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Abstract

It is known that the classical homogeneity equation f(cx) = af (x) under rather weak
conditions is stable (cf. [4, 8]). Following J. SCHWAIGER [14] we will consider here
the stability of the ¢-homogeneity equation f(ax) = ¢(«)f(x). We will prove,
without assumption that ¢ is a homomorphism, the stability of the ¢-homogeneity
equation under some conditions.

One of the necessary conditions is that the target space of the function f be se-
quentially complete. We will also prove that the converse is true, that is we will show
that stability of the ¢-homogeneity implies the fact that if the target space is a normed
space then it has to be a Banach space.

1. Introduction

Since the time when ULAM ([17]) had posed his famous problem many
authors have considered stability of different functional equations (cf.
[4, 8]). Among others, in 1992 CZERWIK ([1]) examined the stability of
the v-homogeneity equation

F(ax) = o'F(x) for acl,, xeX,
where a function F maps a real linear space X into a real Banach space

Y, ve R\{0} is fixed and U, := {a € R: a" is well defined}. It has
been proved there that if a function f: X — Y satisfies the inequality

I f(ax) — °f (x)|| < g(a,x) for ael,, xeX,
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with a function g: U, x X — [0, c0) then under some assumptions on
g there exists a v-homogeneous function F: X — Y such that

If(x) = F@Il < h(x)  for  xeX,

with some function 4: X — [0, 00) depending on g.
Independently, JOZEF TABOR proved in [16] that every mapping f
from a real linear space X into a normed space Y satisfying

la”flax) = f(x)[[ <& for  a€R\{0}, xeX,

where € > 0 is given, is homogeneous. These results then were
generalized successively in different directions.
In [15] the inequality

1f(ax) —afx)[ < gla,x),  acR\{0}, xeX,

with a constant v € R\{0} and a function g mapping R x X into R has
been investigated.

KOMINEK and MATKOWSKI began to investigate in [11] the stability
of the homogeneity on a restricted domain. They have considered the
condition

o f(ax) — f(x) €V, a€cA, x€S8,

for the mapping f from a cone S C X into a sequentially complete
locally convex linear topological Hausdorff space Y over R and a
subset A C (1, 00). This result has been generalized in [9] and [14].
SCHWAIGER [14] has examined the condition

flax) — p(a)f(x) € V(a), for acA, xeX,
where

— G is a semigroup with unit acting on the non-empty set X;

— Y is a sequentially complete locally convex linear topological
Hausdorff space Y over K € {R, C};

— A C G generates G as a semigroup;

— ¢: G — K is a function;

- V:G — B(Y) is a mapping from G into the family B(Y) of all
bounded subsets of Y.

It is proved there that if f(X) is unbounded, then ¢ is a multiplicative
function, i.e. ¢ satisfies the equation

¢(af) = p(a)p(B)  for  «,FEGC,
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and there is a function F: X — Y satisfying

F(ax) = ¢(a)F(x) for aeG, xeX,
(we say then that F' is ¢-homogeneous) and such that the difference
F — f is suitably bounded on X.

2. Notations

We begin here with notations we will need in the following. A semigroup
(G, -) we will call a semigroup with zero if there exists an element 0 € G
such that 0 - & = o - 0 = 0 for every « € G. A semigroup (G, -) we will
call a monoid (cf. [6]) if there exists 1 € Gsuchthat]l - o = «- 1 = «for
a € G. Furthermore, a triple (G, -,0) we will call a group with zero
if (G, -) is a monoid with zero and every element of the set G* := G\ {0}
is invertible, that is for each g € G* there is g~! € G* with g- g~ =
g ' g=1.Asubset A C G of a group with zero (G, -, 0) we will call
a subgroup of the group G if A* # () and A* is a subgroup of the group
G*. As it is easy to see a set A is a subgroup of the group with zero G
if and only if A* # () and a3~ ! €A for a« €A and €A™,

In the following lemma we list some properties of homomorphisms
of groups with zeros. Since they are analogous to similar properties of
multiplicative functions on the real line, we omit the proof of them.

Lemma 1. Let (G,-,0) and (H,-,0) be groups with zeros and let
¢: G — H be a homomorphism, i.e. ¢ satisfies the equation

d(af) = dla)p(B)  for  a,B€eG.
Then

(i) 6(0) {0, 1};
Gi) if $(0) = 1 then ¢ = 1;
Gii) if ¢ # 1 then $(0) = 0;
(iv) if p(ap) = 0 for some ay € G* then ¢ = 0
V) if ¢ #0 then ¢(1) = 1.

Let (G, ) be a semigroup and let ) #A C G. By (A), we denote
the subsemigroup of G generated by A, whereas if (G, -,0) is a group
with zero then by (A) we denote the subgroup of G generated by A.
As one can see we have

(A) = {Hai: o€Aied{l,...n},ne N},
i=1

n
(A):= {Ha?: s€{-1,1},a;€Aife;=1,0; €A% ifg;=—1,n€ N}.

i=1
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In the case where (G, -, 0) is Abelian, for a set A C G, A™ # (), we
have (see [12], Theorem 1, p. 89) (A) = (A) (A*).". Then in virtue of
Theorem 1 ([12], p. 471), we get

Lemma 2. Let (G, -,0) and (H, -,0) be Abelian groups with zeros and
let A C G be a subsemigroup such that A* # (). Assume that ¢: A — H
is a homomorphism such that $(A*) C H*. Then there exists exactly
one homomorphism ¢: (A) — H such that ¢|, = ¢.

Finally, we will need the notion of a G-space. We will use here a
generalization of the standard notion of a G-space to the semigroup
case (cf. [13, I, § 5, pp. 25-33]).

Definition 1. Let (G, -) be a semigroup and let X be a nonempty set
with a fixed element 6 which we will call zero. Assume that we are
given a semigroup action on X, that is we have a function -: Gx X — X
which satisfies the following conditions:
(8182)x = gi1(g2x)  for  g1,82€G, x€X,
lx=x for xeX, if 1eG.

Let moreover
g0 =10 for geaq,
Ox=106 for xeX, if 0eG.

Then the pair (X, G) satisfying these conditions we will call a G-
space.

3. The Homogeneity Equation

In the following we assume that (G, -) and (H, -) are semigroups and
that (X,G) and (Y,H) are G- and H-spaces, respectively. Let () #
A C G and assume that ) 2 U C X is a set such that AU C U (we
have then (A) U C U). We will consider here solutions ¢: A — H
and F: U — Y of the ¢-homogeneity equation

F(ax) = ¢(a)F(x) for acA, xeU. (1)
We will assume additionally that
the mapping H > a/— ax €Y is injective for every x€ Y™ := Y\ {6}.

As one can easily see later, this assumption is crucial only in the case
when we will not assume that ¢ is a homomorphism. On the other
hand, we will use the results of this section in the case when the target
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space for the function F is a linear space and then this condition is
trivially fulfilled.

_ At first we consider the case when there exists a homomorphism
¢: (A), — H such that ¢|, = ¢. We have then

Lemma 3. Assume that a homomorphism ¢: (A), — H and a function
F: U — Y satisfy the equation

F(ax) = ¢(a)F(x)  for a€cA, xeU. (2)
Then
F(ax) = ¢(a)F(x)  for ac(A), xel. (3)

Proof. Leta = [[_, a; €(A), a;€Afori=1,...,n with some ne N.
Then for arbitrary x € U, from (2) we get

Flox) = F<(Ha)) _ (iﬁ@(a,))m)
- gg(iﬁa,) F(x) = ¢(a)F(x). O

Now we will show that in some cases a function ¢ satisfy-
ing jointly with F' Eq. (1) can be extended to a homomorphism ¢
such that the functions ¢ and F will satisfy the ¢-homogeneity
equation (3).

Theorem 1. Assume that the functions ¢: A — H and F: U —Y
satisfy Eq. (1). Then either F =0 or there exists exactly one
homomorphism ¢: (A), — H such that ¢|, = ¢ and the function F
satisfies then the ¢-homogeneity equation (3).

Proof. Assume that F(xo) #6 for some xpeU. Fix a€(A),
arbitrarily. Then there are n€ N and \; €A for i = 1,...,n such that
a =], \. Put

5?7

30) = [[o(n).
i=1

We will show that ¢ is well defined. Let o = [[/_, \i = [T, v with
some A\, ;€A fori=1,...,n,j=1,...,m, where n,m& N. From

(1) we get then

G(A1) -+ G(M)F(x0) = F(Ar -+ - Auxo)
=F(vy- vpxo) = ¢(v1) -+ d(vm)F(x0).-
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The mapping H > a— aF(xo) €Y is injective, so

ﬁas(m _ f[@(un.

From the definition of q; we have qB\ 4 = ¢. Moreover (]3 is a ho-
momorphism. Indeed, for o = H:’ i, B = H v € (A), with some
ANovi€Afori=1,....n,j=1,...,m, wherenmEN we have

_ ¢(HA H ) - ch(xi) -UIM — §()(B).

Finally we show that ¢ is unique. Suppose that ¢, ¢,: (A), — H are

N

homomorphisms such that ¢;|, = ¢»|, = ¢. Fix a € (A),. Then there

s

exist \;€A fori=1,...,n, neN such that o = []}_; \;. Thus
:ﬁg1<H)\i> :H(ﬁl(Az
= H H¢2 <H)\i> = ().

Hence from (1) we obtain
F(ax) = ¢(a)F(x) for a€cA, xeU.
Then Lemma 3 finishes the proof. ]
In the following we will assume that (G, -,0) and (H, -, 0) are Abelian
groups with zeros. Moreover let (X, G) and (Y, H) be G- and H-spaces,
respectively Let A C G be such that A* £ () andlet U C X, AU C U.
As in the semigroup case we begin with the case when there exists a

homomorphism ¢: (A) — H such that ¢|, = ¢. Then in virtue of
Lemma 3, from (1) we get

F(ax) = ¢(a)F(x) for a€(A), xeU. (4)
Assume that g5 = 0. Then from (4) we obtain
F(ax) =0 for a€(A), xeU, (5)

and then one can easily get F|,, = 0.!
Now let ¢ # 0. Since ¢ is a homomorphism so (cf. Lemma 1

(iv)) ¢((A*)) C H*.

"In this case we have AU = (A) U.
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Theorem 2. Assume that a nonzero homomorphism ¢: (A) — H and
a function F: U — Y satisfy Eq. (4). Then there exists a unique
function F: (A)\U — Y such that F|, = F and

F(ax) = ¢(a)F(x)  for ac(A), xe(A)U. (6)

Proof. Fix x€ (A)U. Then x = yu € (A)U with some y € (A) and u € U.
Put

F(x) :== ¢(7)F (u).
We will show that F is well defined. Let yju; = you € (A)U. Since
(A) = (A), - (A").! so there are elements A, \, € (A), and 7,7, €

(A*), such that 'y; = \m; ! for i = 1,2. Since A\jm;'uy = Aoy 'ug so
(G is an Abelian group) Amu; = m\aup. From (4) we get then

dA)P(M2)F (u1) = F(Aimaur) = F(mAauz) = ¢(m)p(A2) F (u2).
Hence we obtain

d(M)p(m) " F(ur) = d(Ma)d(n2) ' F(ua).

Then using the fact that disa homomorphism we get

G(1)F(ur) = d(A)d(m) ' Flur) = p(X)p(n2) ' F(ua)
= ¢(12)F (u2),

and therefore the function F is well defined. From the definition of F
we obtain that F|U = F (cf. Lemma 1(v)). We will show now that
then Eq. (6) is fulfilled. Fix v € (A) and x€ (A)U. Then x = yu with
v€(A), uc U and ay€ (A). Next ¢ is a homomorphism, so

F(ax) = F(ayu) = $(a)F (1) = () $(7)F (1) = () F (x).
Finally we will prove that F is unique. Suppose that Fy, Fp: (A)U — Y
are such that F|, = F»|, = F and

Fi(ax) = ¢(a)Fi(x) for ac(A), xeA)U, i=1,2.

Fix x € (A) U arbitrarily. Then one can find elements v € (A) and u € U
such that x = yu. Thus

Fi(x) = Fi(yu) = ¢(7)F1 (1) = $(7)F (u)
= G(7)F2(u) = Fa(qu) = Fa(x),
which finishes the proof. ]

Finally we obtain
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Theorem 3. Let ¢: A — H and F: U — Y satisfy (1). Assume addi-
tionally that ¢(A*) C H*. Then either F =0 or there is a unique

homomorphism ¢: (A) — H and a unique function F: (A)U — Y
such that ¢p5 = ¢, F|, = F and

F(ax) = ¢(a)F(x)  for ac(A), xe(A)U. (7)
Proof. Assume that ¢ and F satisfy (1). Let xo€ U be such that
F(xo) # 6. By Theorem 1 there exists a unique homomorphism
¢1: (A), — H such that ¢;|, = ¢ and

F(ax) = ¢1(a)F(x) for ac(A), xeU. (8)
It follows from the definition of the homomorphism ¢; that
¢1((A*),) C H*. Then from Lemma 2 we get that there exists a

unique homomorphism ¢: (A) — H such that ¢| (a), = ¢1. Theorem 2
then finishes the proof. ' ]

s

4. Stability of Homogeneity

From now on let Y stand for a locally convex and sequentially
complete linear topological Hausdorff space over K € {R, C}.

Let V C Y be a nonempty set. By aconv V we denote the absolutely
convex hull of the set V, by VP we denote the smallest balanced
superset of V, whereas seq cl V will denote the sequential closure of V.
By B(Y) we denote the family of all bounded subsets of Y.

We will need several properties of convex sets and bounded sets,
namely

Lemma 4. (i) Let a €K and V,Vy,V, € B(Y). Then
aV,cl V,conv V,V’ V| + V, e B(Y).

In particular, seqclV € B(Y).

(ii) The set conv(V?) is the smallest absolutely convex set con-
taining the set V, i.e. aconv V = conv(V?). Thus if V€ B(Y), then
also aconv Ve B(Y).

(iii) Let V CY be convex (absolutely convex). Then the set
seqcl V is convex (absolutely convex).

(iv) If V C Y is absolutely convex then for every a € K we have
aV =|a|V.

(V) Let V C Y and assume that o, 3 € K are such that || < |3
Then oV C |(B|aconv V.

(vi) Assume that VeB(Y), o, >0, a, — 0 and x, €a,V. Then
x, — 0.

(For facts about locally convex spaces consult for example [10].)
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4.1. The Semigroup Case

Let (G,-) be a semigroup. By Z(G) we denote the center of the
semigroup G. Let (X,G) be a G-space. Assume that A C G and
U C X are nonempty sets such that AU C U. Let V: A — B(Y), and
let ¢: (A), — [0,00) be a homomorphism into the multiplicative
semigroup [0, o0) and assume that a function K: U — [ satisfies the
inequality

IK (ax)| < 1(a)|K (x)] forall —ac(A),, xeU. (9)

Definition 2. A function f: U — Y we will call K-bounded if there
exists a bounded set W e B(Y) such that f(x) € K(x)W for every
xeU. If not, then f will be called K-unbounded.

We have the following theorem.

Theorem 4. Assume that the functions ¢: A — K and f: U —-Y
satisfy the condition

flax) — op(a)f(x) EK(x)V(a)  for acA, xeU, (10)
where K satisfies (9). If
A :={a€Z(G) NA: |p(a)[>(a)} # 0,
then there exists a unique function F: U — Y such that
F(ax) = ¢(a)F(x)  for a€A, xeU,
and
F(x) —f(x) e K(x)Vp, xeU,

where

1
Vo := QQ] {Wseq claconv V(oz)} eB(Y).

Proof. Fix ap €A, (then ¢(c)/|¢(ap)| <1). Thus for m,ne Ny and
x&€ U we have

Qs(ao)*(mjtn)f(aan-&-nx) _ qf)(ao)*mf(af)"x)
= Z gb(ao)*(erk) [ (co a6n+k—lx) . d)(ao)f(agwrk—lx)]
k=1

&3 la0) " K(af 1)V ao).
k=1
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Hence from (9), in virtue of Lemma 4 we get

3 é(a0)” " K15V (a)
k=1

n

C Z \¢(a0)|7('"+k) K (af™'x)| aconv V()
k=1

3" 16(a0) ") (oK (x) acony V(ao)
k=1

_ lao) \" 1 ol (Y !
- <|¢<ao>r> 9(0) — Blao) - )<1 <\¢<ao>|> )
-aconv V()

Y(ag) \" 1

- <|¢<ao>|> [6(a0)] — o)
Thus we obtain

d(a0) " (altx) — o) " (alix)

P(ao) \" 1
© <r¢<ao>|> [6(a0)] — (o)

Hence, because the set aconv V(«y) is bounded we have that for
every x€ U, (¢(ao) "f(afx): neN) is a Cauchy sequence. Then the
function F,: U — Y,

Fop(x) = lim ga0) "f (o),

K (x) aconv V(«y).

K(x)aconv V(ap).  (11)

is well defined. We will show that F,, satisfies the equation
Fo,(ax) = ¢(a)Fo,(x) for acA, xeU. (12)
Put in (10) agx in the place of x. Then we get
flaagx) — ¢(a)f (apx) € K(agx)V(a) C 9(ap)"K(x) aconv V(a).
Since ¢(ay) # 0 and oy € Z(G) (then also o € Z(G)), so we obtain

P(ao)
[p(w)]

and when 7 tends to infinity and using the fact that the set aconv V(«)
is bounded, from Lemma 4(v) we obtain (12).

#(00) " (alionr) — B(a)b(an) "f(al) € ( ) K (x) aconv V/(a),
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From (11), for m = 0 we get
1

¢(0) "f (afgx) — f(x) € |¢(c0)| — ¥(ao)

K (x) aconv V(ay),

and hence
Fo,(x)—f(x) € ml((x) seqclaconvV(ap) for xeU.
(13)

Put I := F,,. We will show that F' is unique. Indeed, suppose that

Fi,Fp: U — Y satisfy
Fi(ax) = ¢(a)Fi(x) for acA, xeU, i=1,2,
and
Fi(x) —f(x) eK(x)V;, for xeU, i=1,2

with some sets Vi, V, € B(Y). Then we have (¢(cy) # 0) that
Fi(apx) = ¢(a0)"Fi(x)  for  «a€A, xe€U, neN, i=1,2.

Hence for arbitrary x€ U we get
n

Fy(x) = Fa(x) = ¢(0) " Fi (agx) — d(ao) " Fa(o)
= p(a0) "Fi(agx) — ¢(ao) "f (apx)
+¢(a0) " (agx) — ¢() " Fa(apx)
€ ¢(ao) "K(apx) Vi — ¢(ao) "K(apx) V2
C;|K(agx)|aconvvl

|p(cxo)"|

+#|K(a”x)|aconvv
[6(a0)T 0 i
c (sl

|p(c0)]

for every ne€N. Thus, since aconv V| 4 aconv V, is bounded (cf.
Lemma 4(i), (ii)), in virtue of Lemma 4(vi) we obtain F; (x)— F,(x) = 0
for xe U.

Since ap €A was arbitrarily fixed, we derive from (13)

F(x) —f(x) e K(x)Vy for xeU,

> |K(x)| (aconv V| +aconv V)
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where

Vo = ﬂ {mseqclaconv V(a)}EB(Y). O

a €A

The following simply example shows that the estimation obtained
in Theorem 4 is the best one.

Example 1. Let f: R — R be given by
x+2  for xe(2),
flx)=<¢x—-2 for xe —(2),
0 for xeR\({—2,2}).

If we consider suitable cases one can check that the assumptions of
Theorem 4 are fulfilled with A = {—2,2}, U =R, ¢ =ids, K =1,
=1, V(a) = [-2,2] for € {—2,2}. Next one can verify that the
function F: R — R,

[x for xe({-2,2}),
F(x) = {0 f(())r xeR\({-2,2})

satisfies
F(ax) = aF(x) for ac({-2,2})U{0}, xeR,
and moreover

-2 for xe(2),
F(x) —f(x) = 2 for xe —(2),
0 for xeR\({-2,2}).

On the other hand A; = {—2,2}, so

seqclaconv [—2,2] = [-2,2].

Since

F(x) —f(X) € {_2’ 07 2}7
the estimation obtained in Theorem 4 is the best one.

As a corollary, from Theorem 4 and Theorem 1 we obtain the
following result.

Corollary 1. Assume that the functions ¢: A — K and f: U — Y
satisfy condition (10). Let Ay := {a €Z(G) NA: |¢(a)|> ()} # 0

and assume that f is K-unbounded.
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Then there exists a unique homomorphism ng: (A), — K and there

exists a unique function F: U — Y such that ¢|, = ¢,
F(ax) = ¢(a)F(x)  for a€(A), xeU, (14)
and
F(x)—f(x)eK(x)Vo  for  xeU,

where

1
Vo :i= ﬂ {mseqclaconVV(a)}eB(Y).

a €A

Proof. From Theorem 4 we derive the existence of a unique function
F: U — Y and the existence of the bounded set

1
Vo = QQ] {mseqcl aconv V(a)} eB(Y),

such that
F(ax) = ¢(a)F(x) for acA, xeU, (15)
and

F(x) — f(x) € K(x)Vp, xeU. (16)

Suppose that F = 0. Then from (16) we get f(x) € K(x) aconv V; for
every x € U, which is in contradiction to the assumption that f is K-
unbounded. Thus F # 0. It follows from Theorem 1 for Eq. (15) that
there exists a unique homomorphism ¢: (A), — K, @|, = ¢ such that
the function F is ¢-homogeneous, i.e. that Eq. (14) holds. ]

Remark 1. Note that in Corollary 1 the assumption that f is K-
unbounded is essential. Indeed, if there exists a set W € B(Y) such
that f(x) € K(x)W for x€ U then

0 — f(x) € K(x) aconv W for xeU.

Clearly the function Fi: U — Y, Fi(x) = 6 is a ¢-homogeneous one.

On the other hand, in the proof of Theorem 4 we have shown the
existence of a unique ¢-homogeneous function F regardless of the
estimation of the difference F —f. Thus F = F; = 0. It is rather
difficult to prove any property of such a function ¢ in this case (let us
recall that in the case when F # 0, there exists a unique homomorphism

¢ such that ¢|, = ¢).
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4.2. The Group Case

From now on we will assume that (G, -, 0) is a group with zero and that
(X, G) is a G-space. Then directly from Theorem 4 and Theorem 3 we
deduce the following corollary (we will omit the obvious proof).

Corollary 2. Assume that (G,-,0) is an Abelian group, A C G,
A* £ () and let the functions ¢: A — K, p(A*) C K* andf: U — Y
satisfy (10). Let Ay := {a€A: |¢p(a)|>(a)} # O and assume that f
is a K-unbounded function. ~

Then there exists a unique homomorphism ¢: (A) — I and a
unique function F: (AYU — Y such that ¢|, = ¢, F|, = F,

F(ax) = ¢(a)F(x)  for  ac(A), xc(A)U,

and

F(x) —f(x)eK(x)Vy  for xeU,

where

1
Vo = ﬂ {Wseqclaconv V(a)}EB(Y).

a €A

In previous theorems we have assumed that the set A; is nonempty.
It appears that now, when (G, -, 0) is a group, we can consider a weaker
condition, that is we may take # in a place of >. But we must assume
that A C Gand U C X are sets such that A* # ), (A)U C U, ¢: (A) —
[0,00) is a nonzero homomorphism and the function K satisfies the
inequality

K(ax)| < ¥()|K(x)|  for  ae(d), xeU. (17)

We prove the following theorem, where we use the convention that
intersections with an empty index set should be equal to Y.

Theorem 5. Assume that ¢: A — K, ¢(A*) C K* and f: U — Y
satisfy the condition

flax) — o(a)f(x) eK(x)V () for a€A, xeU. (18)

Put Ay :={a€Z(G)NA*: |¢p(a)|>(a)} and Ay = {a€Z(G)N

A*: [p(a)| <ip(a)}.
If Ay UA, # () then there exists a unique function F: U — Y such
that

F(ax) = ¢(a)F(x)  for acA, xeU (19)
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and
F(x) — f(x) eK(x) Vo, xeU,

where A = A provided A; # () and A = A* in the case when A =10,
and

Vo= () {mseqcl aconv V(a)}

1
N agz { mseq claconv V(a)} eB(Y).

Proof. Assume that A; # (). Then by Theorem 4 there exists a unique
function Fi: U — Y such that

Fi(ax) = ¢(a)F; (x) for ac€A, xeU (20)
and
Fi(x) — f(x) €K (x)Vy, xeU, (21)
where
1
V= _ laconv V(«) p.
Ll{wmn—wm““a“ @)}

Now let A; # () and fix « €A™ and x € U. Put o~ 'x in the place of x
in (18). Then from Lemma 4(iv), (v) we get

fx) — d(a)f(a'x) eK(a'x)V(a) C |K(a'x)|aconv V(a)
C () 'K (x)] aconv V()
= () 'K (x) aconv V(cv).
Thus, since a« €A™* and x € U were arbitrarily fixed
Fla~'x) — 6(a) " F(x) € ((a)b(a)” K (x) acony Vi(a),

acA*, xel,

and hence
flax) = pla™ )T f(x) € (Ip(ap(a")) ' K (x) aconv V(a ™)
for ae (A xeU.
Put

(@) :=p(a™)" and V() = |p(a”")|"¥(a) aconv V(o)
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for € (A*)”". Then we get

flax)=v(a)f(x) EKX)V(a) for a€(A)!, xeU. (22)
Note that (A*)"'U C U. We have
{aeZ(G) N (A") ™" |y(a)|>v(a)}
= {a€Z(G) NA™: [y(a )| >y(a )}
= {0 €Z(G) NA*: |p(a)] " >p(a) '}
= {a €Z(G) NA*: |p(a)| <)} ' = A5" #0.

If we apply Theorem 4 to the condition (22) then we obtain the existence
of a unique function F»: U — Y such that

F>(ax) = y(a)F(x) for ac(A"), xeU
and
F2(x) =f(x) eK(x)V2,  x€U,
where
1 -
Vy = QGQ)I { Wseq claconv V(a)}.
Using our notation we get
Fyax) = ¢l ) 'Fy(x)  for  ac@®)', xeU (23)

and

Fr(x) — f(x) €K(x)Va, xeU, (24)
where
1
Vyi= o M| "(e) seqelaconv V(o
: %@).{wwl)rl—w(a)'“ )~ (a) seq @]
= ﬂ {mseqclaconvwa)}.

Then, from (23) we obtain
F>(x) = ¢p(a)Fy(a 'x) for a€A®, xecU
and then, if we put ax in the place of x we get

Fr(ax) = ¢(a)Fa(x) for acA*, xcU. (25)
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We are going to show that F; = F, (provided A; # () and A, # ().
From (20) and (25) we have

Fi(a"x)=¢(a)"Fi(x) for a€A* xeU, neZ, i=1,2. (26)

Fix x€ U and o € Ay, € A, (then we have ¢ (), ¢(3) # 0). From (26),
(21) and (24), for every n € N we obtain

Fa(x) = Fy(x) = ¢(r) "Fa(c"x) = ¢(8)"F1(8"x)

_ ¢(ﬁ) " —n anx _ a n fnx
~ (52 100" Ex(e— e (5]
_ (b(ﬂ) ! "B — F(o B "x

+f(0"87%) — Fy (0" 57)]
16(8)] ¥(o)
E(wmww»

Since |¢(8)|/¢(B), ¥()/|p(a)| <1, and with n tending to infinity,

and also using the fact that the set aconv V, + aconv V| is bounded

(cf. Lemma 4(i), (ii)), we get from Lemma 4(vi) F;(x) = F,(x).
Put F =F, =F,. From (20) and (25) we then obtain (19).

Moreover, using (21) and (24) we get
F(x) —f(x) €eK(x) (ViN V).

Clearly V; NV, €B(Y). The uniqueness of F follows from the fact
that F, and F, were the unique functions satisfying (20), (21), and
(24), (25), respectively, while the function F satisfies all these
conditions. ]

) K (x)(aconv V,+aconv V).

From Theorems 5 and 3 one can derive the following corollary.

Corollary 3. Let (G, -,0) be an Abelian group with zero and assume
that the functions ¢: A — K, ¢(A*) C H* and f: U — Y satisfy (18).
Let Ay ={a €A™ |p(a)|>(a)} and Ay :={a €A™: |p(a)|<()}.

IfAy UA, # 0 and f is a K-unbounded function then there exists a
unique homomorphism ¢: (A) — K and a unique function F: (A)U — Y
such that §|; = ¢|z, Fly = F,

F(ax) = ¢(Q)F(x)  for ac(A), xeU,

and

F(x) —f(x)eK(x)Vo  for xeU,
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where A = A provided Ay # (), A = A* when Ay =0, and

1
Vo == ﬂ { S =) seq claconv V(a)}

a €A

1
N ﬂ {mseqclaconVV(a)}eB(Y).

a €Ay

Remark 2. Note that in Corollaries 1, 2, 3 the assumption that f is K-
unbounded is a crucial only in the case when we do not know whether
there exists a homomorphism ¢ such that ¢|, = ¢. In the case when
such a homomorphism exists those corollaries remain true without the
assumption on the K-unboundedness of f.

Corollary 4 (cf. [1], [15]). Let X be a real linear space and let Y be a
Banach space. Fix p > 0 and assume that a function f: X — Y satisfies
Iflox) —of ()| <elaf’  for  a€R, xeX,

with some € > 0. Then f is a homogeneous function.

Proof. Put ¢ =idp, ¥ =1, K=1, V(a)={yeY: |y]| <elaf},
A ={acR:|a|>1}, and A; = {a€R*: |a|<1}. Then from
Corollary 3 and from Remark 2 we obtain that there exists a unique
homogeneous function F: X — Y such that

F(x)—f(x)eVy  for x€X,

where

1
Vo = ﬂ { o= 1seqcl aconv V(a)}
N ﬂ ! seqclaconv V(a) ¢.
1= e

a €A

Since for p = 0 we have inf, c4, 1/(Ja| — 1) = 0, whereas for p>0,
inf, 4, |af’ /(1 — |a|) = 0, this implies Vo = {0}. Thus f = F. [

We have also the following

Corollary 5. Ler (G,-,0) be a group with zero and let (X,G) be a
G-space. Assume that Y is a Banach space and let 6: G — [0, 00)

be given. Let a nonzero homomorphism ¢: A — K and a function
f: X — Y satisfy the condition

|| flax) = () f(x)]| < 6() for aeG, xeX.
Put A :={a€Z(G)™ |p(a)|>1} and Ay := {a € Z(G)™: |p(a)|<1}.
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If Ay U A, # () then there exists a unique ¢-homogeneous function
F: U — Y such that

[F(x) —fx) <C  for  xeU,

1 1
C:=min | inf , inf .
<a€A1 |p(a)] — 1 aea 1 — |¢(a)|>

where

5. Completeness

In [5] it was shown that a normed space Y has to be a Banach space
provided that for some Abelian group A containing an element of
infinite order and for all functions f: A — Y such that the Cauchy
difference f(x +y) — f(x) — f(y) is bounded, there is some additive
function £ such that f — A is bounded. (For a survey on the original
stability question, whether for some f as above there is some additive
function A, such that f — & is bounded, see, for example, [3].)

The aim of this section is to show a similar result for the
¢-homogeneity equation, namely we have

Theorem 6. Let A be a group which is isomorphic to H x A’ with some
subgroup H of K (€ {R, C}) such that H contains some element zy of
modulus different from 1. Assume that there is an action -: AXX — X
of A on some set X and assume that the stabilizer Ay, == {a €A:
axg = xo} is trivial for some xo € X. Furthermore let Y be a normed
space.

Assume furthermore that for all functions f: X — Y and all ho-
momorphisms o: A — K* := R\{0} such that for some positive ¢, 6

[1f(0x) = () f)| < elela)l +6
forall o € A and x € X there is some h: X — Y being p-homogeneous —
which means that h(ax) = @(a)h(x) for all « € A and x € X — such that
f — h is bounded.
Then Y is a Banach space, i.e., a complete normed space.

Proof. Let zo € H and (without loss of generality) |zo| =: r>1. Let
(¥n), e be a Cauchy sequence in Y. Since it is enough to show that
this sequence contains a convergent subsequence we may — again
without loss of generality — assume that

”yn+m - ynH < r for all n,me N. (27)

Then we define f: X — Y in the following way. We put f } a = 0f
X 3 x # xo. (Ax := A(x) := {ax | a €A} is the orbit of x with respect to
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the action of A on X.) On Axg we define f(axy) for a = (z,a') €
A =HXxAas

F((z, a)xo) = {(Z)yn

Then f is well defined since (z,a')xo = (z1, &} )xo implies that z = z,
(and o/ = «) because of our assumption that A,, = {1}.

The function ¢ defined by ¢((z,a’)) :=z obviously is a ho-
momorphism from A to K*. We want to show that for suitable ¢,
0>0

if |z] > 1and " < |z]<rHY,
if 0<lz|<1.

1£((z 0')x) = 2f (0] < Jzle + 6 (28)

for all (z,o/) €A and all xeX.

This is obvious if x & Axy because in this case the left-hand side of
(28) vanishes. So let us assume that x = (z, /)xg € Axp and take any
(z1,0¢/)) €A. We have to consider several cases.

Case 1. Let [z],|z1| > 1. Then there are nonnegative integers m and
n such that " < |z]<r/"*! and " < |z </t implying P/t <
|zz1| < r"mF2. Accordingly

f((Zh all)x) :f((Zh O/l)(zv al)xo) :f((zzl’alall)xo) = L1 Yn+tm+o

with some oc€{0,1} and

f((zl,o/l)x) - 90((Zla0/1))f(x) = 22U Yn+m+o — 21ZVn
= 221 (yn+m+o - yn)'
Thus

1£((z1, 0)x) — (21, ))) )| = [zl [[Yntmeo — yall
S rn+1|zl|r—n — |Z1|7"-

Case 2.1f |z] > 1 and |z;| <1 we have to divide the consideration into
two subcases.
(a) If |zz1| <1 we have f((z1,a')x) = 0 and f(x) = zy,, implying

1£((z1,0)x) = 21 f ()| = |z llzlllyall < M = sup [|yl-
S
(b) If |zz] > 1 we have r" < |zz;|<r"™! for some integer m

with 0 <m <n. Accordingly f((z1,0)x) —¢((z1,a)))f(x) =
221 (ym - yn) and

17 (G, ) = (DS = zzalllsp = yull < 7515 = 1.
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Case 3. In the case |z| <1, |z1| > 1 we again have two subcases.

(@) |zz1|<1 implies the desired estimate since then f((z, o/} )x) =
flx) =0.

(b) If |zz1| > 11let m&€ Ny be such that 7" < |z;| <r"*!. Then ' <
|zz1| <7+ for some 0 < n < m. Thus

1f((z1, 00)x) = o((z1,0))f ) = [zzalllyn = ymll < 7.

Case 4. The last case |z|,|z1|<1 is trivial since here as in the first
subcase of the previous case all interesting terms vanish.

If we put € := r and ¢ := max{M, r} we see that the hypotheses of
the theorem are satisfied. Thus there is some -homogeneous
h: X — Y and some constant N such that || f(x) — h(x)|| < N for all
x€X. Putting x, := (z0,1)"xp we have f(x,) =z0y, and h(x,) =
z0h(x0). This implies

1 Cen) = hGea)ll = |20l [[yn = A(xo)[| < N

Dividing by " = |z0|" and letting n tending to infinity then shows that
yu tends to h(xg) €Y, the desired result. O
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