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Abstract

Data gathered by the POLRAD swept frequency radiospectrograph (Interball–2
mission) have been used for a preliminary analysis of a number of short bursts of
the Auroral Kilometric Radiation (AKR) as a function of their intensity. The AKR
intensity samples consisted of data snapshots integrated over 6 ms time periods. The
histograms based on 53 data sets, containing up to several thousand samples, exhibit
a power–law fall for higher intensities, characteristic for Self–Organized Criticality
(SOC). The scaling parameter α varies for most cases between 2 and 3 with the
dominant value 2.5, and an error of the order of 0.1. The SOC approach has already
been used for an interpretation of some magnetospheric processes, but never for
AKR.

1 Interball–2 POLRAD experiment

The Interball–2/Auroral Probe mission was launched on 29 August 1996 with an apogee
of 19,140 km, a perigee of 772 km, and an orbital inclination of 62.8◦. One of the on-
board instruments (POLRAD swept–frequency spectro–polarimeter) was designed for an
observation of the Auroral Kilometric Radiation (AKR). Linear sweeps usually covered
the 4 kHz–1 MHz frequency range. The typical sweep duration was 6 s, and the frequency
resolution was 4 kHz [Hanasz et al., 1998]. The 4 kHz wide filter remained on the same
frequency for 25 ms, but the signal was integrated during the last 6 ms.

The receiver had a 63 dB power spectral density (PSD) dynamic range. The sensitivity
was about 2.5 · 10−20 W/(m−2 Hz). The AKR dynamic range expected for the POL-
RAD experiment could attain more than 80 dB – up to about 10−12 W/(m−2 Hz). In
order to suppress possible nonlinear effects in the receiver, the signal was attenuated by
programmable attenuators (20 dB, 40 dB, or 60 dB). We looked for a strong AKR, and
for all 53 cases analyzed in this paper, a 20 dB attenuator was switched on. There-
fore, the corresponding PSD dynamical range extended from about 10−18 W/(m−2 Hz) to
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10−12 W/(m−2 Hz). The antenna system consisted of two crossed electric dipoles (22 m
tip–to–tip) and one monopole (11 m). POLRAD was working only when the spacecraft
was located in the northern hemisphere above the radiation belts (at invariant latitudes
between 60◦ and 82◦ and at altitudes from 11,000 km to 19,000 km). POLRAD was
operational until 30 May 1998.

2 Histograms of the electric power spectral density of short
AKR bursts

The AKR dynamic spectra of the PSD registered by the POLRAD experiment consisted
of the spectral bins 4 kHz × 6 ms. We will call them short AKR bursts. The PSD for
adjacent bins was varying, sometimes up to 20 dB.

Figure 1: (Left) Example of an AKR dynamic spectrum. The data used for histogram generation
are located inside the black frame (15 min × 100 kHz). The color bar labels should be multiplied
by 102 because a 20 dB attenuator was switched on. (Right) The corresponding histogram
(in a log–log scale) of 3240 measurements of the relative PSD of a short AKR bursts with a
superposed red line produced by a least–squares fit to the distribution’s tail. A vertical blue
xmin line delimits the right part of the histogram obeying a power–law behavior.

Figure 1 shows a quick look plot of a typical AKR dynamic spectrum, and the histogram
in a log–log scale of the number N of AKR bursts as a function of the relative PSD
(with respect to the 10−20 W/(m−2Hz) level). We found that above some PSD level xmin,
tails of the histograms in log–log scale can be fitted by a straight line – they exhibit a
power–law of the form:

N(P ) ∝ P−α (1)

with N(P ) – count for histogram bin centered on the PSD equal P , α – exponent or scaling
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parameter. The histogram bins are spaced logarithmically – that means less fluctuations
in the tail of the histogram.

We have chosen 100 kHz × 15 minutes data blocks for three reasons: (a) in order to
have a sufficient number M (up to a few hundred) measurements for PSD > xmin, (b)
to have a relatively small displacement of the s/c on its orbit, and (c) to sample the
AKR source region with a maximum vertical extent of 1000 km. The last number results
from constraints imposed by conditions (a) and (b). We checked α values for different
frequency ranges (between 100 and 500 kHz) – no α dependency on the frequency was
found.
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Figure 2: Histogram of α values estimated for 53 histograms of the short AKR bursts PSD.

Figure 2 shows a histogram of the power–law scaling parameter α estimated from 53
AKR dynamic spectra (and subsequently calculated histograms). The histograms (like
in Figure 1) are typically produced for about 3000 PSD measurements. On the other
hand, there are not many bins in the power–law part of the histograms, and the last bins
containing rare events are prone to significant fluctuations. Determining the location of
the part of the histogram displaying a power–law behavior is therefore very subjective.

3 Getting α from the data

3.1 Clauset et al. [2009] approach

A more objective and precise method for a determination of the power–law scaling para-
meter α has been employed with solar data by D’Huys et al. [2016].

A detailed presentation and justification of the new method can be found in a review
paper published by Clauset et al. [2009]. They propose the maximum likelihood estimator
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(MLE) for the data drawn from the distribution obeying a power–law. For our short AKR
bursts the power–law distribution starts from some xmin value (for x ≥ xmin) and contains
M data samples:

α = 1 +M

[
M∑
i=1

ln
xi

xmin

]−1

(2)

The α symbols correspond here to the estimates calculated from the data. The standard
error σ of α has the following form:

σ =
α− 1√

M
+O(1/M) (3)

Looking at the histograms, we can try to delimit parts exhibiting a power–law fall with
growing x. It can be very subjective, especially for histograms with a small number of
bins. Clauset et al. [2009] propose a determination of xmin by employing a goodness–of–fit
test based on the Kolmogorov–Smirnov statistic/metrics. Other metrics, like Anderson–
Darling or Kuiper [Press et al., 2007] can also be applied. In this new approach we
determine the scaling parameter α using every data sample xi – they are not binned as
in the histogram.

3.2 Some statistical results obtained with a new approach

A detailed analysis of heavy–tailed distributions can be quite complicated. Recently
Alstott et al. [2014] released into the public domain a flexible implementation of the
Clauset et al. [2009] ideas – a Python package named ”powerlaw”. We used it for most
calculations in the present paper.

We compared α and σ values calculated for xmin values determined for three different
metrics: Kolmogorov–Smirnov, Anderson–Darling and Kuiper. Results produced by
Kolmogorov–Smirnov and Kuiper metrics are similar, but for Anderson–Darling met-
ric, the histogram of α values is much more compact (Figure 3). A similar rule applies to
the scatter plot of σ vs. α (Figure 4).

For each of the 53 analyzed AKR dynamic spectra we have a different number M of
intensity samples fitted to the power–law distribution. A comparison of the σ vs. M
dependency in Figure 5 shows once more that the Anderson–Darling metric is a better
choice than the Kolmogorov–Smirnov or Kuiper metrics. We have more data points for
the determination of α and σ, and the errors are smaller. Clauset et al. [2009] suggest
that M ≥ 50 is a reasonable rule of thumb for extracting reliable parameter estimates.
That rule is also valid for our data, but for the Anderson–Darling metric the smallest
values of M are even greater than 100.

We compared the power–law distribution hypothesis with two alternative hypotheses:
the exponential and log–normal distributions, calculating the significance value p and
the loglikelihood ratio R between two distributions as proposed by Clauset et al. [2009].
Direct definitions taken from the “power–law” code are as follows:
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Figure 3: Histograms of MLE estimates of the α scaling parameter based on xmin values cal-
culated for three different metrics: (a) Kolmogorov–Smirnov, (b) Anderson–Darling, and (c)
Kuiper.

• R, the loglikelihood ratio of the two sets of likelihoods. If positive, the first set of
likelihoods is more likely (and so the probability distribution that produced them
is a better fit to the data). If negative, the reverse is true.

• p, the significance of the sign of R. If below a critical value (typically .05), the sign
of R is taken to be significant. If above the critical value, the sign of R is taken to
be due to statistical fluctuations.

Figure 6 presents the results of such comparisons for our data (xmin calculated for Anderson–
Darling metric).

The power–law distribution is a better fit to our data than the exponential distribution,
but for the power–law/log–normal pair there is no clear conclusion with our not so nu-
merous and rather noisy data samples. Our receiver integrated the signal in the 4 kHz
band during 6 ms. For such a configuration we have PSD fluctuations of the order of
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�

Figure 4: Scatter plot of σ vs. α values calculated using the MLE estimator. (Left) For
Kolmogorov–Smirnov metric and (Right) for Anderson–Darling metric.

�

Figure 5: Scatter plot of σ vs. the number of AKR data samples (M) that are more intense than
xmin (calculated with MLE estimator). (Left) For Kolmogorov–Smirnov metric and (Right) for
Anderson–Darling metric.

20%. The signal at the output of our receiver was proportional to the logarithm of the
input PSD and the usable telemetry range covered a 63 dB dynamic range of the receiver,
which corresponds to about 100 telemetry units. 0.63 dB corresponds to the PSD ratio
between successive units of about 1.16. A similar inconclusive situation has been recently
reported by Riley and Love [2017] for the Dst index.

The scaling factor α has a dominant value of ∼ 2.5 with a standard error of ∼ 0.1, and
about 80% of all α values can be found in the interval [2.0, 3.0].
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Figure 6: The significance value p vs. the loglikelihood ratio R between two distributions:
power–law and exponential (Left), power–law and log–normal positive (Right).

4 AKR and SOC?

The power–law distribution observed in AKR dynamic spectra points toward an applica-
bility of the Self–Organized Criticality (SOC) concept for an analysis of the AKR gen-
eration process. A general physics–based definition of SOC was given by Aschwanden
[2014]:

SOC is a critical state of a nonlinear energy dissipation system that is slowly and con-
tinuously driven towards a critical value of a system–wide instability threshold, producing
scale–free, fractal–diffusive, and intermittent avalanches with power–law–like size distri-
butions.

SOC behavior is observed for many physical systems [Bak, 1996], also in Solar Physics and
Astrophysics [Aschwanden et al., 2016]. The SOC concept can be applied to the Cyclotron
Maser Instability (CMI) responsible for the AKR generation as well. We observe the AKR
radiating region consisting of a bunch of small elementary AKR sources which are located
within the auroral oval [Mutel et al., 2008; Schreiber et al., 2017]. After reaching the
threshold of CMI instability in the source region, we observe many elementary AKR
sources “firing” with different intensities – that corresponds to the avalanche in the SOC
definition. The increment of the CMI instability can depend on the stability of the electron
distribution function as well as on the convective growth length [Mutel et al., 2007].

5 Discussion

The power–law distributions of the PSD of short AKR bursts should be confirmed for a
greater amount of data, but the estimates of the scale parameter α based on our relatively
small pool of data are also interesting. Our scaling factors α have a dominant value of
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∼ 2.5 and, about 80% of all α can be found in the interval [2.0, 3.0]. On the other
hand, similar values of α were found, for example, for solar microwave bursts (1.2–2.5)
– Table 15 in Aschwanden et al. [2016]. Another example – solar decimetric millisecond
spikes with α = 2.99± 0.63 (most probably produced by the CMI instability, like AKR),
was published by Aschwanden et al. [1998]. The next step consists in finding the bridge
between generalized mathematical models and the physics behind our statistics. This is
not an easy task. We have to look at the existing models and ways of SOC simulation. We
shall start with a simple Logistic Growth Model parametrizing the shape and amplitude of
the burst (rise, saturation, and decay) [Aschwanden, 2011] and generating corresponding
statistics. We are also interested in possible seasonal changes of α. We made such checks,
but for α determined with low precision from the histograms no seasonal dependency was
found.

We also hope that a greater amount of data and complementary statistical analysis us-
ing alternative approaches (like Bayesian methods) will help to clarify the inconclusive
comparison of fits for power–law and log–normal distributions.

6 Conclusions

We investigated 53 cases of AKR dynamic spectra gathered by the Interball–2 POLRAD
experiment and found a power–law distribution for intensities of strong, short AKR bursts.
We applied to our data quite recent statistical methods superior to the typical approach
based on data histogram analysis. These methods give reliable results even for not very
numerous data samples and avoid information loss caused by binning of the data. The
scaling factors α have a dominant value of ∼ 2.5 with a standard error of ∼ 0.1, and
about 80% of all α can be found in the interval [2.0, 3.0]. A next step will consist in
adjusting results for simple, analytic SOC models to the AKR source sizes, AKR burst
parameters, and such Cyclotron Maser parameters as CMI growth rate or power gain. We
also want to improve our statistics using more data and to check alternative approaches
to the statistical analysis of our data.
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