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Abstract

We give simple proofs for the recurrence relations of some sequences of binomial
sums which have previously been obtained by other more complicated methods.
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1. Introduction

Modifying an idea of BRIETZKE [2] we give simple proofs for the
recurrence relations of sequences of binomial sums of the form

n
a(n,m,k,z) = | | n—mi+k
jez 2

which have been obtained by other methods in [3].
In order to motivate the method we consider first the well-known
special case

n

a(n,5,k,—1)=> (=1 V_SHkJ = (=" t(n,k - 3)),
2

jez J
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with
n

t(n, k) = (—=1)* {n ; kJ

We use the fact that #(n,k) = —t(n — 1,k — 1) — t(n — 1,k + 1) with
1(0,0) = 1,#(0,1) = —1 and #(0, k) = O for all other k€ Z.

Define the operator K by Kf(n,k) = f(n,k — 1) and the operator N
by Nf(n,k) = f(n+ 1,k). Then

tn) =Nt(n—1) = —(K+K Dt(n— 1) = (=1)"(K + K 1)"#(0).

Let s(n,k) on NxZ be the function which satisfies the same re-
currence with initial values s(0,k) = [k = 0]. Then we have 7(0) =
(1 = K)s(0). Since K is a linear operator we also have #(n)
(1 = K)s(n).

Let F be the vector space of all functions on N x Z which are finite
linear combinations of functions K’s, j€Z. For f€F we have
Nf = —(K+K ).

Let T be the linear operator on F defined by

Tf =N*f —Nf —f = (K+K')V’f+(K+K )f —f
= (K?+K'"+1+K+Kf.

Then
> KVTK's(0) =) K's(0)=1  forall i€Z
jez jez
since KT = TK.
Furthermore
> KITH(n) =) KIT(=1)"(K + K')"(1 — K)s(0)
jez jez
= (-1)"(K+K)'"(1-K)) _ KYTs(0) =0.
jez
Since

a(n,5,k,—1) = (=1)* 3" t(n, k — 5)

J

is a finite sum for each k, the sequence (a(n,5,k,—1)) satisfies the
recurrence

an+2,5k,—1)—a(n+1,5k,—1)—a(n,5,k,—1)=0 for n>0.
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Since the Fibonacci numbers F), satisfy the same recurrence with
initial values Fy = 0 and F; = 1, we get the following results (cf.
ANDREWS [1]):

Proposition 1. For k=0,1(mod 10) the initial conditions are
a(0,5,k) = a(1,5,k) = 1 and therefore a(n,5,k) = F,1.

For k =2,9(mod 10) we have a(0,5,k) =0, a(1,5,k) =1 and
therefore a(n,5,k) = F,,.

For k = 3,8(mod 10) we get a(0,5,k) = a(1,5,k) =0 and there-
fore a(n,5,k) = 0. Furthermore a(n,5,k +5) = —a(n,5,k).

It is interesting to observe that this result has first been proved by
SCHUR [6] in a strengthened version: Let

[n} _ (=g (1 —g")
k (I—q)--(1—4")

be a g-binomial coefficient. Then the following polynomial version of
the celebrated Rogers-Ramanujan identity

z”:q’fz [” f k] =S (-1 T V JI:SkJ

k=0 kez 2

holds, which for ¢ = 1 reduces to

n

3 (") == (223

k=0 jez 2

An elementary proof of this g-identity may be found in [5].

2. A Useful Method

After this example let us consider a more general case.
For a,b € R let s, be the function on N x Z defined by s,,(0, k) =
[k = 0] and the recurrence relation

Sap(n, k) =asap(n — 1,k — 1) +bsgp(n — 1,k) +as,p(n — 1,k +1).
(1)
This can be written in the form
Sap(n) = (@K' + b+ aK)sap(n — 1) = (aK™' + b+ aK)"s,5(0).

Let F be the vector space of all functions on N which are finite linear
combinations of functions K’s,;, j€ Z.
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For any polynomial

m
= g a;x'
i=0

we denote by p(N) the linear operator on F defined by

= Zm: Cll'f(l’l + l)
i=0

Then we have p(N) = p(aK~' + b + akK).

We are looking for an operator p(N) with analogous properties as T
had in the above example.

To this end we define a sequence of polynomials

n

Palx,a,b) =Y pusla, b)x*

k=0
by the recurrence
pn(xv a, b) = (X - b)Pnfl (X, a, b) - azpn72(-x7 a, b) (2)
with initial values po(x,a,b) = 1 and p(x,a,b) = x+a — b.
Lemma 1. For all k€ Z the following identity holds
PN, a,b)s,p(0,k) me, a,b)sap(i,k) = a"[|k| <m].  (3)
i=0
Proof. It suffices to show that on F
pm(N,a,b) =a" > K. (4)
Jj=—m
It is immediately verified that (4) is true for m = 0 and m = 1, since
(N+a—b)=(aK+a+aK").
If (4) has already been shown for m — 1 and m — 2 we get

pm(N,a,b) = (N - b)pm 1(N a b) - aZPm Z(N,Cl,b)
m—2
—a(K+K") E K —da"? Y K

Jj=—m+1 Jj=—m+2
m
=d" E K.

j==m
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From (3) we get
me,ab Zsablk 2m+1)j) =a" (5)
jez

for each ke Z.

Application. As an application we consider for each meN the
sequence

a(n,2m+1,k,—1) =Y (-1)/ {n — (2m+ 1)j+kJ
jez 2

= (=" t(n,k — 2m + 1))).

J

As shown above we have r = (1 — K)s_; o. Therefore by (5) we get
me,i(—l,O)(l(O,Zm +1,k,—1) = 0.
i=0

Formula (1) implies that #(n) is a finite linear combination of
functions K’t(0). Therefore we also get

pm(N,—1,0)a(n,2m+ 1,k,—1)

= me,i(—l,O)a(n,2m +1,k,—1) =0.
=0

Now we look for an explicit expression for p,(x,—1,0).
We know that it satisfies the recurrence
p,,(x,—l,O) = XPn— 1( -1 0) pn—Z(xa_lao)

with initial values po(x, —1,0) = 1 and p;(x, —1,0) = x — 1.
Recall that the Fibonacci polynomials

Fu(x,s) = S <n— ! _k)skx"_Zk_l
n ) - k

e () - (=)

(6)
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are characterized by the recurrence
Fu(x,s) = xFy_1(x,5) + sF,_2(x, s) (7)

with initial conditions Fy(x,s) = 0 and F;(x,s) = 1. Therefore

) =
Pa(x,=1,0) = Fpi1(x, —=1) — Fu(x, —1).
The first values of the polynomials p,(x, —1,0) are

Lx—1,%—x—1,0° x> =2x4+1,x* =X =32 +2x+1,....

This gives
Theorem 1. The sequence
n
a(n,2m+1,k,—1) =Y (-1Y {n - (2m+ 1)J+kJ
iz 2

satisfies the recurrence relation of order m
(Fius1(N,—=1) — F(N,—1))a(n,2m + 1,k,—1) =0 (8)
for each ke Z.

Remark. This theorem has been proved in [3] with a more compli-
cated method. The recurrence (8) is not for all k the minimal
recurrence, because e.g. a(n,2m+ 1,m+1,—1) =0. But it is so
for a(n,2m + 1,0, —1), which has a simple combinatorial interpreta-
tion. It is the number of the set of all lattice paths in R? which start
at the origin, consist of |2] northeast steps (1, 1) and [*}!] southeast
steps (1,—1) and which are contained in the strip —m — 1 <y<m
(cf. e.g. [4], [5D).

It is easy to see that the initial values of a(n,2m + 1,0, —1) are
J
a(j,2m+1,0,—1) = M for 0<j<2m.

2

As a special case of Theorem 1 we mention that a(n,3,0,—1) = 1.
This means

n

Z(_l)j {n—3jJ =1 for all neN.

2
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The generating function of the sequence (a(n,2m + 1,0, —1)), ., has
the form

m(X)
dp(x)’

Za(n,2m+ 1,0, —1)x" =

n>0

where

i =1 10) (L 1) ()

= m+](17 _XZ) - XFm(la _x2)

and ¢, (x) is a polynomial of degree less than m.
The first values of (¢, (x)),,, are

c(x) =1, cx) =1, c3(x) =1 -2,

ca(x) =1 =242, cs(x) =1—=3x>+x*, ...
This suggests that for m > 2

m—1

en(x) = ;(—1)1'(’" _jl _j>x2j — Fo(1, —2).

This can be proved in the following way: Both d,,(x) and F,,(1, —x*)
satisfy the same recurrence h,,(x) = hy_1(x) — x*h,_»(x). This im-
plies that for

a2m+l(x) = Za(n,Zm + 1707 _1)'xn

n>0
we have
dn(X)azmi1(x) — dp—1(xX)azm—1(x) + X*d,_» (x)azm—3(x)
— (A (3) = -1 () = y-2() )11 (3) + -1 (5) (@211 ()
— aam-1(x)) + xzdm—Z(x)(aZm+l (x) — azm-—3(x)).

Since the coefficients of x/ for 0 < j < 2m — 5 of az,_3 (x) are the same
as those of ay,,—1(x) and az,,+1 (x) we see that for 2m — 4 > m — 1 the
polynomial

Ao (%)@ 11 (%) = d1 (X)a2m—1(X) + X2 (X)azm—3(x)
which has degree <m must identically vanish. This implies that

en(x) = dp(X)azmi1(x) = Fpu(1, —x2).
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Corollary 1. For m > 2 the generating function for a(n,2m+1,0,—1)
is given by

Za(n,Zm +1,0,—1)x"

n>0

o Fm(l’_xz)
Pt (1, —x2) — xF, (1, —x2) "

©)

3. A Modification of the Above Method

In order to obtain an analogous result for the sequences a(n, 2m, k, —1)
we define a sequence of polynomials

w(x,a,D) ankab

by the same recurrence

qn(x7 a, b) = ()C - b)qn—l (x7 a, b) - azqn—2(xa a, b)? (10)
but with initial values go(x,a,b) =2 and q;(x,a,b) = x — b.
Lemma 2. For all k€ Z the following identity holds

m

Gn(N,a,b)545(0,k) = _ gmi(a, b)sap(i,k) = a"[[k| =m]. (11)
i=0

Proof. It suffices to show that on F
gmn(N,a,b) =ad" (K" +K™™). (12)

(12) is true for m = 0 and m = 1 by inspection.
If it is already shown for m — 1 and m — 2 we get

gm(N,a,b) = a(K—f—K_l)a’"_l(Km—l +K—(m—1))
_ a2am—2(Km—2 + K—(m—Z)) _ {,lm(Km + K_m)

Application. As an application let

n

u(n, k) = V;rkJ

Then u(n,k) =u(n—1,k—1)4+un—1,k+1) and u(0,k)=
[k €{0,1}]. Therefore

u(n, k) =s10(n,k) +s10(n,k —1) or u=(14+K)sp.
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‘We have

a(n,2mk,—1)=> (~1Y {—( ]—i—kJ

ez
|

{ — (2m) 2]+1 )+k

-
m
N

~/

= (s10(n,k—4mj) —s1o(n,k—2m—4mj))

je

—|—Z s1o0(n,k—1—4mj) —s o(n,k— 1 —2m—4myj)).
jez

N

Here we get

Gn(N,1,0) > (s10(0,i — 4mj) — s10(0,i — 2m — 4mj)) =0

jez

for each i,
because for i —4mj = m we get i — 4mj — 2m = —m and the sums
cancel and for i — 4mj = —m we get i —4m(j — 1) — 2m = m. For

other values the sum vanishes.
In the same way as above we conclude that

gm(N,1,0) Z(sw(n, i —4mj) — s10(n,i —2m — 4mj)) =0
jez

too.
In order to give a concrete representation of g,,(x, 1,0) recall that
the Lucas polynomials

n—1
n—k n
L, _ k n—2k
(x,5) E ( . )n_ksx

=0
(x—i— Vax? —|—4s>n N (x— Vx? +4s>"
2 2

(13)
are characterized by the recurrence

Ly(x,s) = xL,_1(x,s) + sLy,_2(x,s) (14)
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with initial conditions Ly(x,s) =2 and L;(x,s) = x. Therefore
gn(x,1,0) = L, (x,—1).
The first values of the sequence (L,(x,—1)),, are

x, =2, xX=3x, x*—4x*+2,....

Theorem 2. For m > 1 the sequence

a(n,2m, k,—1) :;(—1)1 V - (2%)1' + kJ

satisfies the recurrence relation
L,(N,—1)a(n,2m,k,—1) = 0. (15)

Remark. It should be noted that a(n,2m,0,—1) has the following
combinatorial interpretation. It is the number of the set of all lattice
paths in R* which start at the origin, consist of |5] northeast steps
(1,1) and [%$!] southeast steps (1,—1) and which are contained in
the strip —m<y<m (cf. e.g. [5]).

The generating function of the sequence (a(n,2m,0,—1)),, is
given by B

_ o Cm(x)
;a(n,Zm,O, 1)x" = a0

where

dy(x) = qu, 1,o>x’" :x”‘Lm<)—lc,—1> = L,(1,—x%)

and ¢, (x) is a polynomial of degree less than m.
The first values of (¢, (x)),,, are
cax)=1, o) =14+x c@x) =1+x—x%
() =14+x-22—x°, es(x)=1+x—-32 -2 +x*,....
This implies as above that
em(x) = Fou(1, —x*) + xFp_1 (1, —x%).

Corollary 2. For m > 2 the generating function for a(n,2m,0, —1) is
given by

Z a(n,2m,0, —1)x" =

n>0

Fo(1,—x%) 4+ xF,_1(1, —x?)
L(1,—x2) '

(16)
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4. Further Applications

4a) The same method can be applied to the general sum

n n
a(n,m,k,z) = Zz’ {n—mj—i—kJ :ZZZJ {n—2mj+kJ
JjeZ 2 JjeZ 2
n
+Zzzf—1 {n—2mj+k+mJ
je? 2

Here we get
L(N, =1)a(0,m,k,z) = Lu(N,—1) > z7u(0,k — 2mj)
jez
N,—1) Zzzf u(0,k + m — 2myj).
jez

In this case we have

1, if k=2mj —m

L,(N,—1Du(0,k —2mj) = < 1, if kK =2mj + m,

0, else,
or
Ly(N,—1D)u(0,k — 2mj) = u(0,k — m — 2mj) + u(0,k + m — 2myj).
This implies
Ly (N, —1)a(0,m,k,z) =Y 2% (u(0,k — m—2mj) + u(0,k +m— 2mj))

jez
+ 3 w0,k +2m — 2mj) +u(0,k — 2mj))
JEZ
1
o <Z+E>a(0,m7k,z)

Thus we get

<L,,,(N, 1) - (Z + %))a(O,m,k,z) - 0.

Theorem 3. The sequence

a(n,m, k,z) :sz {n—mj—i—kJ
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satisfies the recurrence relation

<Lm(N, —1) - <z + %))a(n,m, k,z) =0. (17)

Remark. It is easy to see that the initial values of a(n,m,0,z) are
J
a(n,m,0,z) = jJ for 0<j<m-—1,

2
m—1
a(m—1,m,0,z) = M—IJ +-,

1
a(m,m,0,z) = mJ +-+z
5 Z
2
The generating function of the sequence (a(n,m,0,z)) for m > 1 has
the form

Za(”,m,o,z)xn _ n(x,2)

n=0 A (¥, 2)
with
el ) 1) o)
and

! 2 2
Cm(x,2) = ——+ Fpu(1,—x7) + xF,_1 (1, —x°).

z
Since d,(x) = L,(1,—x%) and F,(1,— )—i—me 1(1, —x?) satisfy
the same recurrence Ay, (x) = hy—1(x) — _2(x) we get

<dm(x) e (z—i—%) )am(x) - <dm1 (x) —x"! (z +%> > 1 ()
+x° (dm_2 (x) =22 (z + %) ) a2 (x)

= dyp1 (%) (@ () = a1 (%)) + Xl -2 () (@ (x) = a2 (x))

—x" <z+i)am(x) + xm! <z+i>am_1(x) —x" <z+i>am_2(x).
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Since d,,(0) = 1 it is easy to verify that for m > 3

m—2

dmn—1(x)(am(x) — am-1(x)) = ——— — X"z +x"(-)

and

X"
X2l (X) (A (X) — ap_o(x)) = = =—+x"(---).
Therefore we get

A (x,2)am(x) — dyp—1(x,2)am—1(x) + xzdm,z(x, 2)am—2(x)

xm72

=T X().
Z
Now the left-hand side must be a polynomial of degree less than m.

Therefore we have in fact

xm72

dm(x>z)am(x) - dm—l(x, Z)am_l(x) +x2dm_2(x, Z)am_z(x) = — —Z .
Now ¢, (x,z) satisfies the same recurrence. Since the initial values

coincide, we get

Corollary 3. For m > 2 the generating function for a(n,m,0,z) is
given by

p (") + F(1, —x%) 4 xFpi (1, —x%)
Za(n,m,O,Z)x = L1 —x3) — "z £ (1/2)) . (18)

n>0

Remark. In the same way we get
Za(n,Zm +1,m+1,2)x"
n>0
(1 + 2)xX™(Fpy1 (1, —x%) + xF,, (1, —x?))
Loms1(1, —x2) = x2m 1 (z 4 (1/2))

For z = —1 the right-hand side vanishes and therefore we get again
a(n,2m+1,m+1,—-1) =0.

4b) For the special case z = 1 also simpler recurrences can be found.
It is easy to verify that

1 1
<x+——2>Fm<x+—,—l>(1 X)) =—— —— — X"+
x x
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This implies as above
(N —2)F,(N,—D)u(0) = (K" — K™ ' — K™+ K " )510(0).
Therefore we get
(N = 2)Fu(N,=1) )~ K¥"u(0)

J
=Y K¥M(K" K" = K"+ K" )s10(0) = 0.
J

From this we conclude as above

Theorem 4. The sequence

n
a(n,2m,k,1) = Z n— (2m)j+ k
jez 2
satisfies the recurrence relation
(N —2)F,(N,—1)a(n,2m,k,1) = 0. (19)
Corollary 4. For m > 1 the generating function for a(n,2m,0,1) is
given by
Fo(1,—x*) — xF,_1(1,—x?)
a(n,2m,0,1)x" = (20)
; (1 = 2x)F,,(1,—x2)

4c) It is again easy to verify that

(I BRI I

1 1

=— ———
XM xm72

Therefore we get
(Lm(K + K_la _1) - Lm—l(K + K_la _1)) zK(Zm—l)ju(o)
J

— ZK(zm_l)j(Km o Km—2 . K—m+l + K_m_l)SLO(O) — O
J

This implies

Theorem 5. The sequence
n

a(n,2m —1,k, 1) :Z V—(zm— 1)j+kJ

jezZ 2
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satisfies the recurrence relation
(Lw(N,—1) = L,—1(N,—1))a(n,2m — 1,k,1) = 0. (21)
Corollary 5. For m > 2 the generating function for a(n,2m — 1,0, 1)

is given by
mel(l,—xz)
a(n,2m—1,0,1)x" = . 22
nZ(; ( ) Ly(1, —x?) — xLy—1 (1, —x?) (22)

Remark. For the special cases z = £ 1 numerator and denumerator
of the generating function

(™ 1/2) + Fu(1, =) + xF 1 (1, —x?)
Ly(1, —x*) —x"(z+ (1/2))

have common divisors which can be cancelled.

This can be verified by using the following identities, which are
easily deduced from the representations (6) and (13) (cf. e.g. [3]):

Low(x,—1) =2 = (x* = 4)(F(x, - 1))’
(Ln(x, —1) = Ly_1 (x, —1))?
x—2 ’
Lom(x, —1) +2 = (L(x,—1))%,
Lom1(x, —1) + 2 = (x + 2)(Fp(x, =1) = Fp_y (x, —1))*.

Lzm_l(x, —1) — 2 =
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