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Abstract 

Waterfowl monitoring is an important task for understanding waterfowl distribution and 

habitats. Surveying approaches using hyper-spatial airborne imagery, collected by small 

unoccupied aerial systems (sUAS), hold potential to overcome the limitations of traditional 

methods while improving count efficiency and reliability. Difficulties obtaining waterfowl 

counts, particularly in complex image scenes, from the high quantity of imagery required 

hinders deployment of large-scale surveys. In this paper, we test Convolutional Neural 

Networks (CNNs) to understand their potential and how they behave across different 

versions of our waterfowl dataset. Three CNN architectures (YOLO, Retinanet and Faster R-

CNN) were trained on 3 hierarchical levels: waterfowl detection (True / False), waterfowl 

type (3 classes), and waterfowl species (8 classes). The architectures generally performed 

well, and results indicate that automated waterfowl detection in complex environments, 

and therefore enumeration, is feasible using current technology. Waterfowl identification in 

complex environments was not successful using the available training data, but we propose 

steps that might enhance the results.  
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1 Introduction  

Waterfowl population recognition and classification have traditionally been undertaken by a 
combination of ground-based and manned aircraft surveys. Manned aircraft enable the 
surveying of large areas, but they are expensive and can cause stress to wildlife (Wilson et al., 
1991). Small unoccupied aerial systems (sUAS) have been used successfully to survey a variety 
of bird species worldwide, with much lower costs and risks (Linchant et al., 2015). One factor 
hindering the adoption of surveys using sUAS is the work required to manually identify targets 
in the imagery compared with counts in the field (Linchant et al., 2015). Numerous automated 
techniques have been used for waterfowl recognition, with accuracy comparable to manual 
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image counts, including spectral thresholding (Laliberte & Ripple, 2003), supervised 
classification (Grenzdörffer, 2013), and template matching (Abd-Elrahman et al., 2005). 
However, these methods are limited in that they require animals to be highly distinct spectrally 
from their surroundings. This hinders applications in heterogeneous environments for the 
study of species with cryptic colouration, or with image sets of varying brightness due to 
camera performance or weather conditions (Linchant et al., 2015; Chabot & Francis 2016). 
Some machine learning (ML) approaches, such as convolutional neural networks (CNNs), 
have the potential to enable efficient detection and classification in complex scenes (Chen et 
al., 2012). Compared to other ML techniques such as the use of support vector machines and 
Key Nearest Neighbour, CNNs produce high detection and classification accuracies owing to 
their non-linearity, ability to increase model complexity (adding convolutional layers for deeper 
feature extraction), and implicit segmentation capabilities (Ghorbanzadeh et al., 2019; Wang 
& Raj, 2017). The latest CNNs can be used in many automated processes in various application 
domains, for example in crowd counting, object detection, face-attribute recognition, and geo-
localization (Howard et al., 2017; Girshick et al., 2014; van Gemert et al., 2014; Chen et al., 
2012). 

CNNs were applied to three hierarchical levels of increasing difficulty, namely waterfowl 
detection, identification of waterfowl type, and identification of waterfowl species. The 
selected CNN architectures were trained and validated using a set of labelled sUAS-acquired 
images of waterfowl to enable comparisons of the architectures’ abilities to recognize and 
classify waterfowl species. The primary aim of this empirical research project was to identify 
the CNN architecture that can produce the most accurate classifications and counts (relative 
to the ground truth) as part of an effort to develop a prototype sUAS-based waterfowl survey 
programme for the United States Fish and Wildlife Service (USFWS).  

2 Deep learning and CNNs 

Deep Learning (DL) is a sub-category of ML that mimics how the human brain works (Krogh, 
2008). It uses Artificial Neural Networks (ANNs) consisting of many layers, each containing 
neurons (or nodes) connected to form a web-like structure. CNNs are a special type of ANNs, 
the main difference being that in a CNN a deeper neuron layer is connected only to a subset 
of neurons in the previous layer (Albawi et al., 2017). Figure 1 shows the basic architecture of 
a CNN. Many frameworks are available for DL, of which Google's TensorFlow (Abadi et al., 
2016) is the latest. The Tensorflow API, which is publicly available, can be used to distribute 
load between multiple nodes (CPUs or GPUs). Keras is a fast-growing deep learning 
framework. This open-source library written in Python can run on top of TensorFlow or 
Theano. Theano is an open-source Python library for numerical computations; it simplifies 
the process of writing DL models. Caffe, developed by the Berkeley Vision and Learning 
Centre, has many worked examples of deep learning, written in Python. Giving more 
importance to GPUs is the Torch framework, which has an underlying C/CUDA 
implementation and is widely used for DL, as is MATLAB’s matconvnet. 
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Figure 1: Basic CNN architecture (Aloysius and Geetha, 2017) 

Various CNN architectures, such as CifarNet, MobilNets, AlexNet, GoogLeNet or YOLO 
(Howard et al., 2017; Zha et al., 2015), have accomplished significantly improved performance 
in many application domains, including object labelling and classification, event detection for 
safety systems, obstacle avoidance in autonomous driving, and identity checking (Zha et al., 
2015). Each architecture differs in the number of intermediary layers, number and size of 
kernels used, error calculation methods, and activation functions. A feature common to all 
CNNs, however, is the need for robust training sets that contain both the desired input and 
the desired output (questions and right answers). The CNN then performs error calculations 
for its predictions, and runs through further iterations in order to improve predictions. 

2.1 Related work using CNNs for bird detection 

In a recent study carried out in Korea (Hong et al., 2019), five different CNN architectures 
were employed for bird detection, namely Faster R-CNN, R-FCN, SSD, Retinanet and YOLO, 
and were evaluated by comparing their speed and accuracy. The accuracy of the detection was 
measured using the Intersection over Union (IoU), defined as the ratio of intersection between 
the predicted box and the ground truth box. A threshold of 0.3 and 0.5 of IoU to determine 
the acceptability of the detection and the CNNs’ performance was measured for both 
thresholds. The training data comprised 25,864 sUAS images that include 137,486 birds. 
Although Hong et al. (2019) stated that a 0.3 IoU threshold was sufficient, a threshold of IoU 
of 0.5 was used in our study. This was because a relatively small number of training samples 
(not hundreds or tens of thousands) were fed into the CNNs, and a 0.3 IoU led to the CNN 
twice as many non-waterfowl labels relative as the 0.5 IoU threshold. 

2.2 Choice of CNN 

A Weighted Linear Combination (WLC) operation was applied to rank the CNNs used by 
Hong et al. (2019); the three best, based on accuracy defined as an IoU score of 0.3, were 
selected. It should be noted that not all the CNNs in Table1 were taken into consideration. R-
FCN with Resnet 101 was not selected, as this model performed in a manner very similar to 
Faster R-CNN, with slightly less accuracy but better time. Another reason to suppress R-FCN 
was that it contains the same feature extractor as Faster R-CNN (Resnet 101) as the core model 
for detection. Only the IoU of 0.3 was considered because it was sufficient to detect all bird 
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objects. YOLOv2 was also suppressed, because YOLOv3 was developed to obtain better 
accuracy, which is the prime focus in this study. 

First, normalization of the speed and accuracy for each option was performed using equation 
(1) to obtain values between 0 and 1 for each field. 

                                                        𝑍𝑖 =
𝑋𝑖 − min (𝑋)

max(𝑋)− min (𝑋)
                                                              (1) 

where Z represents the normalized value (Normalized IoU:0.3 in Table 1) and X represents 
the IoU value of 0.3. 

Table 1: Accuracy measurements based on IoU 0.3 and performance ranking 

CNN IoU:0.3 Normalized IoU:0.3 Rank 

Faster R-CNN with 
Resnet 101 

95.44 1 1 

Mobilenet v.1 85.01 0 5 

Retinanet with Resnet 
50 

91.94 0.621 3 

SSD with Mobilenet v.2 85.9 0.085 4 

YOLOv3 with Darknet-53 91.8 0.65 2 

3 Data 

The training set was collected using a crowdsourced image-labelling service called LabelBox 
and consists of 13 images of 5,472 x 3,648 pixels each; the total label count was 18,469. The 
survey mission took place in November 2018 in Bosque del Apache Wildlife Refuge, New 
Mexico (see Figure 2) using a DJI Mavic sUAS equipped with a Hasselblad L1D-20c RGB 
sensor operated at a flight altitude of 40 m. There were 13 species classes in the dataset: 
American wigeon, mallard, northern pintail, other, Canada goose, teal, sandhill crane, gadwall 
northern shoveller, ring-necked duck, redhead, ruddy and snow goose. However, the gadwall 
northern shoveller, ring-necked duck, redhead, ruddy and snow goose had fewer than 200 
labels each. They were therefore not representative and, compared to other larger classes, had 
little chance of being detected. They would have been a source of uncertainty to the CNN. 
The remaining 8 species were aggregated to 3 waterfowl types: duck, goose and crane. 
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Figure 2: Location of Bosque del Apache Wildlife Refuge 

 

Figure 3: Location of Bosque del Apache Wildlife Refuge 



Sa'doun et al 

157 
 

4 Pre-processing 

Pre-processing comprises the following steps: 

 Convert LabelBox JSON Annotations to format accepted by each CNN. 

 Split each image to a group of sub-images for the object to be easily identified. 

 Remove multiple labels so that each target object has only one label. 

 Construct a validation set (images not fed to the CNN in the training process). 

The data are then segmented into three parts, namely training, testing and evaluation. The 
conversion process resulted in 18,469 labels for the 8 classes. However, as the dataset was 
labelled by 13 experts, redundant labels for each object had to be removed. If there were two 
or more labels with an IoU of more than 50%, the label with the larger area was removed 
(Figure 4). 

    

Figure 4: Removing multiple labels from the training set 

Each image has 5,472 x 3,648 pixels and the average label size is 52 x 54 pixels, occupying 
0.014% of the total image area. This small percentage limits the ability of YOLOv3 to detect 
desired objects, causing the CNNs to perform very poorly on the original images (<3% 
accuracy of count). It was necessary to crop to multiple sub-images in order to enlarge the 
ratio of the area covered by the label in the image. Each image was therefore tiled to 56 sub-
images (7 rows, 8 columns) of 684 x 521 pixels, increasing the average percentage of the area 
covered by a single label to 0.78%. Figure 4 shows how a bird is enlarged by the cropping 
procedure. 
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Figure 5: Image of the same bird shown before and after cropping 

5 Model training and evaluation process 

Table 2 presents the training parameters of the CNNs. 

Table 2: Training Parameters for the CNNs 

Training Parameter YOLOv3 Retinanet Faster R-CNN 

Number of training samples 2908 2908 2908 

Epochs (species/fowl 

type/detection) 

16/12/11 3/2/2 118/92/87 

Training time (sec./epoch) 212 1340 2280 

 

Accuracy measurement is divided into accuracy of detection and accuracy of identification. The 
accuracy of detection is defined by how close the number of successful predictions is to the 
actual number of birds in the test data. The identification accuracy refers to how close the 
number of successful class predictions is to the actual number of class occurrences in the test 
dataset. Nevertheless, manual evaluation of the results (looking at each individual image result) 
is necessary to understand why an error has occurred in the detections. The most common 
method of representing prediction results is to build a confusion matrix. A cross-validation 
process was implemented by taking the ground truth labels (10% of the dataset that contains 
all waterfowl classes and different background conditions) as a reference, where the difference 
between the IoU of each label in the ground truth and prediction labels was calculated. The 
prediction label with the highest IoU was then assigned to the ground truth label. A successful 
count is defined as a prediction label that intersects a labelled object with the same class in the 
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ground truth. This assessment was carried out for all levels (detection, fowl type and species) 
to explore the effect of increasing the number of classes on the general counting performance. 

6 Results 

The results of CNN for waterfowl detection, waterfowl-type identification and species 
identification were evaluated by performing a cross-validation, where each prediction label is 
compared to the corresponding ground truth label. Finally, the results were summarized in a 
confusion matrix.  

6.1 Detection 

Figure 6 shows the detection performance in relation to the 3 hierarchical levels for the 3 CNN 
implementations. The x-axis represents implementation levels for each CNN (1: detection; 3: 
waterfowl type; 8: species); the y-axis represents the detection performance of the predictions 
broken down into three categories: detected waterfowl; undetected waterfowl; detection of 
non-waterfowl objects as waterfowl. Increasing the number of classes to be detected limits the 
ability of CNNs to detect waterfowl, and increases the number of undetected waterfowl 
(omission errors) and the number of non-waterfowl species detected (commission errors). 

 
Figure 6: Detection Performance (Detection levels) 

6.2 Waterfowl Type 

The second assessment concerned the detection and identification accuracy of the CNNs on 
3 classes of waterfowl (Duck, Goose and Crane); the confusion matrices in Tables 3–5 
document the detection accuracies. The grey cells indicate successful classification (true-
positive prediction); the rows represent the reference or the ground truth; and the columns 
present the measurement modelled. 
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Table 3: YOLO confusion matrix for fowl type (true-positives in grey) 

Class Duck Goose Crane undetected Ground Truth Total Non-WF 

Duck 95 14 0 34 143 3 

Goose 1 21 0 7 29 1 

Crane 0 0 4 1 5 0 

Detection Total 96 35 4 42 177 4 

Table 4: Retinanet confusion matrix for fowl type (true-positives in grey) 

Class Duck Goose Crane undetected Grand Truth Total Non-WF 

Duck 106 4 0 33 143 6 

Goose 4 17 1 7 29 0 

Crane 0 0 3 2 5 0 

Detection Total 110 21 4 42 177 6 

Table 5: Faster R-CNN confusion matrix for fowl type (true-positives in grey) 

 

Duck was confused with Goose but not Crane by all CNNs, probably as a result of the very 
different size and coloration of cranes compared to ducks and geese.  

6.3 Species level 

The third assessment was for accuracy of species detection and identification. The confusion 
matrices (Tables 7–9) reveal how the CNNs behaved at species level. The grey cells represent 
successful classification (true-positive predictions). As the dataset contains six out of the eight 
classes belonging to fowl-type ‘duck’, it is no surprise that the classes belonging to this fowl-
type were very frequently confused with each other (unlike what happened for the classes 
Canada Goose and Sandhill Crane). 

 

 

 

Class Duck Goose Crane undetected Grand Truth Total Non-WF 

Duck 106 3 0 34 143 25 

Goose 8 10 0 11 29 0 

Crane 1 0 3 1 5 0 

Detection Total 115 13 3 46 177 25 
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Table 6: YOLO confusion matrix for species (true-positives in grey) 

Class 
American 
wigeon 

Canada 
goose 

Gadwall Mallard 
Northern 
pintail 

Other 
Sandhill 
crane 

Teal Undetected GT total Non-WF 

American 
wigeon 

0 1 0 0 2 1 0 0 4 8 0 

Canada 
goose 

0 28 0 0 0 0 1 0 0 29 4 

Gadwall 0 2 0 0 1 0 0 1 2 6 0 

Mallard 0 8 0 13 23 4 0 1 46 95 0 

Northern 
pintail 

0 2 0 1 2 0 1 1 2 9 1 

Other 0 3 0 0 5 0 0 0 10 18 0 

Sandhill 
crane 

0 1 0 0 0 0 4 0 0 5 1 

Teal 0 0 0 0 3 0 0 0 4 7 0 

Detection 
Total 

0 45 0 14 36 5 6 3 68 177 6 
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Table 7: Retinanet confusion matrix for species (true-positive in grey) 

Class 
American 
wigeon 

Canada 
goose 

Gadwall Mallard 
Northern 
pintail 

Other 
Sandhill 
crane 

Teal Undetected GT total Non-WF 

American 
wigeon 

2 0 2 0 0 0 0 2 2 8 3 

Canada 
goose 

0 20 1 0 0 1 1 1 5 29 1 

Gadwall 2 0 0 0 0 1 0 1 2 6 1 

Mallard 24 0 14 10 5 1 0 13 28 95 0 

Northern 
pintail 

3 0 0 0 1 2 0 0 3 9 0 

Other 4 0 1 2 0 1 0 3 7 18 0 

Sandhill 
crane 

0 0 0 0 0 0 3 0 2 5 0 

Teal 1 0 3 0 0 0 0 0 3 7 2 

Detection 
Total 

36 20 21 12 6 6 4 20 52 177 7 
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Table 8: Faster R-CNN confusion matrix for species (true-positives in grey) 

Class 
American 
wigeon 

Canada 
goose 

Gadwall Mallard 
Northern 
pintail 

Other 
Sandhill 
crane 

Teal Undetected GT total Non-WF 

American 
wigeon 

0 0 1 3 3 0 0 1 0 8 13 

Canada 
goose 

2 12 1 0 0 4 0 4 6 29 0 

Gadwall 0 0 1 1 0 2 0 1 1 6 2 

Mallard 4 1 2 13 25 10 0 12 28 95 0 

Northern 
pintail 

0 0 0 1 0 4 0 1 3 9 1 

Other 1 0 0 1 0 5 0 1 10 18 15 

Sandhill 
crane 

1 0 0 0 0 0 3 0 1 5 0 

Teal 0 0 0 0 3 2 0 1 1 7 0 

Detection 
Total 

8 13 5 19 31 27 3 21 50 177 31 
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7 Discussion 

The first observation on the results is that the number of waterfowl detected decreased as we 
increased the number of classes for detection (waterfowl level to sub-species level). This is 
probably due to the decrement in the number of training examples per waterfowl type as we 
segregated waterfowl species. At species and fowl-type levels, the CNN tries to capture class-
specific patterns using fewer training samples, defining each class independently. The second 
observation is that the result images often include individual waterfowl that are labelled 
multiple times (see Figure 3). This is probably due to the limited ability of the CNN to 
distinguish between different waterfowl species. This limitation can be most directly addressed 
by including more samples for each class. The third insight is the effect of surroundings and 
population density on performance. It was clear that better performance is achieved in low 
population densities and clear surroundings (no shadows, shrubs etc.), suggesting that there 
will be a sample bias based on the landscape composition being observed. 

The confusion matrices shown above have a non-traditional setup; the number of detected 
objects does not match the number of objects in the ground truth. Some objects were not 
detected, and others were detected that did not represent waterfowl. This forced us to add 
undetected and non-waterfowl classes which have no ground truth reference. Our results were 
therefore reported in terms of correct/incorrect classification, undetected waterfowl, and non-
waterfowl detection. 

8 Conclusion and Future work 

The results of this research show that CNNs have the potential to automate the process of 
waterfowl detection and identification. Across all CNN architectures, using a higher number 
of classes to train the network resulted in lower waterfowl detection accuracy, increasing both 
omission and commission errors. Increasing the number of classes to be detected reduced the 
number of labels generated by YOLO and Retinanet, but not Faster R-CNN.  

Our experience suggests that this potential depends on the volume, quality, and structural and 
textual composition of training data in terms of image resolution and labelling correctness. We 
discovered that hyperspatial image data of waterfowl captured by a sUAS have special 
characteristics when compared to many other CNN applications: target objects are small while 
species morphology is often relatively similar. These characteristics need to be taken into 
consideration for adequate pre-processing. 

In this project, valuable insights were collected on the performance and applicability of several 
freely accessible CNNs to waterfowl detection and identification using hyperspatial airborne 
imagery. One of the most important steps in future research will be to investigate how a much 
larger waterfowl training dataset (hundreds of thousands of training samples) will affect the 
results and behaviour of the CNNs. The findings presented here suggest that a phased 
approach should be explored, whereby a single-class ‘waterfowl’ detector is followed by a 
waterfowl-labelling step using a CNN trained on all classes. Finally, the class imbalance 
between species and fowl types is likely to be a persistent issue even as the number of labels 
available for training increases. Given the performance with respect to rare classes of the 
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models evaluated here, and the potential importance of rare classes in a wildlife survey context, 
data augmentation techniques with the potential to magnify the training samples of those rare 
classes warrant investigation.  

From a practical perspective, the possibility of entering aerial images of waterfowl to the CNN 
in their original size also warrants further research. Keeping images in their original size would 
reduce the pre-processing tasks, making the model more efficient, but the computational 
feasibility of doing this needs to be investigated. For example, what would the memory 
requirements be? Could the computations be achieved through modifying state-of-the-art 
CNNs? Or would a CNN architecture have to be built from scratch, allowing the design of 
the hyperparameters to be oriented towards this specific application?  
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