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V. V. Zaitsev∗, A. Krüger†, J. Hildebrandt†, and B. Kliem†

Abstract

It is shown that flare-produced fast electrons with a power-law energy distribu-
tion trapped in magnetic loops are capable to produce plasma waves at the upper
hybrid frequency due to a loss-cone instability. This instability has been considered
as the cause of the solar decimetric continuum which exhibits a strong temporal
and spatial correlation with regions of flare-energy release and sources of microwave
bursts. The strong absorption of the first harmonic in the decimeter range and
also the peculiarities of the conversion of the plasma waves into electromagnetic
waves yield a preference of the generation of the decimetric continuum at the sec-
ond harmonic of the plasma frequency. In this case the polarization of the radiation
corresponds to the ordinary wave mode in a wide cone of propagation angles around
the direction perpendicular to the magnetic field.

1 Introduction

Hard X-ray observations demonstrate that energetic flare-electrons frequently exhibit an
energy distribution which can be approximated by a power law [Lin, 1985]. The gyrosyn-
chrotron radiation from these electrons trapped in magnetic fields of solar active regions
can be regarded as the main source of microwave bursts at frequencies > 1 GHz [Kundu
and Vlahos, 1982]. Another important burst component which is intimately connected
with flare electrons is formed by decimetric bursts and the decimetric continuum in the
frequency range between about 200 MHz and 1 or 2 GHz [Zheleznyakov, 1970]. The
presence of peculiarities in the dynamical spectrum of the decimetric continuum as zebra
patterns and sudden reductions lead to the assumption that this continuum is generated
by plasma waves at the upper hybrid frequency ωuh = (ω2p + ω2B)

1/2, excited by fast elec-
trons having a loss-cone anisotropy [Kuijpers, 1974; Zaitsev and Stepanov, 1975; Benz
and Kuijpers, 1976].

There arises the question whether the electrons generating the microwave bursts via gyro-
synchrotron emission and those electrons generating the decimetric continuum by the
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plasma-wave mechanism are belonging to one and the same population of electrons accel-
erated in the flare and having a power-law energy spectrum.

In the present paper we consider the instability of the power-law distribution with a loss
cone anisotropy and investigate the possibility of the generation of decimetric continua
and microwave bursts by one population of flare electrons.

2 Possibility of the generation of plasma waves by power-law
electrons

We consider the generation of plasma waves in a system consisting of a background plasma
with electron density n and a minor part of fast electrons with a density n1 ¿ n and a
distribution function f(v‖, v⊥) where ‖ and ⊥ denote the vector components parallel and

perpendicular to the direction of the magnetic field ~B, respectively. If the plasma is
sufficiently dense (ω2p À ω2B where ωp and ωB are the plasma frequency and the electron
gyrofrequency, respectively), and the plasma waves propagate nearly perpendicular to
the magnetic field (k2⊥ À k2‖, where k is the wave number of the plasma waves at the
frequency ω ≈ ωp), the growth rate γ of the plasma waves is given by the following
formula [Mikhailovskii, 1974]:

γ =
π

n

ω4p
k3

∞
∫

−∞

dv‖

∞
∫

ω2/k2

dv2⊥
∂f/∂v2⊥

√

v2⊥ − ω2/k2
. (1)

It is seen from Eq. (1) that for instability (γ > 0) it is necessary that the derivative ∂f/∂v2⊥
is positive at least at some part of the integration path. If we take the distribution function
in the form used by Benz and Kuijpers [1976]

f(v‖, v⊥) =
A

(v2‖ + v2⊥)
δ
Θ

(

v2⊥ −
v2‖

σ − 1

)

, (2)

where

Θ(x) =

{

1 for x ≥ 0
0 for x < 0

(3)

is the step function and σ = Bmax/Bmin characterizes the magnetic loop trapping the
particles, we find that the derivative of the distribution function

∂f

∂v2⊥
= − Aδ

(v2‖ + v2⊥)
δ+1

Θ

(

v2⊥ −
v2‖

σ − 1

)

+
A

(v2‖ + v2⊥)
δ

∂Θ

∂v2⊥
(4)

is always negative with exception at the border of the loss cone where it tends to infinity,
since ∂Θ/∂v2⊥ > 0 is the delta function. In particular this part of the derivative leads to
instability and must be considered at the integration of Eq. (1).

In our analysis we will apply a power-law distribution with different borders of the loss
cone:

f1(v‖, v⊥) =
A1

(v2‖ + v2⊥)
δ
[1− exp(−y)] (5)
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with
y = v2⊥ (σ − 1)/v2‖ (6)

and the condition v > v0, where v0 is the minimal value of the velocity inside the power-
law distribution. The distribution function (5) avoids the derivative ∂f1/∂v

2
⊥ to become

infinity at the border of the loss cone. In the opposite case we would leave the frame of
the kinetic approximation for the description of the instability and Eq. (1) for the growth
rate would be no longer valid [Mikhailovskii, 1974].

The normalization coefficient A1 in Eq. (5) correponds to the condition

2π

∞
∫

−∞

dv‖

∫

f1(v‖, v⊥) v⊥ dv⊥ = n1. (7)

In the case that the mirror ratio is sufficiently large (σ À 1), the value of A1 is given by
the following equation

A1 =
n1
4π

(4σ − 4)

(4σ − 5)
(2δ − 3) v2δ−30 . (8)

In order that n1 is finite, we must have δ > 3/2, and in order to have a finite average
velocity 〈v〉 = ∫

v f(~v) d3~v it is necessary to have δ > 2.

Inserting the distribution function (5) into Eq. (1) and solving the integral, we obtain

the following expression for the growth rate of the plasma waves ω =
√

ω2p + ω2B ≈ ωp for

δ > 2:

γ =
2π3/2A1ω

4

n k3 v2δ0

[

δ + σ − 1√
σ − 1

e−x − Γ(δ + 1
2
)

2Γ(δ)

]

(9)

where Γ(δ) is the gamma function and x = ω2(δ − 1)/k2v20. From Eq. (9) follows that
the instability is maximal for ω/k ≤ v0/

√
σ − 1, i. e. for plasma waves with a sufficiently

small phase velocity. For ω/k À v0/
√
σ − 1 the first term in the brackets of Eq. (9) is

exponentially small and the instability vanishes. The condition of instability for plasma
waves with small phase velocity when ω/k ¿ v0/

√
σ − 1 can be written as follows

(δ + σ − 1)√
σ − 1

Γ(δ)

Γ(δ + 1
2
)
>

1

2
. (10)

From Eq. (9) it can be easily seen that instability occurs for all relevant ratios σ and
exponents δ of the power-law spectrum. However, the maximal growth rate

γmax = 0.36
n1
n
ω
(4σ − 4)

(4σ − 5)

(2δ − 3)

δ

(δ + σ − 1)

(σ − 1)2
(11)

decreases with increasing ratio σ which is related to a diminishing of the number of
particles inside the loss cone contributing to the instability.

In the ambient plasma the excited plasma waves are subject to Landau damping. The
damping rate γL for the highest instable waves with ω2/k2 = (3/2)v2/(σ − 1) is given by
the formula

γL =

√

π

2

(

3

2

)3/2 ( v0
vT

)3 ωp
(σ − 1)3/2

× exp

[

−3

4
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]

, (12)
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where vT = (κT/m)1/2 is the thermal velocity of electrons of the background plasma
(T – temperature, κ – Boltzmann’s constant). The condition γmax > γL determines the
values of the density of fast electrons for which the excited plasma waves are not seriously
damped:

n1
n
> 6.4

(

v0
vT

)3 (4σ − 5)

(4σ − 4)

δ

(2δ − 3)

√
σ − 1

(δ + σ − 1)
× exp

[

−3

4

(

v0
vT

)2 1

(σ − 1)

]

. (13)

It can be concluded from Eq. (13) that Landau damping impedes the generation of plasma
waves only in the immediate source region of the microwave bursts, i.e the parts of the
flaring loops where a sufficiently hot plasma with temperatures of the order (0.5–1) ·107K
can be assumed. So, generation of plasma waves within the source region of the microwave
bursts must be considered as a rather extreme event, although, apparently, this possibility
cannot be fully excluded.

On the other hand, the plasma in the immediate vicinity of a flaring magnetic loop can be
sufficiently cold with a temperature T ≈ 7 · 105K [Benz et al., 1992]. In this case even a
relatively small number of power-law electrons escaping from the flare volume can generate
plasma emission. In the case of sufficiently cold plasma the threshold of instability is
determined by the damping of the plasma waves due to electron-ion encounters in the
plasma. Then the damping rate is given by

γc =
νei
2
, (14)

where

νei =
5.5n

T 3/2
ln

(

104 T 2/3

n1/3

)

for T > 4 · 105K (15)

is the effective collision frequency of electron-ion encounters in the plasma.

From Eqs. (12) and (14) follows that for n = 3 · 109 cm−3 and v0 = 3.88 · 109 cms−1

(ε0 = 10 keV) the collision damping of the plasma waves begins to dominate over the
Landau damping if the temperature of the background plasma meets the condition

T < T ∗ =
3

σ − 1
· 106K. (16)

In this case the maximal growth rate of the instability given by Eq. (11) exceeds the
collision damping if

n1
n
> 2.3 · 10−8 (4σ − 5)

(4σ − 4)

(σ − 1)7/2

(σ + 3)
. (17)

We see from Eq. (17) that in the given case the threshold of the excitation of plasma
waves is sufficiently small and it is (n1/n)min ≈ 10−8 ÷ 10−6 in dependence on the mirror
ratio.
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3 The energy density of the plasma waves

The plasma waves generated by fast electrons lead to a diffusion of these electrons inside
the loss cone and to their escape from the magnetic trap. The characteristic diffusion
time Td depends on the size of the source region of the fast particles. In the case of
a sufficiently large sorce region of fast particles, which is normally realized during solar
flares, the diffusion time is sufficiently small [Bespalov et al., 1991]:

Td < σ
L‖

2〈v〉 or Td <
L‖

2〈v〉 . (18)

Here L‖ denotes the length of the magnetic trap and 〈v〉 the average velocity of the fast
particles. For characteristic values of L‖ and 〈v〉 the diffusion time is of the order of
some parts of a second to a few seconds which is much less than the flaring time of the
generation of fast particles (which is about 1 minute for an impulsive flare). Thus, for an
estimation of the energy density of the plasma waves we can apply the quasi-linear theory
under stationary conditions.

A stationary model of the generation of plasma waves at the upper hybrid frequency

ω =
√

ω2p + ω2B was considered by Shaposhnikov [1988]. He found that under assumption

of an one-dimensional diffusion along the line

v2‖ =
ω − sωB

ωB

v2⊥ (19)

in the velocity frame with conservation of the pitch angle of the fast electrons the energy
density of plasma waves can be expressed by the formula

WL =
Jm〈v2〉
4νd

lnσ, (20)

where J [cm−3s−1] is the source function, and νd the dissipation rate of the energy of the
plasma waves which in our case either is determined by Landau damping or by electron-ion
collisions:

νd =

{

2γL for T > T ∗

νei for T < T ∗ (21)

In the stationary state it is possible to calculate the energy density of the plasma waves
from the density of the fast electrons n1 and the main parameters of the magnetic flux
tube:

WL ≈
n1m〈v2〉

2

(

〈v〉
νσL‖

)

lnσ. (22)

The ratio of the energy density of the plasma waves to the energy density of the thermal
energy of the background plasma which determines the effectivity of the conversion of the
plasma waves into electromagnetic waves amounts to

wL =
WL

nκT
≈ (6− 16) · 10−2n1

n
. (23)
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4 Decimetric continuum

As already mentioned in the Introduction, there are several arguments which lead to
the assumption that the solar decimetric continuum is generated by plasma waves at the

upper hybrid frequency ω =
√

ω2p + ω2B [Kuijpers, 1974; Zaitsev and Stepanov, 1975; Benz

and Kuijpers, 1976). These waves are generated by trapped energetic electrons having
an anisotropic velocity distribution of loss-cone type. We will assume that the decimetric
continuum originates in relatively weak closed magnetic fields directly adjoining the flare
loops.

In the following the microwave-burst and decimeter-continuum source will be denoted as
region I and region II, respectively, both strongly differing in their parameters. On the
average, the solar microwave emission has a maximal flux density at, say, the frequency
νm ≈ 5 GHz. Inferring gyrosynchrotron radiation of energetic electrons with a power-
law energy spectrum this corresponds roughly to magnetic fields in the source region of
B ≈ 450 G [Kundu and Vlahos, 1982] and a value of the gyrofrequency νB ≈ 1.25 GHz. In
region I, on the average, the plasma frequency should obey the relation νp ≤ νB, because
in the opposite case νp À νB a strong suppression of the gyrosynchrotron radiation occurs
(Razin-Tsytovich effect). The condition νp ≤ νB gives a restriction on the density of the
background plasma in region I to n < 2 · 1010cm−3.

On the average the decimetric continuum has its spectral maximum in the frequency range
ν ≈ (0.5 ÷ 1) GHz [Isliker and Benz, 1994a]. Hence we obtain a plasma density in the

source region of n ≈ (3 ÷ 6) · 109cm−3 for νm =
√

ν2p + ν2B or n ≈ (0.8 ÷ 1.5) · 109cm−3

for νm = 2
√

ν2p + ν2B. Here we assume that in region II the gyrofrequency is much smaller

than the plasma frequency. This condition ν2B ¿ ν2p is necessary in order to exclude
strong gyroresonance absorption at the levels ν = 2νB and ν = 3νB at the escape of the
radiation from region II outwards. The temperature of the plasma inside (hot) flare loops
is typically T ≈ (0.5 ÷ 1) · 107K. Outside these flare loops the temperature is accordingly
lower. For region II we assume T ≈ (0.7 ÷ 2) · 106K although a heating of this region
during the flare cannot be excluded. Analyzing the flare-energy support of the source of
the decimetric continuum, the absorption of the radiation by electron-ion collisions at the
wave propagation from the source through the solar atmosphere is important. The optical
depth τc of the corona concerning due to electron-ion collisions for radiation propagating
from the source region of the decimetric continuum to the observer is given by

τc (ν) ≈
74.6

cos θ
ν2p

(

νp
ν

)2
(

106

T

)1/2

, (24)

where ν has to be given in GHz. Taking νp = 0.5 GHz, T = 7·105K, cos θ = 0.7, we obtain
from Eq. (24) τc ≈ 32(νp/ν)

2. We can see that even in the most favourable case if ν ≈ 2νp
the optical depth becomes τc(ν = 2νp) = 8 and the radiation at the second harmonic is
weakened by 3·103 at the transit through the source of the decimetric continuum while the
radiation of the first harmonic is weakened by 1014 times! Our estimations show that, due
to the rather strong absorption of the first harmonic, the most favourable mechanism for
the decimetric continuum is the generation of the second harmonic as result of coupling
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of strong plasma waves excited by the loss-cone instability. Here the observed brightness
temperatures T

(obs)
b ≈ 1010K should correspond to brightness temperatures inside the

source of the decimetric continuum about three orders higher, i. e.

T
(source)
b (ν ≈ 2νp) ≈ 103 T

(obs)
b ≈ 1013K. (25)

The emission at the second harmonic of the plasma frequency ωt = 2ωp is generated
by non-linear coalescence of two plama waves (combination scattering) if the resonance
condition

ω + ω′ = ωt, ~k + ~k′ = ~kt (26)

is fulfilled. The transfer equation for the brightness temperature of the emission has the
form

d Tb
d l

= αN − (µN + µc)Tb. (27)

Here αN is the emission coefficient, µN is the absorption coefficient related to the decay of
an electromagnetic wave of the frequency 2ωp into two plasma waves, µc is the absorption
coefficient due to the absorption of electromagnetic waves by electron-ion collisions inside
the source of radiation, and l is the coordinate along the ray propagation.

If the source has a steady inhomogeneous distribution of the plasma density n with a
characteristic scale height Ln = |n/(dn/dl)|, the integration of Eq. (27) should be carried
out through a thin layer ∆l¿ L in which the value of the frequency of the elctromagnetic
wave is preserved as constant, i. e. ω(l, k(l))+ω ′(l, k′(l)) = const. The depth of this layer
is [Zaitsev and Stepanov, 1983]:

∆ l ≈ 3Ln
v2T
ω2p

(k2max − k2min) ≈ 6Ln
k2 v2T
ω2p

, (28)

where kmax and kmin are the maximal and minimal values of the wave number in the excited
wave spectrum, respectively. In the second part of Eq. (28) we took kmax−kmin ≈ k where
k is the average wave number of the plasma waves. Integrating Eq. (27) in a layer ∆l
under the assumption µc ¿ µN , we obtain at ν ≈ 2 νp

T
(source)
b ≈ (2π)3

(

c

ωp

)3
wLnT

ξ
[1− exp(−τN)] , (29)

where

τN ≈ µN∆l ≈ 105wL, ξ =
c3

v30

(

2(σ − 1)

3

)3/2

. (30)

Eq. (29) yields for νp = 0.5GHz, n = 109cm−3, and T = 7 · 105K the required brightness

temperature in the source region T
(source)
b (ν ≈ 2νp) ≈ 1013K if the energy density of the

waves is wL ≈ 10−5.

As it was shown in Section 3 (cf. Eq. (23)), the generation of plasma waves by fast electrons
with a power-law energy spectrum the energy density of the plasma waves in our case
is wL ≈ 6 · 10−2n1/n. Hence the required brightness temperature in the source can be
explained if n1/n ≈ 1.5 · 10−4. For n = 3 · 109cm−3 this corresponds to a density of fast
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electrons of n1 ≈ 4.5 · 105cm−3. If the source volume is V ≈ L2
nL‖ ≈ 1028cm3 (by taking

Ln ≈ 109cm and L‖ ≈ 1010cm) the total number of fast electrons injected into the source
region of the decimetric continuum amounts to N1 = n1V ≈ 4.5 · 1033.
Usually the polarization of the decimetric continuum corresponds to the extraordinary
wave mode [Zheleznyakov, 1970]. We will accept that the plasma waves are generated
within a certain cone of angles with a half-width ψ0, where ψ0 differs from the direction
perpendicular to the magnetic field:

W~k =

{

W1/ sinψ0 for ψ < ψ0
0 for ψ > ψ0

(31)

Then, transforming the results of Zlotnik [1981] to our case, we obtain the following
expression for the degree of polarization:

ρ(α, ψ0 → 0) =
ωB

ωp

[

− 3.96

cosα
(sin4 α− 0.88 cos2 α)− 5

16
cosα

]

. (32)

We find that the sense of polarization corresponds to the ordinary wave (ρ < 0) main-
tained for angles α > 50◦. Here, for α = 60◦, the degree of polarization becomes
ρ = −2.75ωB/ωp. For angles α < 50◦ the polarization corresponds to the extraordinary
mode. It must be mentioned that for sources of radio emission concentrated in magnetic
traps like, as we inferred, the source of the decimetric continuum, the observation of a
major part of the source under angles α near π/2 is very likely.

5 Discussion

We have shown that fast flare electrons with a power-law energy distribution trapped in
magnetic loops are generating plasma waves at the upper hybrid frequency which is here
considered as the source of the solar decimetric continuum. Evidently this source is seated
near a flaring loop. In this source the magnetic field is sufficiently weak satisfying the
condition ω2p À ω2B. This condition is necessary in order to prevent a strong gyroresonance
absorption at the layers 2ωB and 3ωB at the escape of the radiation from the source region.

The absorption of the decimetric continuum due to free-free transitions in the corona
is rather high which favours emission at the second harmonic of the plasma frequency
ω ≈ 2ωp. This emission turns out to be polarized in the ordinary sense within a wide
cone of angles α between the (perpendicular) magnetic field and the direction to the
observer.

The direct vicinity of the source of the decimetric continuum to the flare loop (or system
of flare loops) allows to explain the good temporal and spatial correlation between the
decimetric continuum and the microwave bursts. This circumstance allows to conclude
that both components are feeded by one and the same source of fast electrons originating
during the flare process.

We estimated the total number of fast electrons needed for the generation of the decimetric
continuum with an observed brightness temperature T

(obs)
b ≈ 1010K which amounts to
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NL ≈ 4.5 · 1033. Our estimation shows that this value is about 20% of the number of
the fast electrons required for generation of the related microwave burst. Hence a non-
negligible part of the fast flare electrons should be injected into the source region of the
decimetric continuum furnishing the observed brightness temperatures up to 1010K.
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