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 Abstract 

In chemical emergencies, response units rely on the speedy provision of detailed 

information about the area affected by potentially hazardous substances in order to 

decide on efficient response actions. Unmanned Aerial Vehicles (UAVs) equipped with 

remote sensing equipment offer a flexible way of providing this information. Hence, these 

systems are becoming more and more interesting for firefighters and plant operators alike. 

Although having to actively control the UAVs makes high demands on the response squad 

in an already stressful situation, cyber-physical systems that allow the automatic 

deployment of UAVs have rarely been studied to date.  

We present and evaluate a system for planning UAV missions in emergency situations. We 

propose two different planning algorithms: (1) a mapping approach for covering the entire 

target area; (2) an algorithm that selects sensing locations across a wide area in order to 

allow quicker exploration. We verify the applicability in an extensive simulative study and 

demonstrate the information gain achieved, as well as the remaining uncertainty, after a 

flight, about the spatial phenomenon observed. 

Keywords:  

micro rapid mapping, mission planning, correlated orienteering, QGIS, situational 

awareness  

1 Introduction 

Chemical emergencies resulting from fires or accidents often involve large contaminated 
areas and hazardous substances that may be invisible or scentless. This poses a problem for 
emergency response and relief units who require reliable information about the affected area 
as well as the chemicals involved. This information allows the emergency services to decide 
on the appropriate protective equipment, to plan the warning and evacuation of the 
population, and to coordinate the effective deployment of response units.  

Remote sensing technologies are a popular means for providing up-to-date information 
within a short time after an incident. Arguably the best-known examples of such 
technologies are satellite-based systems such as the Copernicus Emergency Management 
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Service (see. e.g. Guzzetti et al., 2012; European Parliament, 2017). The objective of the 
Copernicus programme is to provide up-to-date information within several hours or days 
after large-scale disasters. However, for the majority of emergencies faced by firefighters and 
other response units, this delay is prohibitively high. For these applications, small Unmanned 
Aerial Vehicles (UAVs) are attracting increased interest. Compared to satellite-based 
applications, they are more flexible and can be launched with minimal delay after an incident. 
As they cover much smaller areas than a satellite-based system and the mission duration is 
limited to minutes or hours, we call this approach ‘micro rapid mapping’. 

In this paper, we present a mission-planning system that enables response units to deploy 
UAVs automatically after an incident. Depending on the size of the affected area and the 
available flight time of the UAV, this system plans surveillance missions that either ensure 
complete coverage of the target area or include selected sensing locations in order to quickly 
estimate the extent of the contamination. We evaluate the proposed algorithms in an 
extensive simulative study and analyse the information gain, as well as the remaining 
uncertainty about the observed phenomenon, in order to demonstrate the applicability of the 
mission-planning system. 

2 Emergency Surveillance Using UAVs 

The surveillance planning problem discussed here was studied as part of a research project 
that seeks to develop new technologies for the effective use of UAVs in the context of 
firefighting. The success of such a cyber-physical system depends on three things: 

(1) The availability of appropriate hardware and equipment, i.e. vehicles with sufficient 
speed, range and robustness for practical applications; 

(2) Remote sensing technologies and data processing tools fit for the mission in question, 
i.e. sensors able to detect hazardous gases or fire pockets;  

(3) Software supporting the immediate and automatic deployment of UAVs requiring as 
little manual oversight as possible. 

Significant progress has been made in all three areas in recent years. For example, among the 
currently available UAV systems are multicopters that are able to transport sensors and 
processing equipment with a total weight of up to 5 kg for around 20 to 30 minutes. This is 
sufficient for most scenarios that firefighters face. The available sensing devices include 
thermal and hyperspectral sensors as well as conventional video cameras. Lightweight 
thermal cameras allow the monitoring of fires and the detection of people. Other thermal 
imagining systems are able to identify specific substances, such as carbon monoxide or 
methane (FLIR, 2017). UAV-based hyperspectral imaging systems have already found 
widespread use in agriculture (Zhang & Kovacs, 2012; Mulla, 2013) and are becoming more 
relevant for other applications. In the BigGIS research project, for example, we studied the 
potential of these cameras for detecting substances in smoke clouds. Figure 1 gives an 
example from a preliminary test in which a UAV surveyed an artificially created smoke cloud 
blended with chlorophyll. This technology is particularly interesting for the chemical 
industry, where prior knowledge about potential contaminants is available. A UAV equipped 
with an appropriate sensor provides a flexible tool for a wide range of hazardous gases. 
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Figure 1: Section of a georeferenced hyperspectral image of an artificially created smoke cloud 
blended with chlorophyll 

UAV mission-planning tools that relieve human decision-makers have received less 
attention. Usually, a UAV’s missions are planned either ad-hoc by a human operator, based 
on a live video stream, or by using a planning tool that focuses on the complete coverage of 
a designated target area (see e.g. Galceran & Carreras, 2013). In this paper, we present an 
interactive tool that supports a human decision-maker in this task. An interface in the form 
of a QGIS plugin (QGIS Development Team, 2017) allows the user to specify the area of 
interest, flight altitude and other parameters. Figure 2 shows a screenshot of this plugin with 
a specified target area and mission-planning parameters. Using this information, the 
application then computes a two-stage flight plan. In the first stage, the UAV provides an 
initial survey image of the entire target area at high altitude. This serves as a preliminary 
indication of the situation for the human decision-maker. In the second-stage, high-
resolution images are provided at low altitude. Here, the user can choose between two 
planning variants: 

(1) If the time available for executing the flight is sufficient, the UAV can map the entire 
target area. In this case, the system computes a vehicle route with minimum resource 
requirements, resulting in a regular pattern such as the one depicted in Figure 2.  

(2) If complete coverage is not possible, the target area is divided into a regular grid of 
potential target points. The tool plans a mission by selecting a subset of target 
locations that the UAV visits during its flight. In order to provide the user with 
particularly relevant information, priorities within the target area are taken into 
account when deciding on this subset of targets. In the context considered here, these 
priorities are determined based on the initial survey image. Specifically, the areas 
where an initial analysis of the survey images indicates a high likelihood of hazardous 
substances being present are of particular interest for the decision-maker. These areas 
are therefore prioritized for the detailed flight. High-resolution images can then 
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confirm the assessment, detect erroneous measurements or classifications, and 
accurately determine the nature and extent of the contamination.  

In the context of firefighting, the command vehicle is equipped with a computer, ground 
station and radio transceiver, thus allowing the transmission of high-resolution images during 
the flight. The data is then immediately available for detecting substances. Up-to-date images 
can be visualized by the user via the same QGIS tool, thus eliminating the overheads 
necessary for operating distinct planning and visualization systems. 

 

Figure 2: Interface for planning UAV missions in QGIS. The flight plan indicates target points (red) as 

well as the area covered. Flight altitude, number of pictures and camera specifications are set on the 

right-hand side. 

3 Mission Planning  

In this section, we present in more detail the two planning alternatives for micro rapid 
mapping. Both mission-planning approaches determine a sequence of discrete waypoints, 
each of which represents the centre of one image taken by the UAV. The corresponding 
missions are communicated to the UAV, which can then automatically traverse the target 
region. 
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Complete Coverage 

If the complete coverage of the target area is possible, the mission-planning algorithm 
determines a covering path of the shortest length possible. In this case, the UAV traverses 
the area following a regular pattern (see e.g. Figure 2). Figure 3 gives the algorithm for 
computing the target locations in order. The algorithm can account for overlap requirements 
between adjacent images, which facilitates image post-processing. Different overlaps can be 
specified for forward and side overlap, i.e. overlap in the direction of the route and overlap 
in the lateral direction. 

Input: target area bounding box {(𝑥𝑙 , 𝑦𝑙), (𝑥𝑢, 𝑦𝑢)} defined by lower-left and upper-

right coordinates, image side length 𝑘, overlap in the direction of the flight 𝑟𝑙 and 

orthogonal to the direction of the flight 𝑟𝑤  

Return: ordered sequence of target locations 𝑃 = [(𝑥0, 𝑦0), … , (𝑥𝑛, 𝑦𝑛)] 

1: Number of images along each axis: 𝑛𝑥 = ceil(
𝑥𝑢−𝑥𝑙

𝑘 ∙𝑟𝑙
), 𝑛𝑦 = ceil(

𝑦𝑢−𝑦𝑙

𝑘 ∙𝑟𝑤
) 

2:  Total number of target images 𝑛 = 𝑛𝑥 ∙ 𝑛𝑦 

3:  Determine first location (𝑥0, 𝑦0) with 𝑥0 = 𝑥𝑙 + 0.5𝑘 ⋅ 𝑟𝑙 ,   𝑦0 = 𝑦𝑙 + 0.5𝑘 ⋅ 𝑟𝑤 

4: Initialize line count 𝑙 = 1, target point index 𝑖 =  1 

5: Do 

6: If 𝑖 mod 𝑛𝑥 = 0 then 

7: 𝑙 = 𝑙 + 1                          (⊳ continue with the next line of target 

points) 

8: 𝑦𝑖 = 𝑦𝑖−1  + 0.5𝑘 ⋅ 𝑟𝑤 

9: Else 𝑦𝑖 = 𝑦𝑖−1 

10: If 𝑙 > 𝑛𝑦 then break                (⊳ stop computation: entire region is 

covered) 

11: If 𝑙 mod 2 = 0 then  𝑥𝑖 = 𝑥𝑖−1 − 0.5𝑘 ⋅ 𝑟𝑙   

12: Else 𝑥𝑖 = 𝑥𝑖−1 + 0.5𝑘 ⋅ 𝑟𝑙 

13:  𝑖 =  𝑖 + 1 

Figure 3: Mission-planning algorithm for complete coverage 

Selective Mission Planning 

If complete coverage is not possible, the planning problem consists in providing as much 
useful information to the human decision-maker as possible while respecting the limited 
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flight time and range. This planning problem is a variant of the orienteering problem (see e.g. 
Gunawan et al., 2016), which consists in selecting a subset of targets to visit and determining 
the order in which to visit them.  

The Orienteering-Problem Model 

We can formally define the underlying planning problem as follows: we consider a set of 

candidate target locations = {𝑣0, … , 𝑣𝑘}, each of which is associated with a reward value 

𝑢𝑖 > 0. In our case, rewards represent the reflectance in the initial survey image at relevant 
wavelengths. The reward is obtained when a sensing location is included in the UAV’s 
flightpath. Hence, areas that are more likely to be affected by critical substances are 
prioritized when planning the UAV mission. Travel between distinct targets is associated 

with a non-negative travel time 𝜏𝑖𝑗, and surveying a target location requires a fixed time 𝜏𝑓𝑖𝑥. 

The UAV has a maximum allowed travel time budget 𝐵. The objective is to determine a path 

𝑃 through a subset of the candidate waypoints in V such that maximum travel time is not 
exceeded and the total information gain is maximal. 

Objective Function 

A crucial aspect of this orienteering problem is how the notion of ‘information gain’ can be 
operationalized for planning UAV routes. In the case of emergency surveillance, the selected 
target locations that make up the path should have a high priority – i.e., in the case of a 
chemical emergency, they need to be associated with potentially high concentrations of 
contaminants. Furthermore, we want to exploit spatial correlations in order to increase 
information gain. Following Tobler’s first law of geography, we can assume that observations 
at sensing locations in close proximity to one another are similar. Knowing that, we therefore 
want to select sensing locations that are well distributed across the target area rather than 
focusing solely on hotspots. In this way, we can achieve a reliable idea of the true extent of 
the observed phenomenon.  

Yu et al. (2014) proposed a quadratic objective function that balances priorities and spatial 

dependencies. Specifically, they explicitly include partial utilities ∑𝑤𝑗𝑖𝑢𝑖 for targets that are 

close to the UAV’s flightpath, but not visited by the UAV. Here,  𝑤𝑖𝑗 ∈ [0,1]  is a 

weighting factor representing the strength of the correlation between 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. Explicitly 

modelling these partial utilities reduces the marginal benefit of sensing locations if other 
observations are made nearby. Hence, the model encourages a broader exploration of the 
target area. 

In this study, we define weighting factors such that they decrease with distance. We model 
information gain using a generalized formulation of the model proposed by Yu et al. (2014). 

For this formulation, we introduce additional binary variables 𝑧𝑖 , 𝑣𝑖 ∈ 𝑉 with 𝑧𝑖 = 1 if 

𝑣𝑖 ∈ 𝑃 and 𝑧𝑖 = 0 otherwise. The resulting metric is: 

𝐼(𝑃) = ∑ (𝑧𝑖𝑢𝑖 + (1 − 𝑧𝑖) min { ∑ 𝑤𝑗𝑖𝑢𝑖(𝑧𝑗 − 𝑧𝑖)

𝑣𝑗∈𝑉

})

𝑣𝑖∈𝑉

  (eq. 1) 
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In the remainder of this paper, we refer to the problem of maximizing 𝐼(𝑃) as the 
Correlated Orienteering Problem (CorOP).  

Local Search 

As a generalization of the well-known Travelling Salesman Problem, the CorOP is NP-hard 
(Lenstra & Kan, 1981). We solve the planning problem using the Adaptive Large 
Neighbourhood Search proposed by Pisinger & Ropke (2007) rather than attempting to find 
an exact solution. This algorithm has been shown to provide solutions of high quality with 
short computation times, which is of particular importance for the application considered 
here. 

In Figures 4 and 5, we give the pseudocode for two key components of the algorithm: the 
construction heuristic in Figure 4 builds a vehicle path by iteratively inserting targets such 

that they maximize some utility metric 𝑢𝑡𝑖𝑙(𝑣). This metric may, for example, represent the 

direct utility 𝑢𝑣 or the marginal utility that can be achieved by adding a target location 𝑣; i.e.  

𝑢𝑡𝑖𝑙(𝑣) =  𝐼(𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ∪ 𝑣) − 𝐼(𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙) where 𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙  is a partially constructed 

vehicle path. All targets are inserted in the emerging UAV path such that the necessary 
detour is minimal.  

Input:   partially constructed path 𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙  

Return: ordered sequence of target locations 𝑃 = [(𝑥0, 𝑦0), … , (𝑥𝑛, 𝑦𝑛)] 

1: Initialize utility metric util(v) 

2: While cost(𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙) < B 

3: Select location 𝑣 ∈ 𝑉\𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙  such that 𝑣 = argmax𝑣∈𝑉\𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙
 𝑢𝑡𝑖𝑙(𝑣)  

4: Add 𝑣 to path 𝑃𝑝𝑎𝑟𝑡𝑖𝑎𝑙 at the minimum detour position 

Figure 4: Construction heuristic for iteratively building vehicle routes 

The algorithm in Figure 5 depicts the Large Neighbourhood Search approach in which we 
embedded this construction heuristic. This heuristic modifies a solution by iteratively 
destroying and rebuilding parts of it in order to improve its total utility. The destruction 
operator removes some of the selected sensing locations from the vehicle’s planned 
flightpath in the current solution. Starting with the resulting partial solution, the construction 
heuristic then rebuilds a full UAV path. Using different utility metrics in this construction 
phase allows the rapid diversification of solutions in order to improve their objective value, 
and hence their utility. Finally, an acceptance criterion determines whether a solution is 
accepted or not. In our algorithm, improving solutions are always accepted, whereas 
solutions of decreasing utility are accepted with a probability that increases with the number 
of non-improving iterations in order to avoid or leave local minima.  
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Input: set of candidate targets locations 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑘}, vector of associated 

utilities 𝑢𝑖 > 0 ∀ 𝑣𝑖 ∈ 𝑉, matrix of weights 𝑤𝑖𝑗 ∈ [0,1] ∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 

Return: ordered sequence of target locations 𝑃𝑏𝑒𝑠𝑡 = [(𝑥0, 𝑦0), … , (𝑥𝑛, 𝑦𝑛)] 

Construct starting solution 𝑃𝑠𝑡𝑎𝑟𝑡 using the construction heuristic in Figure 4 

Initialize 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑃𝑠𝑡𝑎𝑟𝑡 , 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑠𝑡𝑎𝑟𝑡 , 𝑖 = 0 

While 𝑖 is less than the maximum number of iterations 

𝑃𝑝𝑎𝑟𝑡 =  𝑑𝑒𝑠𝑡𝑟𝑜𝑦(𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

𝑃𝑛𝑒𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑃𝑝𝑎𝑟𝑡) 

If 𝐼(𝑃𝑛𝑒𝑤) > 𝐼(𝑃𝑏𝑒𝑠𝑡) then 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑛𝑒𝑤 , 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑃𝑛𝑒𝑤 

Else if 𝑎𝑐𝑐𝑒𝑝𝑡(𝑃𝑛𝑒𝑤) then 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑃𝑛𝑒𝑤 

𝑖 = 𝑖 + 1 

Figure 5: Large Neighbourhood Search approach 

4 Simulative Study 

We verify the applicability of the proposed mission-planning system by using an extensive 
simulative study. As this study focuses on applications in firefighting, we specifically address 
incidents where the affected area is too large to easily develop or maintain situational 
awareness, e.g. major fires in industrial or residential areas. Note that we do not consider 
large-scale disasters, which are at the centre of the Copernicus Rapid Mapping programme. 
We therefore propose three scenarios that differ in terms of the size of the target region. In 
the first scenario, we consider a target area of 750 m x 750 m, i.e. approximately 0.56 km². 
This is approximately the maximum area that a single UAV can cover within its maximum 
flight time. The other two scenarios consider larger areas, of 1 km² and 1.56 km². These 
scenarios serve to show the effectiveness of UAV missions in target areas that cannot be 
covered in their entirety.  

Table 1 indicates all relevant vehicle and camera specifications for this use case. The 
parameters used are feasible for technologies currently available on the market, for example 
an AiD-MC8 Octocopter1 equipped with a Cubert S185 FireflEYE SE hyperspectral 
camera2.  

The target ground resolution is determined following Johnson’s criteria, a system of methods 
and indicators used for predicting the ability of a human observer to distinguish between 
objects depending on the number of pixels available. This system thus provides a rough 
approximation of an operational resolution. For example, approximately 10 pixels are 
required to detect a person, and approximately 50 to 80 pixels to identify one (i.e. to 

                                                           
1
 https://www.aidrones.de/english/drone-systems/octocopter-mc8/ 

2
 http://cubert-gmbh.com/product/uhd-185-firefly/ 
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distinguish a person from other objects) (Petrides et al., 2017). Based on these criteria, we 
can assume that a ground resolution of 5 cm is sufficient for detecting a human individual in 
images provided by a UAV. Given the camera specifications and this target resolution, this 
implies a flight altitude of 70 m for the detailed survey pictures. Each of the resulting images 
then covers an area with a side length of 50 m. 

Before planning UAV routes, we separate the target areas into discrete target points, each of 
which represents the centre of a single image taken by the UAV. These target points are 50 
m apart. The target area of scenario 1 therefore contains 15 x 15 = 225 candidate target 
points; scenario 3 includes 25 x 25 = 625 target points.  

Table 1: Vehicle and sensor configurations and target area size for the simulative study  

UAV system Max. flight time 5 to 30 minutes 

 Cruise speed 10 m/s 

 Acceleration 3 m/s² 

Sensor system Camera resolution 1MP 

 Focal length 12 mm 

 Target ground resolution 5 cm 

 Resulting flight altitude 70 m 

Target area  Scenario 1 750 m x 750 m  

 Scenario 2 1,000 m x 1,000 m 

 Scenario 3 1,250 m x 1,250 m 

For each scenario, we created five synthetic, autocorrelated random fields using the gstat 
package (Pebesma et al., 2017). The simulated values varied between 0 and 100. Figure 6 
gives an example of the semivariogram describing the generated data and one realization of 
such a random field. Maximum flight durations vary between 5 and 30 minutes, resulting in a 
total of 30 instances per scenario.  

 

Figure 6: Generation of synthetic test data. Left: Gaussian kernel used for spatial simulation. Right: 

Resulting realization of a spatially autocorrelated random field. 
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5 Results 

The objective of the simulative study was to demonstrate the applicability of an automatic 
surveillance approach in an emergency. We therefore applied the proposed planning 
algorithms to the test instances derived in Section 4. In this section, we evaluate the 
algorithms’ results focusing on two aspects that are relevant for potential users of such a 
surveillance system: the spatial coverage achieved and the information gain achieved. 

Spatial Coverage 

For a human decision-maker, information about the spatial distribution of contaminants 
across an entire target area is arguably the most important information. We therefore 
evaluated the area covered for both mission-planning approaches proposed in Section 4. 

 

Figure 7: Achievable coverage depending on the flight time for both planning algorithms. 

The results are summarized in Figure 7. The graph on the left-hand side indicates the 
maximum area that a UAV can cover in its entirety as a function of the available flight time. 
In order to provide an unbiased comparison with regard to the orienteering-problem 
formulation, this evaluation disregards the overlap that may be required for a mapping flight. 
Given a flight time of 1,800 seconds, a single UAV can cover only around 0.5 km² this way. 
Obviously, complete surveillance is realistic in cases of small affected regions, but quickly 
becomes impractical for larger target areas or when there is a tight restriction on maximum 
flight times.  

We apply the CorOP approach only when complete coverage is impossible, i.e. when the 
potentially affected area after an incident exceeds the maximum coverable area. In this case, 
we seek to evaluate whether the UAV route traverses sufficiently large parts of the target 
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area. To do this, we evaluate the size of the polygon formed by a UAV route 𝑃 consisting of 

n waypoints:  

𝐴(𝑃) =  0.5 ∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

 

We present the results in Figure 7 (b). We can see that polygon size quickly increases with 
flight time. For all scenarios, it converges to a value that corresponds to roughly half the 
target area size: for the smallest scenario, the average polygon area converges to 0.3 km², 
whereas for a target region of 1.6 km², this value is as high as 0.8 km². The evaluation shows, 
furthermore, that this threshold can be attained within a maximum flight time that is well 
below the time required for full coverage. For the target region size of 0.6 km², we reach the 
threshold value within 700 seconds. For the larger scenarios, the flight time increases to 
around 1,200 to 1,300 seconds. Hence, we can conclude that the planning approach selects 
sensing locations that are well distributed across the target area. As we demonstrate in the 
next section, this means that we can achieve a reliable estimate for the phenomenon of 
interest within a short time span. 

Information Gain 

In this section, we evaluate whether the survey flights yield reliable information for the 
human decision-maker, even though the UAV only visits a subset of all potential target 
locations. In particular, we evaluate solutions in a post-processing step in which the 
information gained at these locations is used for interpolating the underlying spatial 
phenomenon. Information gain can then be measured as the accuracy of the prediction and 
the uncertainty remaining within the process. 

To do this, we combine the information about the spatial distribution with the samples 
provided by the UAV at the selected target points. We use this data to compute an 
interpolation of the remaining (i.e. unsurveyed) field via Gaussian Process regression. The 
better this interpolation is, the better we consider the selected set of sampling locations to 
be. We evaluate the quality of the interpolation based on (1) the root-mean-square error 
(RMSE) made with regard to the initial data, (2) the resulting prediction error variance, and 
(3) the mean error, i.e. a potential bias in the prediction. 

Figure 8 gives an example of this evaluation. Here, we compare the information gain 
achieved by three flights planned for the same target area, of three different maximum flight 
durations (300 seconds, 600 seconds and 900 seconds respectively). The target area is the 
same one as in Figure 6. The planned UAV missions are indicated in row (a). We then give 
the interpolation for the entire target region based on the sampling locations selected for the 
flight. The bottom row indicates the prediction error variances associated with this 
interpolation. In order to enable an unbiased comparison of the different approaches and the 
information gain achieved, we assume that all samples are made without error and that the 
information about the underlying spatial phenomenon is accurate, i.e. that its covariance is 
known. 
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The results show that, given a flight time limited to 300 seconds, the UAV quickly moves to 
the centre of the image and then turns towards a region associated with high-priority values. 
The interpolation achieved is accurate for this region but lacking in other parts of the target 
area. Consequently, the error variance for these areas is high. In comparison, the longer flight 
times of 600 and 900 seconds provide fairly reliable estimates of the entire random field.  

 

Figure 8: Exemplary comparison of the achieved prediction quality depending on the available flight 

time. The left-hand column indicates the results obtained for a maximum flight duration of 300 seconds 

in a representative scenario. The middle and right-hand columns give the results for flight times of 600 

and 900 seconds respectively. We indicate (a) the UAV routes, (b) the estimation of the random field 

achieved by the samples obtained during the flight, and (c) the corresponding prediction error 

variance across the target area.  
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Table 2 gives the averaged results for all scenarios evaluated. Obviously, target region size 
and available flight times have a significant impact on the prediction quality. In particular, 
shorter flying times correspond to higher prediction errors. However, increasing the available 
sensing time by a few minutes consistently and significantly improves the information gain 
achieved. As we have already seen in Figure 8, a flight duration of 1,000 seconds is sufficient 
to provide a reliable interpolation of the entire target area, i.e. an interpolation associated 
with small absolute errors and low prediction error variances.  

In all scenarios, the average mean error is positive. This is a direct consequence of the 
prioritization of high-interest targets within the mission-planning algorithm: as targets 
associated with high values are more likely to be chosen as sensing locations for the UAV, 
these measurements introduce a positive bias in the interpolation. This also partially explains 
the higher RMSE. However, we consider this acceptable in an emergency surveillance 
setting, as information about high-priority targets provides more immediate benefits to a 
human decision-maker than preventing this biased interpolation.  

Table 2: Evaluation of the information gained for different scenarios and maximum flight times. The 

table indicates average prediction error variance, root-mean-square error (RMSE) and average mean 

error (ME) for each scenario. 

 Flight time [s] Avg. error variance Avg. RMSE Avg. ME 

Scenario 1  
(0.75 km)² 

300 148.3 31.8 4.2 

600 56.7 17.9 1.1 

900 22.3 7.3 0.8 

1,200 14.7 4.8 0.3 

1,500 5.3 2.9 0.1 

1,800 2.0 2.1 0.2 

Scenario 2  
(1 km)² 

300 351.6 24.4 6.6 

600 156.5 27.2 4.5 

900 87.9 16.5 2.7 

1,200 48.4 13.2 1.2 

1,500 35.1 9.2 1.0 

1,800 24.1 6.9 0.9 

Scenario 3  
(1.25 km)² 

300 481.3 39.4 9.4 

600 280.8 37.8 7.7 

900 162.3 28.6 3.0 

1,200 89.0 21.2 1.8 

1,500 68.3 18.9 1.1 

1,800 52.6 18.1 0.9 
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6 Conclusion and Outlook 

In this study, we have presented a mission-planning approach for UAV surveillance flights in 
the context of firefighting. The vehicles were equipped with remote sensing devices that 
allow the detection and identification of hazardous substances in smoke clouds. A GIS-based 
interface allows a member of the emergency response units to specify an area of interest. 
This tool then plans UAV missions that either guarantee the complete coverage of the target 
area or focus on a set of high-interest locations if information is required immediately and 
complete coverage is impossible. The data is streamed live to the base station for further 
processing. This process, which we call micro rapid mapping, provides spatial data at higher 
resolutions and with a shorter delay than the Copernicus Rapid Mapping service, which has 
been proposed for large-scale disasters and is of limited use for many applications in 
firefighting.  

We demonstrate the applicability of this tool using simulated test data representative of real-
world use cases. We show that useful initial information can be provided within a few 
minutes after an incident. If more time is available for the surveillance flight, the mission-
planning algorithm is able to increase the area covered significantly. The resulting routes 
yield reliable information about the underlying spatial phenomenon. In particular, we show 
that the planning tool is able to balance different objectives, notably ground area covered by 
a UAV flight as well as priorities within the target area.  

Future work should focus on adaptive methods for planning UAV paths in dynamic 
environments. These methods use the observations made during the flight in order to 
continuously improve the environmental model that describes the spatial distribution of 
hazardous substances. UAV missions can then be dynamically adjusted while the flight is still 
in progress. The methods can thus reduce the dependency on prior information for mission-
planning and provide more information in highly dynamic situations. 
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