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Abstract

In this paper, for one-parameter closed dual spherical motions, we define the dual
versions of the area vector of a given closed space curve, and the area projection of
this curve in the direction of a given unit vector. The relationship between the above
dual versions and the dual Steiner vector of the motion is used to give a generalization
for Holditch’s theorem of planar kinematics into space kinematics. The geometry of
ruled surfaces generated in a one-parameter spatial motion are treated in terms of their
integral invariants. Finally, an example of application is investigated and explained in
detail.
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1. Introduction

HOLDITCH’s theorem [13] of planar kinematics states: The ring area
between a closed convex curve � and the curve � traced out by a
point on a chord of fixed length that slides around with both endpoints
on � is independent from the shape of �. It only depends on the choice
of the fixed point on the chord. This theorem has been generalized to
the closed ruled surfaces in Euclidean 3-space E3 by M€UULLER [15],
HOSCHEK [14], and HACISALIHO�GGLU [11]. Some relations between
the pitches and the angles of pitch of closed ruled surfaces can be



found in [6, 15]. Important contributions to this theorem have been
studied in [15–17].

As it is known, the other analytical tool in the study of three-
dimensional kinematics and the differential geometry of ruled sur-
faces is based upon dual vector calculus as shown in [1–3, 13, 18].
Although the area vector of a closed space curve in E3 is known,
however, the dual area vector is not. So, this led us to a definition
of the dual area vector of a closed spherical curve. Thus, we have
composed the dual area vector and the dual Steiner vector of one-
parameter dual spherical motions. Making use of this relationship a
generalization of HOLDITCH’s theorem to space kinematics is given.
Moreover, some new relations between integral invariants of closed
ruled surfaces, generated under the motion, were obtained.

Line trajectories are important in kinematic design because they
can be identified with lines of kinematic elements of particular mech-
anism. In spatial motion, the trajectories of oriented lines embedded
in a moving rigid body are generally ruled surfaces. Thus, the geom-
etry of ruled surfaces is important in the study of rational design
problems in spatial mechanisms.

An oriented line in Euclidean 3-space E3 may be given by two
points x and y on it. The parametric equation of the line is

y ¼ xþ �a; ð1:1Þ
a is a unit vector along the line. Then we define the moment of the
vector a with respect to a fixed origin point in E3 as

a� ¼ y�a ¼ x�a: ð1:2Þ
This means that a� is the same for all choices of the points on the
line, and the pair ða; a�Þ2E3�E3 satisfies the following relations:

ha; ai ¼ 1; ha; a�i ¼ 0: ð1:3Þ
The six components ai; a

�
i ði ¼ 1; 2; 3Þ of a; and a� are called the

normed Plücker coordinates of the line.
A ruled surface in Euclidean 3-space E3 is a differentiable one-

parameter set of straight lines. Such a surface has a parameterization
of the form

yðt; �Þ ¼ xðtÞ þ �aðtÞ; t; �2<; ð1:4Þ
where x ¼ xðtÞ is its base curve and a ¼ aðtÞ is the unit vector giving
the direction of the straight lines of the surface.

Let fr; e1; e2; e3g and f0f ; f1; f2; f3g be two right-handed sets
of orthogonal unit vectors which are rigidly linked to the moving
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space Hm and the fixed space Hf , respectively. In this case, the struc-
tural equations of a one-parameter spatial motion of Hm with respect
to Hf are as follows:

dr ¼
X
i

!iei; dei ¼
X
j

!ijej; 1 � i; j � 3; ð1:5Þ

where !ijðtÞ and !iðtÞ are the differential forms of the motion and
t2<. We shall denote the one-parameter spatial motion by Hm=Hf .

During the one-parameter spatial motion Hm=Hf , let the set
fe1; e2; e3g complete a spatial motion along a closed curve rðtÞ. Then
the e1-axis generates a closed ruled surface. We can describe the sur-
face by the equation

R : yðt; �Þ ¼ rðtÞ þ �e1ðtÞ; t; �2<: ð1:6Þ
For this ruled surface

yðt; �Þ ¼ yðt þ 2�; �Þ ð1:7Þ
can be taken as a condition for being closed. The reason for choosing
the e1-axis is for the sake of simplicity.

The pitch of R is defined by

Le1
¼

þ
d� ¼ �

þ
hdr; e1i: ð1:8Þ

An orthogonal trajectory of R starting from the point p0 on an e1-
generator intersects the same generator at another point p1 which is
generally different from p0, i.e. Le1

¼ p0p1.
Let us choose a unit vector

n ¼ cos� e2 þ sin� e3: ð1:9Þ
It is clear that

d� ¼ �hde2; e3i ¼ hde3; e2i: ð1:10Þ
The total of � is called the angle of pitch of R and is given by

�e1
¼

þ
d�: ð1:11Þ

The pitch and the angle of pitch are well-known real integral
invariants of a closed ruled surface [1, 6, 11, 12].

The area vector of a closed space curve x ¼ xðtÞ in Euclidean
3-space E3 is given by

ax ¼
þ
x�dx; ð1:12Þ
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and the projection area of this curve in the direction of a unit vector e
normal to the projection plane is given as (see [15]):

2�xe ¼ hax; ei: ð1:13Þ

2. Dual Spherical Motions

A dual number A has the form aþ "a�, where a, a� are real numbers.
Here " is a dual unit subject to the rules " 6¼ 0, "2 ¼ 0, " � 1 ¼ 1 � " ¼ ".
The set of dual numbers D forms a commutative ring having the
numbers "a� ða� real) as divisors of zero. D is not a field. No number
"a� has an inverse in the algebra. But the other laws of the algebra of
dual numbers are the same as of the complex numbers.

For all pairs ða; a�Þ2E3�E3 the set

D3 ¼ fA ¼ aþ "a�; " 6¼ 0; "2 ¼ 0g; ð2:1Þ
together with the scalar product

hA;Bi ¼ ha;bi þ "ðhb; a�i þ hb�; aiÞ; ð2:2Þ
forms the dual 3-space D3. Thereby a point A ¼ ðA1;A2;A3Þt has dual
coordinates Ai ¼ ðai þ "a�i Þ2D. The norm is defined by

hA;Ai1=2 ¼: kAk ¼ kak
�

1 þ "
ha; a�i
kak2

�
: ð2:3Þ

In the dual 3-space D3 the dual unit sphere is defined by

K ¼ fA2D3 j kAk2 ¼ A2
1 þ A2

2 þ A2
3 ¼ 1g: ð2:4Þ

2.1. E. Study’s Map

The set of all oriented lines in Euclidean 3-space E3 are in one-to-one
correspondence with the set of the points of the dual unit sphere in the
dual 3-space D3 [4].

The E. Study map allows us to rewrite Eq. (1.6) by the dual vector
function as

R: E1ðtÞ ¼ e1ðtÞ þ "rðtÞ�e1ðtÞ; ð2:5Þ
since the spherical image e1 is a unit vector, the dual vector E1 also
has unit length as is seen from the computation

hE1;E1i ¼ he1 þ "r�e1; e1 þ "r�e1i
¼ he1; e1i þ 2"he1; r�e1i þ "2hr�e1; r�e1i ¼ he1; e1i ¼ 1:

ð2:6Þ
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The differentiable curve

t2< ! E1ðtÞ2K ð2:7Þ

represents a differentiable family of straight lines of Euclidean
3-space E3. The lines E1ðtÞ are the generators of a surface. Hence,
ruled surfaces and dual curves are synonymous in this paper.

Suppose that the dual frame fFg (called the fixed dual frame), which
is composed of three mutually orthogonal oriented lines fF1; F2; F3g,
is rigidly attached to the fixed space Hf . Also suppose that the dual
frame fEg (called the moving dual frame), which is composed of
three mutually orthogonal oriented lines fE1; E2; E3g, is rigidly
attached to the moving space Hm. The oriented lines Ei and Fi are
given by

Ei ¼ ei þ "e�i and Fi ¼ f i þ "f�i ði ¼ 1; 2; 3Þ; ð2:8Þ

where

e�i ¼ r�ei and f�i ¼ 00f �ei; ð2:9Þ

in which 0 is a fixed point as origin of E3. VELDKAMP [18] assumed
that both of these frames are attached to separate dual unit spheres Kf

and Km with the same center O in the dual 3-space D3. Then any
point on the dual unit sphere can be written unambiguously as a linear
combination of E1, E2 and E3 as well as of F1, F2 and F3. We have
therefore for a point X:

X1E1 þ X2E2 þ X3E3 ¼ eXX1F1 þ eXX2F2 þ eXX3F3: ð2:10Þ
The column vectors

eXX ¼
eXX1eXX2eXX3

0
@

1
A and X ¼

X1

X2

X3

0
@

1
A; ð2:11Þ

are the position vectors of X with respect to Km and Kf , respectively.
We derive from (2.10)

Xi ¼
X3

j¼1

hEi;FjieXXj ði ¼ 1; 2; 3Þ: ð2:12Þ

Putting hEi;Fji ¼ Aij and introducing the matrix A ¼ ðAijÞ, we see
that (2.12) expresses that

X ¼ AeXX: ð2:13Þ
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Since Fj is a linear combination of E1, E2 and E3, we put
Fj ¼ B1jE1 þ B2jE2 þ B3jE3; then Bij ¼ hEi;Fji ¼ Aij. Therefore
Fj ¼ A1jE1 þ A2jE2 þ A3jE3. Hence

�ij ¼ hEi;Eji ¼ hFi;Fji; ð2:14Þ

where �ij is the Kronecker symbol. This shows that A is an orthogonal
dual matrix. Then we say that fO; E1; E2; E3g moves with respect
to fO; F1; F2; F3g. We may interpret this as follows: The dual unit
sphere Km rigidly connected with fO; E1; E2; E3g moves over the
dual unit sphere Kf rigidly connected with fO; F1; F2; F3g. This
motion is called a one-parameter dual spherical motion and will be
denoted by Km=Kf .

Theorem 2.1. The Euclidean motions in E3 are represented in D3

(the dual space) by dual orthogonal 3�3 matrices A ¼ ðAijÞ, where
AAt ¼ I, Aij are dual numbers, and I is the 3�3 unit matrix.

According to Theorem 2.1 the 3�3 dual matrix AðtÞ of the motion
Km=Kf represents the one-parameter spatial motion Hm=Hf with the
same parameter t2<. If the matrix AðtÞ is a periodic function, i.e.
AðtÞ ¼ Aðt þ 2�Þ, the motion Km=Kf (hence also Hm=Hf Þ is called a
closed motion, otherwise it is called an open motion.

The Lie algebra LðOD3Þ of the group GL of 3�3 positive orthog-
onal dual matrices A is the algebra of skew-symmetric 3�3 dual
matrices

� ¼ dAAt ¼
0 �3 ��2

��3 0 �1

�2 ��1 0

0
@

1
A; ð2:15Þ

where dA indicates the differentiation of A with respect to the real
parameter t. During the motion Km=Kf the differential velocity vector
of a fixed dual point X on Km, analogous to the real spherical motion
[10], is

dX ¼ V�X; ð2:16Þ

where V ¼ xþ "x� is called the instantaneous rotation vector of the
motion Km=Kf ; x and x�, respectively corresponding to the instan-
taneous rotational differential velocity vector and the instantaneous
translational differential velocity vector of the corresponding spatial
motion Hm=Hf .

The instantaneous dual spherical centers of rotation are called the
dual poles Pm and Pf on Km and Kf . During the motion Km=Kf , the
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trajectories of these points form closed pole curves. The dual Steiner
vector of the closed motion Km=Kf is given by

S ¼ sþ "s� ¼
þ
V; ð2:17Þ

where the integration is taken along the pole curve ðPÞ.
We need the following theorem:

Theorem 2.2. For a one-parameter motion Km=Kf a closed curve ðXÞ
on Kf of an arbitrary fixed pointX onKm, the following holds ([6], [12]):

(i) The dual angle of pitch �x of the closed ruled surface
generated by X ¼ XðtÞ is equal to the projection of the generator
onto the Steiner vector S of the motion, that is

�x ¼ �x � "Lx ¼ hX; Si: ð2:18Þ

(ii) The dual spherical area enclosed by ðXÞ may be calculated by

Fx ¼ fx þ "f�x ¼ 2�ð1 � nÞ � �x; ð2:19Þ

where n is the (integer real) number of rotations of the pole curve ðPÞ
at X.

3. A Generalization of the Holditch’s Theorem

For the one-parameter motion Km=Kf , let ðXÞ be a closed dual curve
on Kf of an arbitrary fixed point X of Km. Then, as in Eq. (1.12), the
dual area vector of ðXÞ is given by

Ax ¼
þ
X�dX: ð3:1Þ

According to Eq. (2.16) and Theorem 2.2 we have:

Ax :¼
þ
X�ðV�XÞ ¼

þ
½hX;XiV� hX;ViX�

¼
þ
V�

�
X;

þ
V

�
X ¼ S� hX;SiX

¼ S� �xX: ð3:2Þ
Theorem 3.1. For the motion Km=Kf let ðXÞ be a closed dual curve
on Kf of an arbitrary fixed point X of Km. The area vector Ax drawn
by X may be calculated by

Ax ¼ S� �xX: ð3:3Þ
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As a result the following corollary can be given:

Corollary 3.1. The dual area vector of the moving pole curve ðPÞ of the
one-parameter closed dual spherical motion Km=Kf is the zero vector.

From the relation (3.3) we can obtain that

kAxk2 ¼ kSk2 � �2
x: ð3:4Þ

If � ¼ 	þ "	� is the dual angle between S and Ax, then we may write

hAx; Si ¼ kAxkkSk cos�: ð3:5Þ

From Eqs. (3.3)–(3.5), we get

cos� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSk2 � �2

x

q
kSk : ð3:6Þ

On the other hand, if � ¼ ’þ "’� is the dual angle between X and
S, then

hX; Si ¼ �x ¼ kSk cos�: ð3:7Þ
We have found, by substituting Eq. (3.7) into Eq. (3.6), that

cos� ¼ sin�: ð3:8Þ

Hence the following theorem can be given:

Theorem 3.2. For the motion Km=Kf , a dual unit vector X and the
dual unit vector along its dual area vector Ax may be interchanged,
leaving the dual Steiner vector of the motion invariant.

If we calculate the real and dual parts of Eq. (3.8), we have

’ ¼ �

2
þ 	; ’� ¼ �	�: ð3:9Þ

Applying to Study’s map, we obtain as a result the following

Theorem 3.3. For the one-parameter closed spatial motion Hm=Hf , an
oriented line and the line along its area vector are at equal minimal
distance from the Steiner vector of the motion, and the angles between
the Steiner vector and these lines are complementary angles.

Taking the scalar product of formula (3.3) with Steiner’s vector, the
result is

hAx;Si ¼ hS;Si ��xhS;Xi , kAxk
�

Ax

kAxk
;S

�
¼ kSk2 ��2

x ð3:10Þ
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or equivalently

�axkAxk þ �2
x ¼ kSk2; ð3:11Þ

where �ax is the dual angle of pitch of the ruled surface generated by
the line Ax=kAxk. From Eqs. (3.4) and (3.11), we get

�ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSk2 � �2

x

q
, �2

ax
þ �2

x ¼ kSk2: ð3:12Þ

Now, we are ready to give a generalization of Holditch’s theorem.
For this purpose, for the motion Km=Kf , let us take a dual arc segmentdMNMN with constant length on a great circle of Km. If endpoints M and
N of the dual arc segment dMNMN lie on the curve ðXÞ on Kf , we have a

special spherical motion. Denote the dual angles of dMXMX, cXNXN and dMNMN,
respectively, by

�i ¼ ’i þ "’�i ; � ¼ ’þ "’� ði ¼ 1; 2Þ; � ¼ �1 þ �2:

ð3:13Þ
Then we have

X ¼ M sin�1 þ N sin�2

sin�
: ð3:14Þ

On the other hand, by applying formula (3.3) to Eq. (3.14) we obtain

Ax :¼ S�
�
S;

�
M sin�1 þ N sin�2

sin�

��
X

¼ S�
�
�m sin�1 þ �n sin�2

sin�

�
X ¼ S� �xX: ð3:15Þ

Taking the scalar product of the last relation with the dual unit vector
X, we get

�x ¼
�m sin�1 þ �n sin�2

sin�
: ð3:16Þ

Since the dual points M and N draw the same dual curve, that is,
generate the same ruled surface, we can take �m ¼ �n. Then the last
formula yields

�x

�m

¼ sin�1 þ sin�2

sin�
; ð3:17Þ

which shows that the ratio does not depend on the shape of the curve
ðMÞ on Kf . It depends only on the choice of the point X on the dual
arc segment dMNMN. This means that it does not depend on the motion
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Km=Kf . This is a generalization of Holditch’s theorem of planar
kinematics to the one-parameter closed dual spherical motion Km=Kf .

Using Study’s map, if we calculate the real and dual parts of this
formula, we get:

�x

�m

¼ sin’1 þ sin’2

sin’
;

Lx ¼
’��x þ ðsin’1 þ sin’2ÞLm � �mð’�1 cos’1 þ ’�2 cos’2Þ

sin’
:

ð3:18Þ
This is a generalization of Holditch’s theorem of planar kinematics to
the one-parameter closed spatial motion Hm=Hf . Moreover, making
use of the last formulae all the results in [6, 7, 11, 12] can be obtained.

As special case of formula (3.3), let E1ðtÞ be a dual curve on K: As
usual Blaschke’s frame relative to E1 will be defined as the frame of
which this line and the central normal E2 to the ruled surface at the
central point of E1 are two edges. The third edge E3 is the central
tangent to the ruled surface E1ðtÞ. The frame fE1¼ E1ðtÞ;E2ðtÞ ¼
E0

1=kE0
1k;E3ðtÞ ¼ E1�E2g is called Blaschke’s frame. During the

one-parameter spatial motion Hm=Hf the corresponding lines inter-
sect at the striction point of the ruled surface E1¼ E1ðtÞ. Therefore,
the structural equation of the dual spherical motion Km=Kf is given by

d

dt

E1

E2

E3

0
@

1
A ¼

0 P 0

�P 0 Q

0 �Q 0

0
@

1
A E1

E2

E3

0
@

1
A; ð3:19Þ

where the dual functions P ¼ pþ "p� ¼ kE0
1k, and Q ¼ qþ "q� ¼

detðE1;E
0
1;E

00
1Þ=kE0

1k
2

are called the Blaschke invariants of the ruled
surface E1 ¼ E1ðtÞ. On the other hand, the Steiner vector will be

S ¼
�þ

Q

�
E1 þ

�þ
P

�
E3 ¼ �e1

E1 þ �e3
E3; ð3:20Þ

where �e1
and �e3

are the dual angles of the ruled surfaces E ¼ E1ðtÞ
and E3 ¼ E3ðtÞ, respectively.

To examine the dual spherical area drawn by the second axis of the
moving Blaschke frame from Eq. (3.20) we state that: The dual angle
of pitch of closed ruled surfaces generated by the E2-axis is always
zero. Thus, in view of Eq. (2.19), we have the following theorem:

Theorem 3.4. For the one-parameter closed dual spherical motion of
Blaschke’s frame, the dual area vector of the second axis is parallel
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to the Steiner vector of the motion. Moreover, the spherical indicatrix
of the second axis divides the unit spherical surface area into two
equal parts, i.e. fe2

¼ 2�.

From Eqs. (3.12) and (3.21) we obtain

�2
ax
þ �2

x ¼ �2
e1
þ �2

e3
: ð3:21Þ

If we calculate the real and dual parts of this equation, we get the
following relations

�2
ax
þ �2

x ¼ �2
e1
þ �2

e3
;

�axLax þ �xLx ¼ �e1
Le1

þ �e3
Le3

; ð3:22Þ
between the angles of pitch and the pitches of the ruled surfaces
generated by the lines Ax=kAxk, X, E1 and E3:

With the aid of formula (3.3) and Eq. (3.21) the dual area vectors of
the lines E1;E2;E3 are

Ae1
¼ �e3

E3; Ae2
¼ S; Ae3

¼ �e1
E1: ð3:23Þ

By applying Theorem 2.2 in these equalities, we obtain

�ae1
¼ ��e3

; �ae2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
e1
þ�2

e3

q
; �ae3

¼ ��e1
: ð3:24Þ

It follows that

�2
ae2

¼ �2
ae1

þ �2
ae3
: ð3:25Þ

Then we may state the following theorem:

Theorem 3.5. For the motion Km=Kf Eqs. (3.23)–(3.26) hold true
between integral invariants of closed ruled surfaces generated by the
lines of Blaschke’s frame and the corresponding ruled surfaces gen-
erated by lines of their area vectors.

For the motion Km=Kf for any two different fixed points X 6¼ Y ,
while X draws a closed curve ðXÞ on Kf , the corresponding line
X2Hm will generate a closed ruled surface ðXÞ 6¼ ðYÞ in Hf . Then, in
view of Eq. (1.12), the projection area of ðXÞ in the Y-direction is

2�xy ¼ 2ð�xy þ "��xyÞ :¼ hS� �xX;Yi
¼ �y � �xhX;Yi
¼ �y � �x cos�; ð3:26Þ

where � ¼ � þ "�� is the dual angle between the dual unit vectors X
and Y. In (3.26) �x;y is given in terms of the dual angles of pitch of
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the closed ruled surfaces ðXÞ 6¼ ðYÞ; thus �xy is an invariant of the
surface.

In fact, from (3.26), we may have

2�yx ¼ �x � �y cos�: ð3:27Þ

It follows from Eqs. (3.26) and (3.27) that

2ð�x�yx � �y�xyÞ ¼ �2
x � �2

y; ð3:28Þ
which is a relation between the integral invariants of the ruled
surfaces ðXÞ 6¼ ðYÞ:

In view of Eqs. (3.4) and (3.24) we can find the projection areas of
the Ei-axis of the Blaschke frame in the direction of the Ej-axis as
follows:

2�eiej ¼ hAei ;Eji
¼ hS� �eiEi;Eji
¼ �ej � �ei�ij; ð3:29Þ

or in a compact form:

2�eiej ¼
0; i ¼ j

�ej ; i 6¼ j:

�
ð3:30Þ

4. An Example and Remarks

For the one-parameter dual spherical motion Km=Kf , let

C ¼ fXjhX;F1i ¼ const:;X2Kmg ð4:1Þ

be a dual curve on Kf : Thus, the dual unit vector X can be expressed
as

X ¼ cos�F1 þ sin� cos�F2 þ sin� sin�F3; ð4:2Þ
where

� ¼ 	þ "	�; � ¼ ’þ "’�: ð4:3Þ
This means that

	 ¼ c1ðreal const:Þ; 	� ¼ c2ðreal const:Þ: ð4:4Þ

Thus Eq. (4.2) has only two real parameters ’ and ’�. So, if we
choose ’� ¼ h’, h denoting to the pitch of the motion Hm=Hf , and ’
as the motion parameter, then Eq. (4.2) represents a ruled surface in
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Hf -space. Thus, Blaschke’s frame of the ruled surface X ¼ Xð’Þ is
found as

E1ð’Þ ¼ ðcos�; sin� cos�; sin� sin�Þ;

E2ð’Þ ¼
E

0

1

kE0
1k

¼ ð0;�sin�; cos�Þ;

E3ð’Þ ¼ E1�E2 ¼ ðsin�;�cos� cos�;�cos� sin�Þ: ð4:5Þ
If we differentiate these expressions, we get

P ¼ ð1 þ "hÞ sin�; Q ¼ ð1 þ "hÞ cos�: ð4:6Þ
Consequently, the dual Steiner vector will be

S ¼ 2�ð1 þ "hÞðcos�E1 þ sin�E3Þ: ð4:7Þ
And, according to formula (3.3), we obtain

Ae1
¼ 2�ð1 þ "hÞ sin�E3;

Ae3
¼ 2�ð1 þ "hÞ cos�E1;

Ae2
¼ 2�ð1 þ "hÞðcos�E1 þ sin�E3Þ: ð4:8Þ

On the other hand, the corresponding equations to (3.23)–(3.25) are:

�ae1
¼ �e3

¼ 2�ð1 þ "hÞ sin�;

�ae3
¼ �e1

¼ 2�ð1 þ "hÞ cos�;

�ae2
¼ �e3

¼ 2�ð1 þ "hÞ; �e2
¼ 0: ð4:9Þ

Finally, we get

�e1e2
¼ �e3e2

¼ 0; �e2e1
¼ �e3e1

¼ �ð1 þ "hÞ cos�;

�e1e3
¼ �e2e3

¼ �ð1 þ "hÞ sin�: ð4:10Þ
Now we may calculate the equation of the ruled surface X ¼ Xð’Þ

in terms of the Plücker coordinates. Let L denote a point on this
surface. We can write

Lð’; �Þ ¼ xð’Þ�x�ð’Þ þ �xð’Þ; �2<: ð4:11Þ
If ðl1; l2; l3Þ are the coordinates of L, then Eqs. (4.2) and (4.11) yield

l1 ¼ ’� sin2#þ � cos#;

l2 ¼ �#� sin’� ð’� cos#� �Þ sin# cos’;

l3 ¼ #� cos’� ð’� cos#� �Þ sin# sin’: ð4:12Þ
The graph of the ruled surface given by Eq. (4.12) is shown in Fig. 1.
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By separating the real and dual parts of (4.8)–(4.10), we can find
many relations between the angles of pitch and the pitches of ruled
surfaces generated by the lines Ei ði ¼ 1; 2; 3Þ and the corresponding
oriented lines along their area vectors.

5. Conclusion

The starting point of this paper is to define the dual versions of
the area vector of a given closed space curve, and the area projec-
tion of this curve in the direction of a unit vector given in [15].
Introducing relationships between these quantities and the dual
angle of pitch of a closed ruled surface, we give a generalization of
Holditch’s theorem and the geometry of ruled surfaces generated in
a one-parameter spatial motion is treated in terms of their integral
invariants.

Fig. 1. Ruled surface in the domain ’2 ½0; 2��; �2 ½�1; 1�, 	 ¼ �=4; 	� ¼ 1
2
, h ¼ 1
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