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Abstract 

This paper presents a novel method to partition urban space with respect to its mobility 

network rather than abstract administrative boundaries or simple grids. The main goal of 

our method is to support mobility infrastructure planning and optimization in an urban 

environment. To this end, our tessellation, which is based on constrained Voronoi 

tessellation, generates cells that are compact and centred around street intersections. 

Furthermore, it takes into account unsuitable areas and barriers that obstruct movement 

through urban space. The resulting cells are fine-grained planning units that reflect the 

characteristics of the underlying mobility network. Potential applications include demand 

modelling, location planning and optimization for bicycle- and car-sharing systems, or 

public transport stops. 
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1 Introduction 

Spatial partitions come in a variety of forms. They can be based on coordinates alone, as in 
grids, based on manually drawn boundaries, or formed automatically by generators based on 
input seed locations, as in Voronoi diagrams (Gold, 2016). Tessellations subdivide space 
using one or more geometric shapes with no overlaps and no gaps. More specifically, 
common tessellations of urban space are city blocks, districts, postal areas, and regular square 
or hexagonal grids. These tessellations are widely used in fields such as urban planning, 
spatial marketing (Bradlow et al., 2005) or location optimization (Asamer et al., 2016) to 
model customer distribution, workplace data, and various other variables that influence 
demand. 

However, these common tessellations are not well suited for planning mobility 
infrastructure, such as stations for bicycle- and car-sharing systems, or public transport stops, 
due to various shortcomings. City blocks or districts focus on the area between streets rather 
than the street space itself. In mobility infrastructure planning, when a location 
recommendation refers to a city block, it remains unclear for a planner which streets 
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enclosing the block should be preferred. In bicycle-sharing system planning, for example, a 
particularly suitable station location at an intersection could be right at a corner where 
multiple city blocks meet. On the other hand, regular square or hexagonal grids are sensitive 
to the selected cell size. If cell sizes are small, it is likely that the resulting tessellation will 
contain cells that have no connection to the street network. Large cells, on the other hand, 
may contain areas that are actually disconnected due to barriers, such as rivers or rail 
infrastructure without crossings. Furthermore, tessellations with large cells are of limited use 
for planning mobility systems that should be highly accessible to pedestrians, since most 
pedestrians will only walk a limited distance of few city blocks, up to 800m (0.5 mile) to rail 
transit stations (Weinstein et al., 2008), and less for local bus stops or bicycle-sharing 
stations.  

We therefore propose a tessellation where cells are centred around street intersections in 
order to support mobility infrastructure demand modelling (Krykewycz et al., 2010, Rudloff 
& Lackner, 2014), planning and optimization (Asamer et al., 2016) in an urban environment. 
This approach makes it possible to perform location optimization without the need for 
manually predefined location candidates. Using groups of nodes or grid cells as potential 
locations rather than all available network nodes reduces the location optimization problem, 
which is NP-complete and therefore computationally intractable for realistic network sizes of 
hundreds to thousands of nodes (Owen & Daskin, 1998). The tessellation can be used in 
demand forecasting to predict demand per cell (based on number of residents, workplaces, 
access to public transport stations, education and other facilities), as well as subsequent 
location recommendations where certain cells are recommended as locations for new 
infrastructure. Our tessellation method supports modelling of unsuitable areas, for example 
parks or pedestrian-only areas where no new mobility infrastructure (such as stations of 
bicycle- and car-sharing systems) should be added, and barriers, such as rivers or rail 
infrastructure without crossings.  

The remainder of this paper is structured as follows: Section 2 introduces our proposed 
method for determining tessellation seeds and performing the tessellation; Section 3 presents 
results of applying these methods to a use case of planning optimal locations for a bicycle-
sharing system in the city of Vienna, Austria; we discuss the results and draw conclusions in 
Section 4.  

2 Methodology 

To support mobility infrastructure planning and optimization in an urban environment, our 
tessellation cells should be compact and centred around street intersections. Locations near 
intersections are preferable for new mobility infrastructure (such as stations for bicycle- and 
car-sharing systems), since they are, by definition, accessible from multiple directions. This 
makes them more accessible for both users and maintenance (such as reallocation of 
vehicles). This preference is confirmed by an analysis of current bicycle-sharing stations in 
Vienna, which are mostly located near intersections.1 Furthermore, the tessellation should 

                                                           
1
 https://www.citybikewien.at/en/stations/stations-map 
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consider constraints to enable modelling of unsuitable areas and barriers that obstruct 
movement through the urban space. This presents two distinct challenges: first extracting 
suitable tessellation seeds at intersections from the underlying mobility network, then 
constructing Voronoi cells (that is, the area consisting of all points closer to that seed than to 
any other) which account for unsuitable areas and barriers. Unsuitable areas are ones where 
no new mobility infrastructure should be added. They are defined by the planner and 
include, for example, parks or pedestrian-only areas. Similarly, barriers are features that 
restrict mobility. For the use case presented in Section 3, barriers identified by the planner 
include rivers, rail infrastructure without crossings, and major roads that are difficult to cross.  

Seeds for tessellation are derived from nodes in the mobility network. In most cases, it is not 
feasible to use the network nodes directly, because many intersections consist of multiple 
nodes (see Figure 1). It is therefore necessary to group the network nodes. To group nodes, 
we compare two clustering methods:  

- DBSCAN clustering: a density-based clustering method in which clusters are defined 
by a neighbourhood size that is the maximum distance between two nodes (Ester et 
al., 1996). The distance should be great enough to enclose all nodes at an 
intersection but smaller than the distance between neighbouring intersections to 
avoid merging of intersections. 

- Convex clustering: a cluster algorithm for convex spatial clusters with desired spatial 
extents, introduced by Andrienko & Andrienko (2011).  

The tessellation seed is the centroid of the cluster. In contrast to other clustering methods, 
such as K-Means, these methods do not require the number of clusters as an input. While 
Yang et al. (2011) used network distance, we computed Euclidean distance due to the very 
short distances between nodes that should be generalized into a single intersection. In border 
cases, such as a narrow barrier that splits an intersection area, this could cause issues that 
require user intervention.  

 

Figure 1: Network nodes and buffers with a radius of 20m 
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Voronoi tessellation is a way to naturally partition space into sub-regions for modelling 
spatial structures and locational optimization (Okabe et al., 2009). However, ordinary 
Voronoi tessellation does not respect constraints posed by unsuitable areas and barriers. 
Simply removing these areas from Voronoi cells leads to inconsistencies, because cells can be 
split into multiple parts, particularly by narrow barriers (as illustrated in Figure 2). We 
therefore need a way to construct a constrained Voronoi tessellation.  

 

 (a) (b) (c) (d) 

Figure 2: (a) Four tessellation seeds (points) and a barrier (hatched); (b) ordinary Voronoi tessellation; 

(c) Artefacts (grey areas) from splitting Voronoi cells along barrier; (d) constrained Voronoi tessellation 

Ordinary Voronoi tessellations can be constructed using different algorithms, including 
Fortune's algorithm (Fortune, 1987) and the Bowyer-Watson algorithm (Bowyer, 1981; 
Watson, 1981). Fortune’s algorithm is based on a sweep line approach. The Bowyer-Watson 
algorithm constructs a Delaunay triangulation from which the dual representation Voronoi 
tessellation can be derived. Similarly, constrained Delaunay triangulation (CDT), as described 
for example by Chew (1989), has a dual representation that is a type of Voronoi tessellation. 
However, cells in this dual graph can overlap each other (Chew, 1989; Aurenhammer & 
Klein, 2000). For a thorough discussion of algorithms for ordinary and constrained Voronoi 
tessellation and Delaunay triangulation, we refer the reader to Aurenhammer & Klein (2000). 
Research in this area is still ongoing; improved algorithms to compute network Voronoi 
diagrams (Okabe et al., 2008) or Voronoi tessellations with constraints (Tournois et al., 2010) 
have been proposed. 

To the best of our knowledge, constrained Voronoi tessellation is not available in current 
GIS applications. While ArcGIS supports constrained Delaunay triangulation, Voronoi 
tessellation can only be performed on unconstrained Delaunay triangulations (ESRI, 2016a). 
An alternative, which is available in both ArcGIS (ESRI, 2016b) and GRASS GIS (GRASS 
Development Team, 2016), is to compute a cost allocation raster – that is, for each cell, its 
nearest source (in our case a tessellation seed) based on the least accumulative cost over a 
cost surface. We do not pursue network Voronoi diagram approaches (Okabe et al., 2008), 
since network-based approaches are more suitable to generate Voronoi cells with a greater 
spatial extent than are required by our approach. The strength of network-based Voronoi 
diagrams is that network connectivity is considered during cell generation. Since the cells in 
our approach, which is focused on use cases such as bicycle-sharing system planning, only 
encompass a small area around individual intersections, network connectivity does not come 
into play.  

https://en.wikipedia.org/wiki/Fortune%27s_algorithm
https://en.wikipedia.org/wiki/Fortune%27s_algorithm
https://en.wikipedia.org/wiki/Fortune%27s_algorithm
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Figure 3 shows the tessellation process implemented as a QGIS Processing model (Graser & 
Olaya, 2015) using GRASS GIS algorithms. The model input parameters include the 
planning area, tessellation seeds and raster cell size (provided as the length of the side of a 
square raster cell). First, the cost raster is derived from the input planning area. Barriers are 
modelled as holes in the planning area and result in cost raster cells with NULL values. The 
cost allocation raster is then computed using the previously generated tessellation seeds as 
starting points. The resulting cost allocation is then vectorized to obtain a preliminary 
tessellation. It is worth noting that it is necessary to clean the vectorized cost allocation raster 
from areas smaller than or equal to the input raster cell size squared. These single raster cells 
are artefacts of the cost allocation raster (particularly at allocation area corners with acute 
angles), or artefacts from seeds that were located inside barriers. Finally, the geometries are 
generalized to smooth the jagged edges of the vectorized areas.  

 

Figure 3: Flow chart of the tessellation implementation in QGIS Processing using GRASS GIS algorithms.  

3 Results 

In this section we apply our tessellation to a use case of planning optimal locations for a 
bicycle-sharing system in the city of Vienna, Austria. Since distances between stations in 
successful bicycle-sharing systems are as low as 300m (García-Palomares et al., 2012; O’Brien 
et al., 2014), it is particularly important to plan at the level of intersections, and the high 
number of stations required calls for an objective automated planning process. We compare 
the results of different clustering methods on tessellation seeds and the resulting 
tessellations. The test area is depicted in Figure 4. It covers the inner city, with a bicycle 
network of 23,364 nodes. The bicycle network was derived from raw OpenStreetMap data 
by extracting ways that can be used by cyclists and making them routable.  
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Figure 4: Map with the border of Vienna and the bicycle network nodes. This and the following maps 

use background map tiles cc-by Stamen Design, data © OpenStreetMap contributors. 

First, we compute tessellation seeds using convex clustering and DBSCAN clustering with a 
neighbourhood size of 40m, which was determined empirically to be large enough to contain 
all nodes of an intersection while being small enough, in most cases, to avoid the merging of 
neighbouring intersections. Figure 5a shows the results of convex clustering for three target 
cell sizes (40m, 70m and 100m), as well as DBSCAN clustering in a part of the city where the 
block size is roughly 75m by 150m. For comparative purposes, Figure 5b shows the resulting 
tessellation seeds for an area with irregular street layout. Convex clustering with 40m target 
size creates the highest number of seeds (n=9,563), followed by DBSCAN clustering 
(n=7,249); seeds are located at almost every intersection, with only a few cases of merged 
neighbouring intersections. By contrast, convex clustering with 70m (n=5,998) or 100m 
(n=3,822) merges considerably more intersections. This illustrates the greatest challenge of 
convex clustering – that is, to select a suitable target cell size, particularly in cities where 
block size varies considerably. DBSCAN clustering does not require a target cell size and 
adapts to variations in block size. This also means that we cannot affect the number of 
resulting tessellation seeds from DBSCAN clustering, while we can influence the number of 
seeds from convex clustering by varying the target cell size. Overall, the reduction of 
potential locations from the initial network nodes (n=23,364, shown in Figure 4) to the 
clustering results (n between 3,822 and 9,563) significantly reduces the size of the location 
optimization problem, which is NP-complete. 
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 (a) Seeds in an area with grid-based layout   (b) Seeds in an area with irregular street layout 

Figure 5: Local comparison of different tessellation seed-creation options. Circle quarters represent 

seeds generated using convex clustering for cell size 100m (orange, n=3,822), 70m (red, n=5,998), and 

40m (green, n=9,563), as well as DBSCAN clustering (blue, n=7,249). With 40m convex clustering and 

DBSCAN, seeds are located at almost every intersection. By contrast, convex clustering with 70m or 

100m merges considerably more intersections.  

For the cost raster, we opted for a raster resolution of 5m per cell, which is small enough to 
preserve necessary details (such as narrow barriers) but large enough to keep the subsequent 
computation time of the cost allocation raster low. Each passable cell has a value of 1 and 
barriers are modelled as cells with NULL values. The cost raster dimensions are 2,632 by 
2,420 cells. Both cost raster and tessellation seeds are then used to compute the cost 
allocation map, which in turn is vectorized to generate the desired vector tessellation cells.  

Figure 6 provides a comparison of the results of tessellation using convex clustering with a 
target cell size of 70m and DBSCAN clustering. In many areas both seeds create a similar 
tessellation, but in regions with smaller blocks convex clustering starts to merge areas around 
multiple neighbouring intersections. The difference in the number of seeds and the number 
of resulting tessellation cells is caused by some seeds being located in unsuitable areas and 
therefore being discarded during the tessellation process. Figure 6 also illustrates some 
advantages of constrained tessellation cells over regular square grid cells. In a regular grid 
with a similar number of grid cells (6,319 compared to 5,830 for convex clustering or 7,082 
for DBSCAN clustering), many cells contain areas that are divided by barriers. Splitting these 
cells along the barriers would result in artefacts of which some would be very small and not 
connected to the mobility network. Furthermore, the location of cell borders in a regular grid 
is dependent on an arbitrarily defined grid origin location (such as a corner of the bounding 
box around the planning area) rather than on any characteristics of the mobility network.  
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Figure 6: Constrained tessellations using convex clustering seeds (dashed red, n=5,830 for a target cell 

size of 70m) and DBSCAN clustering seeds (solid blue, n=7,082). A regular square grid with 180m cell 

size is provided for comparison (solid black, n=6,319). Hatched areas are tessellation barriers.  

The error introduced by computing Voronoi-like cells from a cost allocation raster rather 
than using vector Voronoi algorithms is negligible for our use case. Figure 7 shows a regular 
Voronoi diagram overlaid with a cost allocation raster tessellation in an area which is not 
affected by barriers and is therefore suited for comparison. As expected, the greatest 
observed distances between cell borders correspond to the chosen cost raster cell size of 5m. 
The distances can be decreased by computing a more fine-grained cost raster.  

Smaller raster cells increase computation time. Table 1 gives the runtime of the cost 
allocation raster tessellation for 5,830 seeds (from convex clustering with 70m) on a single 
core of an Intel® Core™ i7-4600U CPU @ 2.10GHz × 4 CPU. By default, the most 
expensive computation – that is, the r.cost function – is configured to use up to 300MB of 
memory. This value was increased to 1GB for 2m rasters and 4GB for 1m rasters. For 
comparison, ordinary GRASS Voronoi tessellation takes 4.3s to construct a tessellation for 
the same 5,830 seeds. 

Table 1: Runtime of the cost allocation raster tessellation of 5,830 seeds (from convex clustering with 

70m) on a single core of an Intel® Core™ i7-4600U CPU @ 2.10GHz × 4 CPU (runtime values based on 7 

independent runs). 

Raster size [m] 5 4 3 2 1 

Runtime [s] 34.3 – 34.7 39.5 – 40.4 50.2 – 51.0 80.3 – 81.6 237.7 – 250.7 
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Figure 7: A comparison between vectorized cells from a cost allocation raster (dashed blue) and 

ordinary Voronoi cells (solid pink) in an area without barriers shows that both approaches achieve 

similar results. 

To illustrate the benefits of our constrained tessellation approach for planning mobility 
infrastructure, cells from DBSCAN clustering were used to compute different scenarios for 
bicycle-sharing system planning in Vienna. (The exercise was hypothetical, Vienna already 
having a bicycle-sharing system.) As inputs for the planning process, relevant values, such as 
number of inhabitants, work places and other attractors, were determined for each cell. 
Additionally, a distance matrix describing travel times between all cells was computed. Since 
our cells are centred on network intersections, computing network travel times between cells 
is straightforward using cell centres as start and end locations. In comparison, the definition 
of distances between cells in a regular grid would be much less clear, since cell centres might 
be further away from network nodes and some cells might not have any network connection 
at all. Figure 8 shows preliminary bicycle-sharing demand forecasts for each cell, which will 
be used to determine optimal locations. Both the demand forecasting and location 
optimization model are still under development and therefore further results are not yet 
available. 
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Figure 8: Forecast bicycle-sharing demand (in number of trips during the morning peak hours 07:00–

11:00 on an average work day) originating in the cell for Vienna city centre with the highest values, at 

Westbahnhof in the south-western corner. Grey areas represent tessellation barriers. 

4 Discussion and Conclusion 

Tessellating urban space based on street intersections and barriers to movement presents two 
distinct challenges: extracting suitable tessellation seeds from the underlying mobility 
network, and constructing a tessellation that accounts for unsuitable areas and barriers that 
obstruct movement through urban space. We presented a novel tessellation method which 
tackles both challenges and which is specifically designed to enable the demand modelling, 
location planning and optimization of mobility systems.  

We presented two methods for extracting tessellation seeds. Convex clustering requires the 
specification of a target cell size, while DBSCAN clustering adapts to the city block size, 
which can vary throughout the planning area. This means that, using DBSCAN clustering, 
we cannot affect the number of resulting tessellation seeds, while we can influence the 
number of seeds from convex clustering by varying the target cell size. If an application’s 
computation time is sensitive to the number of input cells, it might be necessary to resort to 
convex clustering and increase the target cell size. In many cases, for other applications 
which can accommodate a higher number of input cells, the adaptive cell sizes of DBSCAN 
clustering will be preferable.  

Since current GISs lack support for constrained Voronoi diagrams, we opted for a solution 
based on computing cost allocation rasters to account for unsuitable areas and barriers. Our 
results show that the error introduced by computing Voronoi-like cells from a cost allocation 
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raster rather than using vector Voronoi algorithms is negligible for use cases in mobility 
infrastructure planning.  

Potential applications include demand modelling, location planning and optimization for 
systems that should be highly accessible to pedestrians, since most pedestrians will only walk 
a limited distance of a few city blocks. Examples of such systems include but are not limited 
to bicycle- and car-sharing systems, and public transport stops. A demand forecasting model 
for bicycle-sharing systems based on this tessellation method is currently under development.  
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