Sitzungsber. Abt. II (2008) 217: 37-45

Sitzungsberichte

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2009 Printed in Austria

Inner Symmetries for Moebius Maps

By

Fritz Schweiger

(Vorgelegt in der Sitzung der math.-nat. Klasse am 11. Dezember 2008 durch das k. M. I. Fritz Schweiger)

Abstract

Differentiable isomorphisms of Moebius systems are considered (SCHWEIGER [2]). A map is called an inner symmetry if it commutes with the map *T* of the Moebius system and permutes the cells of the time-1-partition. This notion is discussed for Moebius systems with two and three branches. An extension to 2-dimensional cases is outlined.

Mathematics Subject Classification (2000): 11K55, 28D99. *Key words:* Ergodic theory, invariant measures.

0. Introduction

Definition. Let *B* be an interval and $T: B \to B$ be a map. We assume that there is a countable collection of intervals $(J_k), k \in I, \#I \ge 2$ and an associated sequence of matrices

$$\alpha(k) = \begin{pmatrix} a_k & b_k \\ c_k & d_k \end{pmatrix},$$

 $a_k d_k - b_k c_k \neq 0$, with the properties:

- $\bigcup_{k \in I} \overline{J_k} = \overline{B}, J_m \cap J_n = \emptyset$ if $n \neq m$.
- $Tx = \frac{c_k + d_k x}{a_k + b_k x}, \qquad x \in J_k.$
- $T|_{J_k}$ is a bijective map from J_k onto B.

Then we call (B, T) a Moebius system.

This is a special case of a fibred system (SCHWEIGER [1]). Since $T|_{J_k}$ is bijective the inverse map $V_k: B \to J_k$ exists. The corresponding matrix will be denoted by $\beta(k)$. We denote furthermore

$$\omega(k;x) := |V'_k(x)| = \frac{|a_k d_k - b_k c_k|}{(d_k - b_k x)^2}.$$

Then a nonnegative measurable function *h* is the density of an invariant measure iff $h(x) = \sum_{k \in I} h(V_k x) \omega(k; x)$.

Remark. It is easy to see that we can assume B = [a, b], $B = [a, \infty[$ or $B = [-\infty, b]$ but $B = \mathbb{R}$ is excluded (since $\#I \ge 2$).

Definition. The Moebius system (B^*, T^*) is called a *natural dual* of (B, T) if there is a partition $\{I_k^*\}$ such that

$$T^*y = \frac{b_k + d_k y}{a_k + c_k y},$$

i.e., the matrix $\alpha^*(k)$ is the transposed matrix of $\alpha(k)$.

In the paper SCHWEIGER [2] the following definition was given.

Definition. The Moebius system (B^*, T^*) is *differentiably isomorphic* to (B, T) if there is a map $\psi: B \to B^*$ such that ψ' exists almost everywhere and the commutativity condition $\psi \circ T = T^* \circ \psi$ holds.

What I had in mind was a more precise definition, namely for all $k \in I$ the commutativity condition

$$\psi \circ \alpha(k) = \alpha(k)^* \circ \psi \tag{1}$$

should hold and this property was used in all what followed in the paper. However, one might ask if it is possible that

$$\psi \circ \alpha(k) = \alpha(\pi k)^* \circ \psi \tag{2}$$

holds for a permutation $\pi: I \to I$ of the index set.

1. The Case of Two Branches

It is well known that in the case of two branches, namely #I = 2the system (B^*, T^*) is always differentiably isomorphic to (B, T) in the sense of Eq. (1). We take B = [0, 1] with $c = \frac{1}{2}$ as the midpoint of

the partition. We put $I = \{\lambda, \mu\}$ and there are four subtypes $(\varepsilon_1, \varepsilon_2)$ where $\varepsilon_j = 1$ stands for an increasing map and $\varepsilon_j = -1$ for a decreasing map. Now we ask for the possibility of satisfying (2) with exchanging λ and μ

$$\varphi \circ \alpha(\lambda) = \alpha(\mu)^* \circ \varphi,$$

$$\varphi \circ \alpha(\mu) = \alpha(\lambda)^* \circ \varphi.$$
(3)

Since $\psi \circ \alpha(k) = \alpha(k)^* \circ \psi$, $k \in \{\lambda, \mu\}$, is always satisfied, we obtain

$$\psi^{-1} \circ \varphi \circ \alpha(\lambda) = \psi^{-1} \circ \alpha(\mu)^* \circ \varphi = \alpha(\mu) \circ \psi^{-1} \circ \varphi.$$

Therefore the system (B, T) allows an *inner symmetry* $\chi = \psi^{-1} \circ \varphi$ such that

$$\chi \circ V(\lambda) = V(\mu) \circ \chi. \tag{4}$$

Conversely, if (B, T) allows such an inner symmetry, we can find a differentiable map φ which satisfies (3), namely $\varphi = \psi \circ \chi$. Therefore it is enough to solve Eq. (4).

Theorem 1. (a) For types (1, 1) and (-1, -1) there are infinitely many solutions of Eq. (4).

(b) For types (1, -1) and (-1, 1) no solution exists.

Proof. The only Moebius transformation which permutates the points $\{0, \frac{1}{2}, 1\}$ in an appropriate way is $\chi(t) = 1 - t$.

It is easy to see that the matrices $\alpha(\lambda)$ and $\alpha(\mu)$ depend on one free parameter. The conditions on λ and μ are necessary to avoid attractive fixed points or poles in the domain of definition.

(a) Type $(1, 1), 0 < \lambda \le 1, \mu \le 0$:

$$\begin{aligned} \alpha(\lambda) &= \begin{pmatrix} \lambda & 1-2\lambda \\ 0 & 1 \end{pmatrix}, \quad \alpha(\mu) &= \begin{pmatrix} \mu & -1-\mu \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \lambda & 1-2\lambda \\ 0 & 1 \end{pmatrix} \\ &= \rho \begin{pmatrix} \mu & -1-\mu \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}. \end{aligned}$$

From this we see

$$\lambda = \frac{1}{1 - \mu} = -\rho.$$

Note that $0 < \lambda \le 1$ is consistent with $\mu \le 0$.

Type
$$(-1, -1)$$
, $\lambda < 2$, $\mu < 2$:

$$\alpha(\lambda) = \begin{pmatrix} 1 & -\lambda \\ 1 & -2 \end{pmatrix}, \qquad \alpha(\mu) = \begin{pmatrix} \mu & 2 - 2\mu \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -\lambda \\ 1 & -2 \end{pmatrix}$$

$$= \rho \begin{pmatrix} \mu & 2 - 2\mu \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.$$

This gives the conditions

$$\rho = \frac{1}{2 - \mu},$$
$$\lambda = \frac{2 - 2\mu}{2 - \mu}.$$

(b) For type (1, -1) the branch $\alpha(\lambda)$ has the fixed point x = 0 but x = 1 is not a fixed point for $\alpha(\mu)$. A similar reasoning excludes the type (-1, 1).

2. The Case of Three Branches

As in SCHWEIGER [2] we consider the partition $0 < \frac{1}{2} < \frac{2}{3} < 1$ and three maps depending on parameters λ, μ, ν , say. By continuity reasons the only case of satisfying (2) with a proper permutation is the exchange of λ and ν which leaves μ fixed,

$$\psi \circ \alpha(\lambda) = \alpha(\nu)^{\#} \circ \psi,$$

$$\psi \circ \alpha(\mu) = \alpha(\mu)^{\#} \circ \psi.$$
 (5)

In a similar way we can also define an inner symmetry χ as a Moebius map such that

$$\chi \circ \alpha(\lambda) = \alpha(\nu) \circ \chi,$$

$$\chi \circ \alpha(\mu) = \alpha(\mu) \circ \chi.$$
(6)

We will consider inner symmetries first. We will see that for three branches an inner symmetry in almost all cases leads to a solution of (5).

The only Moebius transformation which exchanges $\{0, \frac{1}{2}, \frac{2}{3}, 1\}$ is

$$\chi(t) = \frac{2-2t}{2-t}.$$

Looking at the cases in which either x = 0 or x = 1 is a fixed point we can exclude the types (1, 1, -1), (1, -1, -1), (-1, 1, 1), and (-1, -1, 1). For the remaining types we find the following result.

Theorem 2. All types (1,1,1), (1,-1,1), (-1,1,-1), (-1,-1,-1) allow an inner symmetry for an infinite set of parameters λ and ν .

Proof. We first list the six matrices $\alpha(k)$, $k = \lambda, \mu, \nu$, which will be used in our calculations.

$$\begin{aligned} \varepsilon_{1} &= 1, \begin{pmatrix} \lambda & 1-2\lambda \\ 0 & 1 \end{pmatrix}, \\ \varepsilon_{1} &= -1, \begin{pmatrix} -1 & -\lambda+2 \\ -1 & 2 \end{pmatrix}, \\ \varepsilon_{2} &= 1, \begin{pmatrix} 2\mu-1 & 2-3\mu \\ -1 & 2 \end{pmatrix}, \\ \varepsilon_{2} &= -1, \begin{pmatrix} \mu-2 & 3-2\mu \\ -2 & 3 \end{pmatrix}, \\ \varepsilon_{3} &= 1, \begin{pmatrix} \nu-2 & -\nu+3 \\ -2 & 3 \end{pmatrix}, \\ \varepsilon_{3} &= -1, \begin{pmatrix} 2\nu-1 & 1-3\nu \\ -1 & 1 \end{pmatrix}. \end{aligned}$$

(a) Type (1, 1, 1), $0 < \lambda \le 1$, $0 < \mu$, $1 \le \nu$. We consider first the equation $\chi \circ \alpha(\mu) = \alpha(\mu) \circ \chi$.

$$\begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 2\mu - 1 & 2 - 3\mu \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2\mu - 1 & 2 - 3\mu \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix}.$$

This gives $\mu = \frac{1}{2}$ as the unique solution for the middle branch. The further equations

$$\begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \lambda & 1-2\lambda \\ 0 & 1 \end{pmatrix} = \rho \begin{pmatrix} \nu-2 & -\nu+3 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix}$$

give the relation $\lambda \nu = 1$ which is compatible with the results in SCHWEIGER [2].

(b) Type (-1, 1, -1), $0 < \lambda$, $0 < \mu$, $0 < \nu$. In a similar way we find from

$$\begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} -1 & -\lambda+2 \\ -1 & 2 \end{pmatrix} = \rho \begin{pmatrix} 2\nu-1 & 1-3\nu \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix}$$

the relation $4\lambda \nu = 1$.

(c) Type (1, -1, 1), $0 < \lambda \le 1$, $0 < \mu$, $1 \le \nu$. We need only consider the equation $\chi \circ \alpha(\mu) = \alpha(\mu) \circ \chi$,

$$\begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \mu - 2 & 3 - 2\mu \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} \mu - 2 & 3 - 2\mu \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & -2 \end{pmatrix}.$$

This gives the unique value $\mu = 1$. As before the other equations show $\lambda \nu = 1$.

(d) Type (-1, -1, -1), $0 < \lambda$, $0 < \mu$. This gives the conditions $\mu = 1$ and $4\lambda\nu = 1$.

Remark. The invariant density h = h(x) satisfies the equation $h(x) = h(\chi(x))|\chi'(x)|$. If ξ_{λ} , ξ_{μ} , ξ_{ν} are the fixed points of *T* then clearly we find $\chi(\xi_{\lambda}) = \xi_{\nu}$, $\chi(\xi_{\mu}) = \xi_{\mu}$, and $\chi(\xi_{\nu}) = \xi_{\lambda}$.

Theorem 3. (a) For type (1, 1, 1) there is no solution of Eq. (2). (b) For types (1, -1, 1), (-1, 1, -1), (-1, -1, -1) there are infinitely many solutions.

Proof. Type (1, 1, 1): For the existence of an inner symmetry we found the relation $\lambda \nu = 1$ and $\mu = \frac{1}{2}$. A differentiably isomorphic dual (Eq. (1)) exists if the condition

$$2\lambda\mu + 2\nu = \lambda\nu + \lambda$$

is satisfied. This leads to $2\nu = 1$ which is not allowed.

Type (1, -1, 1): Here we found $\lambda \nu = 1$ and $\mu = 1$. A differentially isomorphic dual exists if the condition

$$\lambda \nu = \mu$$

holds. Therefore any inner symmetry leads to a solution of (5) but not vice versa.

Type (-1, 1, -1): Here we had $\mu = \frac{1}{2}$ and $4\lambda\nu = 1$. The condition for an isomorphic dual is given as

$$2\lambda\mu + \mu = 2\lambda\nu + \lambda$$

which is satisfied.

Type (-1, -1, -1): In this case $\mu = 1$ and $4\lambda\nu = 1$. The condition

$$4\lambda\nu + \lambda + \nu = \mu\nu + \lambda\mu + \mu$$

is also satisfied.

3. Outlook: 2-Dimensional Generalizations

These ideas can be extended to higher dimensions. We will consider three 2-dimensional algorithms. The kernel

$$K(x_1, x_2, y_1, y_2) = \frac{1}{\left(1 + x_1 y_1 + x_2 y_2\right)^3}$$

leads to a dual system with transposed matrices.

Brun Algorithm. We consider the map on $B = \{(x_1, x_2): 0 \le x_2 \le x_1 \le 1\}$

$$T(x_1, x_2) = \begin{cases} \left(\frac{x_1}{1 - x_1}, \frac{x_2}{1 - x_1}\right), & x_1 \le \frac{1}{2}, \\ \left(\frac{1 - x_1}{x_1}, \frac{x_2}{x_1}\right), & x_1 + x_2 \le 1, \\ \left(\frac{x_2}{x_1}, \frac{1 - x_1}{x_1}\right), & 1 \le x_1 + x_2. \end{cases}$$

Then the dual algorithm T^* exists on the set $B^* = \{(y_1, y_2): 0 \le y_1, 0 \le y_2 \le 1\}$. The map

$$\psi(s,t) = \left(\frac{1-s}{s}, \frac{t}{s}\right)$$

gives a differentiable isomorphism. Since the point x = (0,0) is the only fixed point on the boundary it is seen quite easily that no inner symmetry can be found.

Selmer Algorithm. Here we consider the set $D = \{(x_1, x_2): 1 \le x_1 + x_2, 0 \le x_2 \le x_1 \le 1\}$ and the map

$$T(x_1, x_2) = \begin{cases} \left(\frac{1-x_2}{x_1}, \frac{x_2}{x_1}\right), & x_2 \le \frac{1}{2}, \\ \left(\frac{x_2}{x_1}, \frac{1-x_2}{x_1}\right), & \frac{1}{2} \le x_2. \end{cases}$$

The dual exists on the set $D^* = \{(y_1, y_2): 0 \le y_1, 0 \le y_2\}$ and the map

$$\psi(s,t) = \left(\frac{-1+s+t}{1-s}, \frac{s-t}{1-s}\right)$$

is a differentiable isomorphism. Again, since x = (1,0) is the only fixed point on the boundary an inner symmetry is not allowed.

Parry-Daniels Map. We use the projected version on the triangle $\Delta = \{(x_0, x_1): 0 \le x_0, 0 \le x_1, x_0 + x_1 \le 1\}$. The partition is labelled by permutations on the indices 0, 1, 2 and the map is given piecewise as follows,

$$T_{\varepsilon}(x_{0}, x_{1}) = \left(\frac{x_{0}}{1 - x_{0} - x_{1}}, \frac{-x_{0} + x_{1}}{1 - x_{0} - x_{1}}\right),$$

$$T_{(01)}(x_{0}, x_{1}) = \left(\frac{x_{1}}{1 - x_{0} - x_{1}}, \frac{x_{0} - x_{1}}{1 - x_{0} - x_{1}}\right),$$

$$T_{(12)}(x_{0}, x_{1}) = \left(\frac{x_{0}}{x_{1}}, \frac{1 - 2x_{0} - x_{1}}{x_{1}}\right),$$

$$T_{(021)}(x_{0}, x_{1}) = \left(\frac{1 - x_{0} - x_{1}}{x_{1}}, \frac{-1 + 2x_{0} + x_{1}}{x_{1}}\right),$$

$$T_{(02)}(x_{0}, x_{1}) = \left(\frac{1 - x_{0} - x_{1}}{x_{0}}, \frac{-1 + 2x_{0} + x_{1}}{x_{0}}\right),$$

$$T_{(012)}(x_{0}, x_{1}) = \left(\frac{x_{1}}{x_{0}}, \frac{1 - x_{0} - 2x_{1}}{x_{0}}\right).$$

There also exists a natural dual on the set

$$\Delta^* = \{ (y_1, y_2) : 0 \le y_2 \le y_1 \},\$$

but the systems (Δ, T) and (Δ^*, T^*) are not differentiably isomorphic in the sense of Eq. (1). To say it more precisely, no fractional linear map ψ with this property exists.

However, (Δ^*, T^*) is an exceptional dual as defined in SCHWEIGER [2]. The map

$$\psi(s,t) = \left(\frac{1}{s+t}, \frac{t}{s+t}\right)$$

has the property

$$\alpha(k) \circ \psi = \psi \circ \alpha^*(k)$$

for all $k = \varepsilon$, (02), (012), (021) but

$$\begin{aligned} &\alpha(01)\circ\psi=\psi\circ\alpha^*(12),\\ &\alpha(12)\circ\psi=\psi\circ\alpha^*(01). \end{aligned}$$

This is reasonable since a closer inspection shows that the two maps $\alpha^*(\varepsilon)$ and $\alpha^*(12)$ lead to the same type of exceptional set as $\alpha(\varepsilon)$ and $\alpha(01)$ do for the map *T*.

References

- [1] SCHWEIGER, F. (2000) Multidimensional Continued Fractions. Oxford University Press, Oxford
- [2] SCHWEIGER, F. (2006) Differentiable equivalence of fractional linear maps. IMS Lecture Notes–Monograph Series Dynamics & Stochastics 48: 237–247

Author's address: Prof. Dr. Fritz Schweiger, Department of Mathematics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria. E-Mail: fritz.schweiger@sbg.ac.at.