th>
<th>Beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td></td>
</tr>
<tr>
<td>Type 2</td>
<td></td>
</tr>
<tr>
<td>Type 3</td>
<td></td>
</tr>
<tr>
<td>Type 4</td>
<td></td>
</tr>
<tr>
<td>Type 5</td>
<td></td>
</tr>
<tr>
<td>Type 6</td>
<td></td>
</tr>
<tr>
<td>Type 7</td>
<td></td>
</tr>
</tbody>
</table>

Typology of the amber beads from the Artemision
Plate 10

1 Bead cat. 13

2 Side and above views of the bead cat. 32 with the portion of a bone needle in the bore-hole

3 Side view of the bead cat. 33

4 Side and above views of the bead cat. 85

5 Side view of the bead cat. 115

6 Side view of the bead cat. 188

7 Side view of the bead cat. 200

8 Side view of the bead cat. 213

9 Side view of the bead cat. 262

10 Side and above views of the bead cat. 276

11 Side view of the bead cat. 275

12 Side and above views of the bead cat. 277
Typology of the amber pendants from the Artemision

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Typology of the amber pendants from the Artemision
Plate 12

1 Side and above views of the pendant cat. 297
2 Side view of the pendant cat. 592
3 Side view of the pendant cat. 594
4 Side and above views of the pendant cat. 303
5 Side view of the pendant cat. 314
6 Side view of the pendants cat. 605 (a) and 609 (b)
7 Side view of the pendant cat. 319
8 Side and above views of the pendant cat. 341
9 Above, side and below views of the pendant cat. 343
10 Side view of the pendants cat. 627 (a) and 628 (b)
1 Distribution in the Mediterranean of the pendants types 1 and 2
 1 Bologna. – 2 Vetuslona. – 3 Osteria dell’Osa. – Colonna (necropoli in località Barberini). – 5 Capua. – 6 Calatia. – 7 Lon-
 gola, Poggioimarino. – 8 Cairano. – 9 Latronico. – 10 Chiaromonte. – 11 Torre Galli. – 12 Taranto. – 13 Kompolje. – 14
 Cumae. – 15 Ithaca. – 16 Perachora. – 17 Braida di Vaglio

2 Distribution in the Mediterranean of the pendants type 3
 1 Genua. – 2 Bologna. – 3 Verucchio. – 4 Vetuslona. – 5 Belmonte Piceno. – 6 Campovalano. – 7 Fossa. – 8 Scurcola Mar-
 sicana. – 9 Alfedena. – 10 Veii. – 11 Osteria dell’Osa. – 12 Satricum. – 13 Calatia. – 14 Cupola-Beccarini. – 15 Minervino
 Murge. – 16 Guardia Pertica. – 17 Alianello Cazzaiola. – 18 Chiaromonte. – 19 Amendola. – 20 Francavila Marittima. –
 21 Latronico. – 22 Armento. – 23 Padula. – 24 Sala Consilina. – 25 Aleria. – 26 Magdalenska Gora. – 27 Stična. – 28 Kom-
 polje. – 29 Galsinac. – 30 Romaja. – 31 Katrishte. – 32 Perachora. – 33 Kato Phana. – 34 Kythnos
Plate 14

1 Distribution in the Mediterranean of the pendants type 4
1 Atenica. – 2 Novi Pazar. – 3 Romaja. – 4 Avaisil (near Lake Lagkadas). – 5 Perachora. – 6 Kythnos

2 Distribution in the Mediterranean of the pendants type 5
1 Braida di Vaglio. – 2 Chiaromonte. – 3 Nin, Zaton. – 4 Magdalenska Gora. – 5 Valanida. – 6 Kardista. – 7 Ithaca. – 8 Corinth. – 9 Argos. – 10 Tegea. – 11 Sparta. – 12 Kato Phana. – 13 Delos. – 14 Kythnos. – 15 Sardis. – 16 Uşak. – 17 Rhodos. – 18 Enkomi (Cyprus)
Reconstruction drawing of the female parure from the grave Braida di Vaglio 102 and detail of the gold diadem
1 Distribution map of the pendants type 6
1 Atenica. – 2 Novi Pazar. – 3 Lisjivo Polje (Donje Luge). – 4 Rogovo Fuse. – 5 Pécha Bonja. – 6 Romaja. – 7 Trebenishtë. – 8 Ithaca

2 Distribution map of the amber spacers in Italy and in the Aegean, 8th–6th century BC
Typology of the amber spacers from the Artemision
Plate 18

1 Side view of the spacer cat. 350

2 Side view of the spacer cat. 351

3 Above view of the spacers cat. 362–388 (without scale)

4 Above view of the spacer cat. 430
1. Main parts of an amber fibula

Type 1
Amber fibula with an oval-shaped amber piece placed at the center of the bow

Type 2
Composite fibula with amber segments and bone/ivory discs

Type 3
Composite fibula with amber and bone segments with amber inlays

2. Typology of amber fibulae from the Artemision

3. Side and above views of the fibula cat. 489
1 Composite fibulae with amber inlays: 1 Ephesos cat. 489. – 2 Verucchio, grave Lippi 40/2006. – 3 Pontecagnano, grave Casella 4898

2 Both sides of the fibula segment cat. 497

3 Both sides of the fibula segment cat. 498

4 Both sides of the fibula segment cat. 499

5 Both sides of the fibula segment cat. 500
1 Ornamental furniture inlays of amber and ivory: 1 Polizzello. – 2 Athens. – 3 Asperg. – 4 Artemision

2 Amber inlays from Hundersingen (nos. 1–7) and Ludwigsburg (nos. 8–9)

3 Bone and amber inlay from the Löwengrab at Miletos, lost
Plate 22

1 Shapes of the amber inlays from the Artemision: 1 cat. 526. – 2 cat. 529. – 3 cat. 530. – 4 cat. 531

2 Leaf-shaped ivory inlay: ART 940260.1a–c
Selection of unfinished ivory remains at various working stages
1 ART 840055.1 – 2 ART 850562.1 – 3 ART 770007.1 – 4 ART 760176.1 – 5 ART 750850.1 – 6 ART 720057.1
Selection of unfinished bone remains at various working stages
1 ART 720060.1. – 2 ART 730085.1. – 3 ART 750419.1. – 4 ART 820226.1. – 5 ART 750308.1 (deer antler). – 6 ART 710826.
1 Typology of the amber pinheads from the Artemision

Type A
Type B
Type C

2 Amber pinheads cat. 657 (a) and 656 (b)

3 Side and above views of the raw amber cat. 535; line-drawing of cat. 651
Plate 26

1 Amber lion-headed cup with lid from Qatna, 15th–14th century BC

2 Single amber finds containing more than 500 pieces, 8th–6th century BC
 1 Novi Pazar. – 2 Verucchio. – 3 Numana. – 4 Satricum. – 5 Guardia Perticara. – 6 Alianello. – 7 Chiaromonte. –
 8 Latronico. – 9 Ephesos
Plate 27

Distribution map of beads Tiryns and Allumiere types

Plate 28

1 Main amber finds in the Italian peninsula
 1 Verucchio. – 2 Vetulonia. – 3 Veii. – 4 Satricum. –
 5 Piceno. – 6 Campania. – 7 Basilicata. – 8 Apulia

2 Amber from Greek sanctuaries in the Aegean and North Africa
 1 Ephesos. – 2 Lindos. – 3 Miletos. – 4 Perachora. –
 5 Sparta. – 6 Crete, Idaean Cave. – 7 Aetos. – 8 Kyth-
Most important find spots of amber artefacts in the Artemision

East of Basis D

Below Basis B

Hoard of Naos 1a
Amber figured finds from the Artemision, cat. 1. 2. 3. 5. 540
Amber beads, pendants and spacers from the Artemision (cf. pls. 9, 11, 17)

<table>
<thead>
<tr>
<th>Beads</th>
<th>Pendants</th>
<th>Spacers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Type 2</td>
<td>Type 3</td>
</tr>
<tr>
<td>Type 4</td>
<td>Type 5</td>
<td>Type 6</td>
</tr>
<tr>
<td>Type 7</td>
<td>Type 8</td>
<td></td>
</tr>
</tbody>
</table>

Plate 31
Find spots of amber inlays in the central part of the Artemision
Girdles from Oenotrian female graves in Basilicata, late 8th–early 7th century BC – 1 Chiaromonte grave 152. – 2 Chiaromonte grave 156. – 3 Latronico grave 83
1. Find spots of spacers inside Naos 1a and Naos 2

2. Find spots of end-spacers type 1 inside Naos 1a
1. Find spots of bird-shaped types 4–5 spacers inside Naos 1a and Naos 2

2. Find spots of triangle-shaped spacers type 7 inside Naos 1a and Naos 2
Plate 36

1 Reconstruction drawing of a possible composition of the girdle from the Artemision

2 Details of a reconstruction of the girdle from the Artemision: triangular and bird-shaped spacers

3 Reconstruction of the original aspect of the girdle offered to Artemis
1 Artefacts reproducing spinning women with precious tools
 1 Stone stele from Maraş. – 2 Ivory statuette from the Artemision of Ephesos. – 3 Bronze rattle from Bologna

2 Spindle from Verucchio, grave Lippi 24/2005
3 Spindle from Verucchio, grave Lippi 47/2006
4 Spindle (left) and distaff (right) from Verucchio, grave Lippi 23/2005

Figures without scale.
Plate 38

Figured finds cat. 1–3, 5
Plate 40

Beads cat. 45–78
Beads cat. 114–179
Plate 43

Beads cat. 180–216
Plate 44

Beads cat. 217–245
Plate 45

Beads cat. 246–274

0 5 cm
Plate 46

Beads cat. 275–293
Pendants cat. 297–317
Plate 48

Pendants cat. 318–339
Plate 49

Pendants cat. 340–349; spacers cat. 350–356
Plate 50

Spacers cat. 357–399
Plate 51

Spacers cat. 400–443
Plate 52

Spacers cat. 444–488
Fibulae cat. 489–498
Plate 54

Fibulae cat. 499–505
Plate 55

Fibulae cat. 506–509
Plate 56

Fibulae cat. 510–521
Plate 57

Fibulae cat. 522–523; inlays cat. 524–539
Plate 58

Figured find cat. 540; beads cat. 541–565
Beads cat. 567–590
Plate 60

Pendants cat. 592–606
Plate 61

Pendants cat. 607–624
Plate 62

Pendants cat. 625–630; spacers cat. 631–634
Fibulae cat. 625–651
Fibula cat. 652; inlays cat. 653–655; pin heads cat. 656–658; indeterminable cat. 659
PLANS
Plan 1 General plan with the excavated structures, their terms and the trenches relevant for the amber finds
Plan 2 General plan with the horizontal distribution of the amber finds in the excavation area
Plan 3 Locations of the metrical excavation units with amber objects within the central area of the temenos (in the sekos of the later Dipteros 1)
Plan 4 Floor plan of Naos 1a and section showing the location of the amber hoard
Plan 4

- **Collateral Wall**
- **Entrance Wall**
- **Floor of NAOS 1**
- **Floor of NAOS 1a**
- **East Wall of Cell**
- **Column Base**

Legend:
- Reused structures of NAOS 1
- NAOS 1a
- "HOARD"
- RB: rectangular basis

Dimensions:
- 90m
- 100m back

- Trenches:
 - Trench 583
 - Trench 582
 - Trench 581
 - Trench 580
 - Trench 740

- Sections:
 - NAOS 1
 - NAOS 1a
 - RB rectangular basis

- Coordinates:
 - 0m
 - 1m
 - -1m
 - 2m
 - -2m

- Orientation:
 - North is at the top of the diagram.
Plan 5 a and b
Section through the western part of the cella of Naos 1, Naos 2 and Sekos 1. View from the south.
From left to right: western Collateral Wall, western door wall of Naos 1 and Naos 2, western basis of Sekos 1 and Sekos 2, Small Western Basis of Naos 2, Rectangular Basis of Naos 1, western wall of the Green Schist Basis of Naos 2, eastern wall of Naos 1 and Naos 2, eastern Collateral Wall of Naos 2 (on top of which is placed the eastern enclosure wall of Sekos 1), Inner Sekos Enclosure of Dipteros 1
Plan 5 a and b

Section through the western part of the cella of Naos 1, Naos 2 and Sekos 1. View from the south.

From left to right: western Collateral Wall, western door wall of Naos 1 and Naos 2, western basis of Sekos 1 and Sekos 2, Small Western Basis of Naos 2, Rectangular Basis of Naos 1, western wall of the Green Schist Basis of Naos 2, eastern wall of Naos 1 and Naos 2, eastern Collateral Wall of Naos 2 (on top of which is placed the eastern enclosure wall of Sekos 1), Inner Sekos Enclosure of Dipteros 1.
Plan 6 Section through the western wall of the Green Schist Basis, view from the west. North-south section through Naos 1 and Naos 2 showing layers excavated in 1987 within the temples. View from the west.
Plan 7 Section through the western wall of the Green Schist Basis, view from the east. North-south section through Naos 1 and Naos 2 showing layers excavated in 1987 within the temples. View from the east.
Plan 8 Limestone Basis B – profile Sacrificial deposit in the nearly dried out riverbed, located under Limestone Basis B east of Sekos 1. Central section seen from south
EMBANKMENT

LIMESTONE BASIS B

CROSS-BEDDING

FLUVIAL SAND

LAYER with STONES and OBELOI

FLUVIAL CROSS-BEDDING

DEPOSIONAL LAYER G

DEPOSIONAL LAYER F

DEPOSIONAL LAYER E

DEPOSIONAL LAYER D

DEPOSIONAL LAYER C

INFILL B

INFILL with FRAGMENTED TERRACOTTA ROOF

FOUNDATION TRENCH of the EASTERN SEKOS WALL of DIPTEROS 1

FLOOR LEVEL of the TEMENOS east of SEKOS 1 and LIMESTONE BASIS B

POTTERY

ROOF TILE

ANIMAL BONE

STONE

BERNSTEIN

c. 18,5m n.ASK

20m n.ASK

-2m

-1m

0m

W E

940085

Plan 8
Plan 9 Find spots of the amber objects connected with Naos 2 (above) and Naos 1a (below)
RAMMED EARTH LAYER – SUBFLOOR OF NAOS 2 [H: -0,66 to -0,68/-73 m ASL]

FLOOR NAOS 1A [H: -0,68/-73 to -0,81 m ASL]
Plan 10 Naos 1a and Naos 1 – layers. Filling of the floor of Naos 1a. Subfloor of Naos 1
FILLING OF FLOOR OF NAOS 1A [H: -0.81 to -0.9 m ASL]

SUBFLOOR OF NAOS 1 [H: -0.9 to -1.1 m ASL]