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Projecting environmental impacts with varying population,
affluence and technology using IPAT – Climate change and
land use scenarios

Emma Engström1,2 and Martin Kolk1,3

ABSTRACT We theoretically explore the interrelations between population (P), affluence
(A) and technology (T ) for various environmental impacts (I ) using IPAT-type modelling.
To illustrate the differences across environmental dimensions, climate and land use impacts
are modelled. We use middle-of-the-road projections for population and per capita income
and different forecasting methods for technology, including extrapolations of historical
trends, models based on stochastic IPAT (STIRPAT) and predictions in the literature.
The different approaches are compared within the IPAT framework. We also explore
the consequences of alternative trajectories for P, A and T, and we discuss the implications
of these trajectories for reaching global goals based on our modelling. The findings are ana-
lysed in light of three theories in environmental sociology, each of which places a different
emphasis on the different components of IPAT. We argue that the large amount of techno-
logical mitigation assumed in many forecasts makes affluence and population relatively
irrelevant for climate change. However, we also consider it likely that both factors will
be determinants of land use impact in the 21st century.

KEYWORDS IPAT • Environmental Kuznets curve (EKC) • Green growth •

Human ecology • STIRPAT model • Land use impact

Introduction

For more than half a century, the environmental sciences have highlighted how increasing
consumption contributes to environmental problems. In an influential school of thought,
such impacts have been conceptualised as the product of the number of people (P), per
capita affluence (A) and a conversion factor (T ), which translates consumption into envi-
ronmental impacts (I ). Ehrlich and Holdren (1971) and Commoner (1971) introduced the
IPAT identity to illustrate this point. This conceptualisation has been prominent in both
theoretical work and empirical studies on the sources of the world’s growing environmental
problems. Today, researchers across the globe share a consensus that the world is facing
imminent and consequential threats to human and planetary welfare due to climate change
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(IPCC, 2022; Rockström et al., 2009), and that humanity’s tendency to appropriate ever
larger areas of the earth’s surface has urgent environmental implications (Dasgupta,
2021). However, as we show in this study, the extent to which affluence and population
can be seen as sources and potential domains for the mitigation of these challenges remains
deeply contentious.

We adopt a theoretical method in which we use IPAT-type modelling to examine how
IPAT-based reasoning gives different answers depending on the environmental issue that is
being addressed. Instead of using IPAT to explain why any one part of the identity can be
seen as a universal tool for understanding all kinds of environmental challenges (which
is how IPAT-related arguments have often been used in the past), we show that IPAT is
perhaps equally or more useful for understanding how different environmental dimensions
relate to various parts of the identity. Furthermore, we point out the usefulness of converting
various environmental impact models – such as forecasts by the Intergovernmental Panel on
Climate Change (IPCC) – into the IPAT framework to illustrate their different implications.
We look at a variety of aspects, such as time scales and possibilities for technological
solutions, as well as the elasticity of impacts with respect to population and consumption.
Using this approach, we show why the relevance of population and affluence may vary for
different types of challenges.

We create IPAT-type models for climate and land use impacts using mainstream
population and income projections with a set of assumptions about how the T factor
is calculated. We then model alternative population, affluence and technology trajecto-
ries, and discuss their implications for finding sustainable solutions in the future. These
environmental dimensions represent two of the most critical challenges facing humanity
in the 21st century. They both point to the ways in which human actions risk destabi-
lising the earth system according to the planetary boundaries framework (Rockström
et al., 2009; Steffen et al., 2015). Land use is also closely linked to another critical
planetary boundary, biosphere integrity, because a large share of biodiversity loss is
attributable to habitat destruction through the conversion of forests into farmland
(Dasgupta, 2021).

For many environmental problems, the historical empirical evidence of a strongly posi-
tive correlation between environmental impacts and both population and affluence is
relatively robust. Over the last decade, some scientists have stressed the contributions
of population to many contemporary environmental challenges (Bongaarts and O’Neill,
2018; Lidicker, 2020), while others have focused primarily on the contributions of
consumption, and have thus downplayed the role of population (Wiedmann et al., 2020).
Over the years, the IPAT framework has been used to draw attention to the implications
of increasing economic and population growth for different kinds of environmental chal-
lenges. Early research on IPAT-type relationships generally proposed either population
policies (smaller P) or reduced economic growth and consumption (smaller A) as possible
solutions. Ehrlich and Holdren’s (1971) original work focused on addressing future envi-
ronmental challenges by limiting population growth. In contrast, more recent research
has primarily focused on technological solutions to environmental problems, while arguing
that efforts to mitigate these problems through reductions in affluence or population are
infeasible or indefensible.
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While both climate change and land systems change are urgent issues, they have different
underlying causes and implications. This suggests that IPAT-based projections of these two
challenges will look very different. In terms of drivers, a notable difference between them is
that the main sources of land use change have been agriculture and forestry, whereas climate
change can be attributed to four other sectors as well (energy systems, industry, buildings
and transport) (IPCC, 2022). Moreover, how researchers judge the feasibility of decoupling
environmental impacts from consumption differs depending on whether they are discussing
climate or land use. To address climate change, many countries have issued zero emissions
pledges, and mainstream models typically include the assumption that near zero emissions
will be reached at the global level at some point in this century (IPCC, 2022). Even though
historical trends are often not compatible with decoupling environmental impacts from
population growth and increasing affluence (Haberl et al., 2020), many researchers see
the IPCC’s scenarios as feasible, albeit challenging to reach. In contrast, land use challenges
have been much less explored. In the available literature, researchers have identified
substantial challenges in reversing the increasing impact of human land use (Bimonte
and Stabile, 2017; Pontarollo and Serpieri, 2020). Thus, our cases serve as illustrations
of scenarios in which the possibilities for decoupling consumption from environmental
impacts differ.

Through this article, we aim to provide a better theoretical understanding of how the
effects of population, affluence and technological mitigation could be substantively differ-
ent across various forms of environmental stress. Using an IPAT-based approach, we hope
to give a better theoretical and conceptual illustration of how and why population and afflu-
ence will vary in significance depending on the context. We believe that this analysis can,
for example, help to clarify why population policies have often been shown to be of limited
relevance when it comes to climate change (e.g., Budolfson and Spears, 2021), but might
still be important for addressing other environmental issues. The rest of this article is struc-
tured as follows. We present background and theory in relation to the IPAT equation. The
methodology we use, together with the underlying models and empirical inputs, are then
presented. Next, the results of the modelling are reported. This is followed by a discussion
of the results. Finally, we offer a concluding commentary about the implications of the
results.

Theoretical and empirical background

A large body of literature has connected economic growth and population growth to
environmental impacts in different ways. In this section, we discuss some of the most
influential concepts and theoretical perspectives in this research.

Economic growth and environmental impacts

A common finding in empirical studies of environmental impacts across countries is
that they are tightly linked to economic consumption. Richer countries consume
more, and therefore have a larger impact than poorer countries (York et al., 2004).
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Moreover, contemporary societies have a larger impact than they did historically when
they had lower incomes. Most research also suggests that while environmental conse-
quences tend to increase with income, the relationship between environmental impacts
and economic consumption is less than linear (Haberl et al., 2020; Vadén et al., 2020;
York et al., 2003b).

Several theoretical concepts have been introduced to relate economic growth to environ-
mental impacts. One such model is the environmental Kuznets curve (EKC), which was
first presented by Grossman and Krueger (1991) to describe a societal evolution in which
the relationship between environmental impacts and affluence has an inverse U shape.
It stipulates that the levels of environmental degradation are lowest in the societies
that are the least and the most affluent. It is named in analogy to the Kuznets (1955) curve,
which linked income inequality to economic growth. Relatedly, green growth, or the green
economy, is a concept introduced by Pearce et al. (1989) to describe a case in which
increased affluence is not related to increased environmental consumption. Among the
explanations for the EKC and green growth are growth in the scale of the economy; changes
in the composition of the economy, i.e., structural shifts from an agrarian to an indus-
trial to an information-intensive service-based economy; as well as the adoption of
novel environmentally-friendly production techniques, policies or investments (Antweiler
et al., 2001; Coxhead, 2003; Panayotou, 1993; Shafik and Bandyopadhyay, 1992; Stern,
2004). In their background study for the World Development Report 1992, Shafik and
Bandyopadhyay (1992) found strong support for the EKC (also discussed in Shafik
(1994)). A number of subsequent studies have provided empirical support for the EKC
in different contexts (Cole, 2003; Grossman and Krueger, 1995; Lean and Smyth, 2010),
as reviewed in Tan et al. (2014). For example, in a study of five Association of Southeast
Asian Nations (ASEAN) countries from 1980 to 2006, Lean and Smyth (2010) found that
long-run estimates supported the EKC. However, as highlighted by Stern (2004), the EKC
may not apply to all types of environmental impacts.

Researchers have made a distinction between a weak and a strong version of green
growth or decoupling (Haberl et al., 2020). In the weak format, this notion simply means
that as societies get richer, the relative environmental impact of increased affluence
declines. Hence, the environmental impact increases less proportional to the rise in afflu-
ence. The stronger version implies that in richer societies, the absolute environmental
impact is smaller. This can be conceptualised as a situation in which the elasticity between
affluence and the environmental impact transforms fundamentally, not only from having a
value between zero and one, but to having a negative value at some (high) level of affluence.
The weak case can be described as relative decoupling, while the strong case can be seen as
absolute decoupling. While there is considerable evidence of relative decoupling across
many environmental dimensions, there is far less evidence of absolute, sector-wide decoup-
ling at the global level. Likewise, the EKC is supported for specific forms of environmental
stress in certain regional contexts (Haberl et al., 2020).

In particular, few or no studies have found evidence of absolute decoupling at the global
level for either climate change or land use impact, although there are examples at the
national level, especially in the former case (Vadén et al., 2020). For example, a recent study
based on data from the 1960s to 2015 in the Nordic countries reported that an EKC was
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observed for per capita carbon dioxide (CO2) emissions in Denmark, Finland, Iceland
and Sweden (but not in Norway) (Urban and Nordensvärd, 2018). A literature review
of research in 27 advanced economies reported that the majority (41 of 55) of the exam-
ined studies found support for the EKC hypothesis and for the absolute decoupling of
CO2 emissions and gross domestic product (GDP) at the national level (Al-Mulali and
Ozturk, 2016).

Studies of the relationship between land use and affluence are rarer and tend to have
a narrower scope. In this literature, the evidence presented often does not support the
EKC. For example, Pontarollo and Serpieri (2020) studied residential built-up land in 42
Romanian counties from 2000 to 2014, and found an inverted EKC. These results are in line
with an earlier study relating land consumption to per capita GDP in 20 Italian regions over
the 1980–2010 period (Bimonte and Stabile, 2017), which reported an N-shaped curve with
increasing impacts for very high levels of affluence.

As we will illustrate later in our IPAT models, some climate forecasting approaches
imply absolute decoupling, while many other climate change and land use scenarios instead
point to relative, but not absolute, decoupling.

Population growth and the environment

Efforts to link population, land use, productivity and wages go back to classical economic
writings by legendary economists and demographers such as Malthus (1798). During the
1960s and 1970s, when human population growth reached its historical maximum (Lam,
2011), there was increasing concern that population was a major cause of environmental
problems. The theoretical perspectives we apply in this article, primarily the IPAT equation,
originate from this period. Many of the worst predictions from this time did not come true
(Lam, 2011), although subsequent research has confirmed a link between population size
and environmental impacts (York et al., 2003a).

Recent empirical and theoretical studies on the association between population growth
and environmental impacts at the national, regional and global levels have generally found
that the relationships are close to one (Rosa et al., 2004; York et al., 2003b); that is, every-
thing else being equal, most environmental impacts are directly proportional to population
size. It is important to note, however, that these calculations generally account for the
effect of population net of the level of affluence, which means that an individual in a
high-income society still contributes more to environmental problems than an individual
in a low-income society. The evidence for relationships that diverge distinctly from one
is rather limited (Rosa et al., 2004), even though elasticities can be theoretically expected
to vary. Elasticities above one could apply if new, low-quality land is needed for a given
unit of consumption after a certain amount of high-quality land has been used. Lower
elasticities might be valid if higher population densities lead to more efficient societal
organisation. Researchers have also argued that there is a danger in estimating population
elasticities from longitudinal data because such coefficients may partly reflect omitted
variable bias, and have instead suggested using population as a scaling factor (O’Neill
et al., 2012). In line with most previous research, we find elasticities of population very
close to one.
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Social theories on population, affluence and environmental impacts

York et al. (2003a) related IPAT to three different social theories that address how con-
sumption and population contribute to environmental challenges. First, the human ecology,
or neo-Malthusian view, focuses on population growth as a key driver of anthropogenic
environmental impacts. According to this perspective, environmental conditions determine
human development, and in an IPAT model, this means there is a positive, linear relation-
ship between population and the total environmental impact. This is close to how the IPAT
was originally introduced by Ehrlich and Holdren (1971).

Second, modernisation, or environmental economics from a neo-classical perspective,
asserts that environmental challenges can be addressed through existing social, political
and economic institutions (York et al., 2003a). Accordingly, this view argues that current
levels of economic growth, capitalism and globalisation can be maintained without funda-
mentally harming the planet. Hence, this theory posits a relationship between environmen-
tal quality and economic development that reflects the green growthmodel or the EKC. This
implies that the IPAT models would generate values of I that are curvilinear with income;
that is, above a certain level of income, I decreases even though A increases. While such
relationships have been shown to hold for some pollutants, for instance for air pollution
in the form of sulphur dioxide (Grossman and Krueger, 1991), there is less evidence of
sector-wide decoupling, as discussed above.

Third, the political economy perspective holds that economic production is the most
important factor in this relationship (York et al., 2003a). This positionmaintains that neither
technological development nor political reforms will suffice to adequately mitigate envi-
ronmental impacts. As producers develop technologies and other methods to reduce labour
costs, they will increase their use of shared ecological resources, which means that envi-
ronmental externalities are inevitable. Economic elites will not internalise the costs volun-
tarily, and they will use their political power to challenge any reforms that fundamentally
change this system, as described further by York et al. (2003a). This perspective maintains
that even technologies that reduce ecological damage will, in the end, increase it, because
higher profits will be used to escalate growth (and will thus aggravate the effects of eco-
nomic production). Hence, according to this view, the only solution is an end to economic
growth. Thus, this position is consistent with the degrowth perspective and with calls for
a fundamental restructuring of society. In the IPAT models, this means that for the total
environmental impact (I ) to decrease, affluence (A) must decrease as well.

IPAT and STIRPAT frameworks

In the early 1970s, Ehrlich and Holdren (1971) and Commoner (1971) introduced the IPAT
equation to elucidate the relationship between population, affluence and environmental
impacts (Chertow, 2000):

I =PAT (1)

where I is total environmental impact, P is population,A is affluence and T is impact per unit
of economic activity.While this equation has been challenged as a simplification because of
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interactions and dependencies between affluence, population and technology, it formalises
essential components of the relationship between these factors. Nevertheless, any interpre-
tations derived from IPAT will have to relate to interaction effects. Chertow (2000) pro-
vided a discussion of the strengths and weaknesses of various versions of IPAT in the
literature. A further development of IPAT with respect to carbon emissions was proposed
by Kaya and Yokobori (1997), in which energy use per unit of consumption and the carbon
intensity of energy consumption were distinguished.

As IPAT implies by design that the different factors contribute equally to environmental
impacts, it does not allow for hypothesis testing of their respective contributions. To address
this limitation, Dietz and Rosa (1997) developed a stochastic form of IPAT, Stochastic
Impacts by Regression on Population, Affluence and Technology (STIRPAT). This model
does not presume a priori functional relationships between P, A and T; instead, it considers
that these associations can be estimated from data, following:

I = aPbAcTde (2)

where a scales the model, b, c and d denote coefficients of P, A and T, respectively; and
e is a random error term. The coefficients are similar to elasticities in economics, as they
reflect the degree to which a percentage change in the explanatory variable generates
a percentage change in impact. York et al. (2003b) introduced the notion of ecological
elasticity as the responsiveness of an environmental effect to a change in any of the driving
forces, specifically population elasticity of impact, b, and affluence elasticity of impact, c,
in eq. 2.

STIRPAT implies that if the elasticity is null, the impacts are not affected by changes in
population or affluence. If it is one, then there is a proportional relationship between factors;
that is, a 1% change in population (b= 1) or income (c= 1) results in a 1% change in the
impact, while higher values imply that the impacts grow faster than the driving factor (York
et al., 2003a). For climate, this could apply if higher incomes increase the demand for
products with a higher carbon impact, such as airfare. For land use, it may be valid if higher
incomes lead to more demand for products and services that increase deforestation. Values
above zero and below one indicate inelastic relationships, with impacts that are less reactive.
This may happen if higher incomes increase the demand for products with lower environ-
mental impacts, such as services. Values of b and c below zero mean that environmental
impacts decrease when population and affluence increase. This would imply that increasing
population and income levels enable disruptive innovations that fundamentally alter
the way humans impact the environment. In IPAT, the coefficients and the error term
equal unity.

STIRPAT has been applied to quantify the relationship between environmental impacts,
population and affluence in a wide range of contexts (Dietz and Rosa, 1997; Rosa
et al., 2004; Shi, 2003; York et al., 2003a). In addition to such historical assessments,
STIRPAT-type models have been used for projections. For example, Liddle (2011) projec-
ted carbon emissions from transport and residential electricity in different countries in the
Organisation for Economic Co-operation and Development (OECD) from 2010 to 2050.
Several related studies have addressed China’s carbon emissions in the coming century
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(Fan and Lu, 2022; Li et al., 2016). Li et al. (2016) predicted China’s GHG emissions from
2015 to 2035, with parameters derived from a STIRPAT-based analysis of data from 1998
to 2014. They made projections based on three emissions scenarios, with variations in pop-
ulation, affluence, carbon emission intensity, urbanisation, energy consumption structure
and economic structure (Li et al., 2016).

However, it could be argued that STIRPAT is too simplistic to model the relationship
between greenhouse gas emissions and P, A and T, as it excludes well-documented and
complex relationships between, for example, energy use and carbon emissions (Kaya and
Yokobori, 1997), or models incorporating energy prices (Liddle and Huntington, 2020).
The current study builds on these studies, although it evaluates two ecological challenges
and three forecasting approaches. An advantage of STIRPAT is that we can use it across
environmental dimensions.

Methods and empirical inputs

With IPAT as the theoretical foundation, we develop broad, quantitative projections of
climate impact and land use impact between 2020 and 2100. Specifically, we evaluate
normalised trajectories of impact, I=I0, population, P=P0, affluence, A=A0 and technologi-
cal development, T=T0, where subscripts with 0 represent the values of I,P,A and T, respec-
tively, in our base year (2020). For population and affluence, we rely on generic, commonly
cited middle-of-the-road forecasts in the literature. Regarding P, we use the United Nations
(UN, 2022) World Population Prospects (WPP) Medium variant. This is the main forecast
of the UN’s Population division, and it is based on qualitative expert-based assessments of
likely future population trajectories on a country-by-country basis. For A, we use the global
GDP predicted in the IPCC’s middle-of-the-road scenario: the Shared Socioeconomic
Pathway 2 (SSP2) (Dellink et al., 2017; Fricko et al., 2017; Riahi et al., 2017). We obtain
these data from the SSP Public Database, which is hosted by the International Institute for
Applied Systems Analysis (IIASA, 2023).

The last part of IPAT, T, is inherently difficult to measure and predict. It relates to a mul-
titude of processes, such as the demand and consumption of various products and services,
the adoption of environmental policies (public and organisational), and the development
of technologies that allow actors to produce a given amount of outcome with less impact.
We therefore use a set of model families that can be seen as different methods for projecting
T, which represent three distinct conceptual approaches to prediction. The first approach is
centred around a linear projection of T that is based on historical trends. This approach sees
IPAT as an identity (York et al., 2003b), whereby observations of I, P and A at different
points in time can used to solve for T, and temporal improvements in T can be calcu-
lated given the assumption of constant annual change. The second approach applies the
STIRPAT model (Dietz and Rosa, 1997), and it implies that projections of T vary explicitly
with projections of P and A. The third approach is based on elaborate forecasts in the litera-
ture, specifically on the SSP2 middle-of-the-road scenario (Fricko et al., 2017; IPCC, 2022;
Popp et al., 2017; Riahi et al., 2017). These three approaches are summarised in Table 1, and
will be described in the following subsections.
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Approach : Extrapolation of historical trends

Our first approach to predicting T is grounded in the assumption that future technological
developments in the form of annually reduced environmental impacts per unit of production
will follow historical trends. It postulates that changes in T in the past have been indepen-
dent of changes in P and A, and that annual improvements in T will be constant throughout
the 21st century at a rate that reflects average historical rates. In this approach, projections of
T are independent of changes in A and P (although the annual rate of change in T is derived
from historical records of I, P and A).

For climate impact data, we use records for global GDP (International Monetary Fund
[IMF], 2022) and emissions from all greenhouse gases (GHG) in units of gigatons (Gton) of
CO2-equivalents (CO2e) (Climate Watch, 2022) (Table 2). This implies an average decline
in emissions of 3.00% per year between 1990 and 2019, and we set the annual T reduction
ahead to this rate. Note that this assumption is consistent with estimates in the literature.
For example, the International Energy Agency (IEA, 2022) reported that the emissions

Table  Three different approaches to developing trajectories for T between 2020 and 2100 (all of them use the

same predictions for P and A)

Approach Explanation

(1) Extrapolation of
historical trends

Seeing IPAT as an identity (York et al., 2003b), we extrapolate historical trends in
which values of T at different points in time are calculated based on observations of
I, A and P. Annual historical changes in T are then calculated by assuming constant
temporal developments, and these values are then assumed in predictions.
Thus, projections of T do not depend on P and A.

(2) STIRPAT-derived
projections

We apply STIRPAT (Dietz and Rosa, 1997), with elasticities inferred from the
literature. Here, projections of T depend explicitly on P and A.

(3) Forecasts in
previous research

We infer T from projections for P and A and trajectories of I from published forecasts
that directly model environmental impacts until 2100 (Fricko et al., 2017; IPCC,
2022; Popp et al., 2017; Riahi et al., 2017).

Table  Global historical GDP and GHG (calculated as CO2e), measured in 1990 and 2019 (these data are used to

generate the models that reflect an extrapolation of historical trends: Approach 1)

Dimension
IPAT
entry 1990 2019 Comment

Climate impact [Gton
CO2e]

I 32.52 49.76 Historical GHG calculated as CO2-equivalents
(Climate Watch, 2022).

GDP [billion (bn) US$
2022 prices]

P×A 23,663 87,654 World Economic Outlook Database October 2022,
global GDP (IMF, 2022).

Carbon intensity [Gton
CO2e per bn US$]

T 1.37 0.57 An average decrease of 3.00% per year.
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intensity of GDP declined by approximately 3% per year in the US and the EU between
2010 and 2021, and that it was reduced by 40% in China between 2000 and 2021 (IEA,
2022), which also corresponds to approximately 3% annually.

For land use impacts, we account for estimates by the Food and Agriculture Organization
(FAO) regarding the amount of arable land used for crop production in 1961/1963
(1,372 million hectares (mn ha)), and in 2005/2007 (1,592 mn ha) with data from
Alexandratos and Bruinsma (2012). Based on global GDP data obtained from the World
Bank (2023), this implies an average decrease in land use per level of affluence of 3.2% per
year (Table 3), which is the rate we assume in our land use models in Approach 1. This rate
is relatively consistent with previous findings. For example, Lamb et al. (2021) reported that
the land needed per unit of agricultural and forestry production declined by an average of
2.7% annually between 2010 and 2017.

In this approach, the calculation of the total land use impact is based on historic levels of
population growth and affluence. Thus, an important assumption when fitting the impact to
an IPAT framework and setting T = I=�A × P� is that the total environmental impact is a
function of consumption in the past. This approach assumes that changes in GDP per capita
have driven land use change historically, which is appropriate if human land use is propor-
tional to economic activity. However, if humanity is instead viewed from a more ecological
perspective in which all humans are assumed to have similar caloric needs, land use needs
will tend to be very similar across all levels of affluence. The reality is most likely some-
where in between, and will vary for different types of land use. Another association between
land use and affluence is reflected in the STIRPAT-based projections, which are presen-
ted below.

Approach : STIRPAT-derived projections

In the second approach, we use projections of technological development grounded in
the STIRPAT framework (eq. 2). This implies that we assume that T varies explicitly with
population and affluence levels. We use elasticities in STIRPAT that have been estimated
under the assumption that the error term, e in eq. 2, and its coefficient, d, are included in T.

Table  Global GDP and the area of arable land used for crop production in the 1960s and 2000s (these data

provide the foundation for models that extrapolate historical trends: Approach 1)

Dimension
IPAT
entry

1961/
1963

2005/
2007 Comment

Crop land use [million (mn) ha] I 1,372 1,592 Arable land used for crop production in
hectares (Alexandratos and Bruinsma,
2012).

GDP [constant 2015 bn US$] P×A 11,918
(1962)

59,025
(2006)

National accounts data obtained from the
World Bank (2023).

Crop land use per unit of total
production [mn ha per bn US$]

T 0.115 0.027 This results in an average annualised T
decrease of 3.2% per year.
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This is consistent with the early STIRPAT literature, which assumed that it is not possible
to operationalise T (Dietz et al., 2007; Dietz and Rosa, 1994, 1997; Rosa et al., 2004).
However, note that more recent studies have argued that there are means to measure T,
and a variety of factors have been proposed to reflect it. For example, McGee et al.
(2015) found that impervious surface area (denoted terrestrial technology) is correlated with
carbon outputs, arguing that it should be ameasure of T in STIRPAT. Other factors that have
been accounted for in the STIRPAT literature include urbanisation, financial development
and trade openness, as well as renewable and non-renewable energy consumption (Jia et al.,
2009; Usman et al., 2022). Nevertheless, as there is still a lack of consensus regarding how T
should be operationalised, we opt for the standard method of keeping T in the error term.
Specifically, we make projections of the total environmental impact based on the projec-
tions for population and affluence detailed above using literature estimates of elasticities
(b and c in eq. 2). Then, we calculate T by the IPAT identity, according to:

T =
I
AP

= feq: 2 with e comprising T and dg= aPbAce
AP

= aPb−1Ac−1e (3)

When we examine changes over time, we then get:

T
T 0

= feq: 3g= aPb−1Ac−1e

aPb−1
0 Ac−1

0 e
=
�
P
P0

�
b−1� A

A0

�
c−1

(4)

If population and affluence increase monotonically, T=T 0 slopes downward for elastici-
ties below one (b < 1 and c < 1). For higher elasticities (b > 1 and c > 1), T=T0 instead
increases over time. However, if b and c diverge, with one but not the other above unity,
then T depends on the relative difference between P and A.

The elasticities for P and A in our projections are grounded in a review of previously
estimated STIRPAT models. For climate impact, we use elasticities obtained from two lit-
erature reviews of CO2 and GHG emissions (Liddle, 2015; Pottier, 2022). (This definition
of climate impact varies slightly from the one that we use in Approach 1, which is based on
CO2e, as this method assumes that the general trends are consistent across these different
definitions of climate impact.)

Regarding elasticities with respect to population, we use the median of the cross-
national, inter-temporal STIRPAT studies listed in Liddle (2015). In this data set, we
exclude short-run data when long-run data are available, and we use disaggregated estima-
tes (per income level) rather than overall estimates when both forms of data have been
published, implying N = 29 data points. Concerning elasticities with respect to affluence,
we additionally consider the review by Pottier (2022), who presented income elasticities of
GHG or CO2 emissions from various countries and time periods. We assume the upper
bound in cases in which no other data were listed by Pottier (2022), generating 36 data
points. We then use the median of the entries in Liddle (2015) and Pottier (2022) (Table 4).

For land use impact, we assume the elasticities of population and affluence published
by Rosa et al. (2004), in which STIRPATs were estimated using data from 142 countries
(Table 5). As proxies for land use, we use the results for arable land and grazing in Rosa
et al. (2004), ultimately using the mean of the two analyses. Because we depend on this
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single study to model land use impact, the elasticities that we use are less reliable than those
we use to model climate impact, which reflect the results of two comprehensive literature
reviews. This imbalance is undesirable but unavoidable, because the literature on STIRPAT
has mainly focused on climate impact (e.g., Wang et al., 2011 and Xiong et al., 2019).
Studies with land use as the dependent variable are still scarce, even though there are alter-
native approaches, such as those that focus on the ecological footprint, a general measure
that aggregates over many types of environmental stress (Dietz et al., 2007; Jia et al., 2009;
Usman et al., 2022).

Note that the empirical literature suggests that the impact elasticities of population are
near unity for both climate impact (Table 4) and land use impact (Table 5). However, elas-
ticities of income are generally below one, which signals relatively inelastic relationships
in which environmental effects increase at a slower rate than GDP. The median elasticity
of income for climate impact, 0.58 (Table 4), is only slightly larger than the elasticity for
land use impact, 0.50 (Table 5).Moreover, b for climate impact is above unity (1.12) while c
is not (0.58), which implies that T depends on the relative difference between changes in P
and A.However, for land use, elasticities of both population and income are less than unity,
which means that increases in P and A result in declining T over time.

Approach : Forecasts in previous research

Lastly, we consider forecasts in the literature regarding impact I, and we examine how they
relate to T in the IPAT framework (Approach 3). For climate, we apply the IPCC’s (2022)
most recent models, which use a scenario matrix architecture in which socio-economic
patterns are reflected in five key SSPs. In these models, various climate mitigation strate-
gies are represented by five distinct levels of radiative forcing (Fujimori et al., 2018),

Table  Elasticities of population and affluence with respect to climate impact in the two literature reviews that we

consider; we use the median values in our models (Approach 2)

Climate impact
elasticity Median Range N data points Reference

Population, b in eq. 2 1.12 0.26–2.75 29 studies Liddle (2015)

Affluence, c in eq. 2 0.58 0.31–1.04 in Pottier (2022) and
0.15–2.5 in Liddle (2015)

36� 27 studies Pottier (2022),
Liddle (2015)

Table  Elasticities of population and affluence with respect to land use that we use in our models (Approach 2)

Land use impact
elasticity Mean Range

N data
points Reference

Population, b in eq. 2 0.99 0.94 (Grazing)–1.04 (Arable land) 142 countries Rosa et al. (2004)

Affluence, c in eq. 2 0.50 0.36 (Arable land)–0.64 (Grazing) 142 countries Rosa et al. (2004)
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which reflect concentrations of GHG and other factors of climate warming in 2100, in units
of watts per square meter (Supplementary material, Figure S.1, available at https://doi.org/
10.1553/p-n5en-z38a). These levels reflect five distinct Representative Concentration
Pathways (RCPs), which account for different behavioural trends and efforts to curb emis-
sions relating to, for example, energy generation, novel technologies and transportation.

Specifically, our IPAT model for climate change is based on the IPCC’s (2022) middle-
of-the-road projection SSP2 with RCP 4.5, which was developed by IIASA (Fricko et al.,
2017; Riahi et al., 2017). The SSP2 assumes the continuation of current social and economic
trends andmoderate mitigation efforts.We operationalise climate impact as GHG emissions
in terms of unharmonised emissions of Kyoto gases in units of megatons of CO2e per year,
with data sets obtained from the SSP Public Database (IIASA, 2023). Note that this con-
ceptualisation varies slightly from the one we use in Approach 1, which is based on all
GHGs in units of CO2e, and in Approach 2, which reflects CO2 and GHG emissions. Thus,
it is an assumption in our models that patterns over time are consistent across these three
specifications. To obtain a trajectory for T, we divide the projection of climate emissions
with trajectories for population and per capita GDP in SSP2.

For land use, we also account for forecasts in the IPPC’s middle-of-the-road scenario
SSP2, which assume that current trajectories in the land sector will continue, with medium
levels of regulation and technological change and material-intensive consumption, as well
as an increase in animal calorie share and ongoing tropical deforestation (Popp et al.,
2017). These forecasts assume that the total cropland in 2005 was 1.5 bn ha, and that
the use of cropland will increase by 231 mn ha in the period from 2005 to 2100 due to
increased demand for food and feed (Popp et al., 2017). We account for this development
in relation to the projection of GDP in the SSP2 (Dellink et al., 2017) to calculate the annual
decrease in T (Table 6). The approach thus assumes that T responds to the inverse of
P×A ahead.

Calculated this way, the annual reduction of T is very dramatic, because land use has been
relatively unchanged over the last decades, while affluence and population have grown
considerably. This approach thus assumes that the levels of agricultural intensification,

Table  Global historical data (2005) and projections (2100) in terms of the area of arable land forecasted to be

used, and the value of T implied by these numbers (Approach 3)

Dimension
IPAT
entry 2005 2100 Comment

Cropland use [bn ha] I 1.5 1.731 SSP2 land use forecast for cropland in hectares,
as detailed in Popp et al. (2017).

GDP [bn US$2005] P×A 56,380 537,272 The 2005 GDP record was obtained from the SSP
Public Database, hosted by IIASA (2023), and
the 2100 forecast was from the SSP2 (Dellink
et al., 2017).

Cropland use per unit of total
production

T 0.027 0.0032 This generates an average T decrease of 2.2% per
year.
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mechanisation, capital investment and nutritional inputs to the land that have taken place
since the 1960s (i.e., the Green Revolution) will continue over the 21st century (Evenson
and Gollin, 2003). For low-income countries, this reflects the adoption of agricultural
intensification practices that have mainly been applied in more affluent countries. For
high-income countries, it implies the continuation of agricultural intensification at the same
spectacular rate as in the last half-century (Evenson and Gollin, 2003).

Note that it is a major simplification in our models that we do not consider that A, P and T
are endogenously related to each other. This approach diverges from historical trends and
forecasts in which these endogenous relationships were accounted for either explicitly, as in
the IPCC’s models, or indirectly, through various known and unknown causal links reflec-
ted in historical records. Thus, our IPAT-type extensions are based on strong assumptions
that likely do not hold regarding the independence of and the temporal invariance in the
relationships we have studied. Therefore, our approach contrasts with those of prominent
researchers who have theorised that P and T are interdependent (Boserup, 1965). However,
we believe that our approach is still conceptually helpful because it uses IPAT as a theoreti-
cal tool to explore how different methods used to predict environmental impacts relate to
one another.

Robustness assessments with varying P, A and T trajectories

We also examine to what extent changes in different parameters affect I in the different
models. Examining changes in P speaks directly to theories linking environmental effects
to population, such as the human ecology view. We model population using four diverging
trajectories, whereby our standard middle-of-the-road trajectory is the medium scenario
in the WPP (2022). We first change the medium scenario with 10% in 2100 and assume
a linear change up to that point. We also use the projections for low and constant fertility
in the WPP (2022). The low scenario represents rapid fertility decline in Asia and Sub-
Saharan Africa, while the (arguably quite unlikely) scenario of constant fertility characte-
rises population trajectories with the fertility levels of 2022 extrapolated into the future.
In practice, population policies aimed at reducing fertility could provide non-coercive
support for family planning or less government support for childrearing, while scenarios
aimed at promoting fertility could instead involve increased socialisation of childrearing
(Kolk, 2021).

For variations in affluence, which are directly related to degrowth from a theoretical per-
spective, we similarly model per capita GDP based on a 10% increase and a 10% decrease
compared to the 2100 level in our standard scenario. Examining the effect on I of such a
reduction in income can be seen as an assessment of degrowth as a strategy to address envi-
ronmental challenges. It is therefore associated with the political economy viewpoint.

We also explore the impact of a range of possibilities regarding technological develop-
ment. First, we consider variations in T of 10% in the models based on extrapolations
of historical data (Approach 1). Second, we consider the first and the third quartile of
impact elasticities of population and affluence in the reviewed STIRPAT literature
(Approach 2). Third, we consider different radiative forcings in 2100 in the SSP2 (IPCC,
2022) (Approach 3) (Supplementary material, Figure S.1, left panel). These levels imply
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varying T, since they assume that the socio-economic patterns (P and A) are similar while
the climate behaviours, policies and technologies (T) differ. We therefore obtain different
projections for T by dividing climate forecasts with population and GDP trajectories in
the SSP2 (Supplementary material, Figure S.1, right panel). This assessment relates to the
modernisation perspective, as it focuses on effects of developments in T. We cannot use the
corresponding method for land use because we have found only one relevant forecasting
scenario in the literature (Approach 3).

Results

Projections for climate and land use

The developed IPAT models for climate and land use impacts are shown in Figure 1. The
historical extrapolations (Approach 1) result in climate impacts at the end of the century that

Figure  IPAT projections of impact, I, for climate impact (red) and land use impact (light red). In all three panels,

the same assumptions apply for population (P, blue) and affluence (A, black), while T varies. The left panel shows

projections in which T for climate impact (green) and land use impact (light green) are based on the extrapolation of

historical trends (Approach 1). The central panel is based on STIRPAT estimates of impact elasticities of P and A

(Approach 2). The right panel shows forecasts in the literature in which T for climate impact is inferred from

the IPCC’s SSP2 (RCP 4.5) (Fricko et al., 2017; Riahi et al., 2017) and land use impact is derived from the

SSP2 (Popp et al., 2017) (Approach 3).

Projecting environmental impacts with varying population, affluence and technology using IPAT 15

https://doi.org/10.1553/p-n5en-z38a



are about half of current levels (Figure 1, left panel). This finding is relatively similar to the
IPCC’s forecasts (Approach 3) (Figure 1, right panel), which imply that the likelihood of
peak global warming staying below 2 °C is only 8% (5% to 95% percentile: [2% – 18%]),
and that the global mean temperature in 2100 will likely increase to around 2.7 °C (IPCC,
2022). Our model illustrates that even scenarios such as the SSP2 RCP4.5, which is likely to
be insufficient to mitigate climate impact, still imply a T that is very close to zero in 2100
(T = 0.06) (Table 7). (It echoes the substantial increases in population and affluence that the
IPCC expects by then, with levels of P and A that are 1.32 and 4.54 of current readings,
respectively.) These scenarios indicate that the IPCC is very optimistic, as even their
middle-of-the-road scenario implies that the world will commit to substantial climate
mitigation efforts.

The models based on STIRPAT are more alarming (Approach 2) (Figure 1, central
panel). The calculated effects in 2100 are closer to catastrophic climate impacts (e.g., SSP5
RCP 8.5), and project a much larger T than in Approach 1 (Table 7). Moreover, in sharp
contrast to environmental targets, our land use projections based on STIRPAT (Approach 2)
and forecasts in previous research (Approach 3) suggest that environmental impacts will
increase rather than decrease in 2100. The latter approach indicates that land use impact
will increase to 1.13 of current levels in 2100, despite estimates that Twill decrease to about
one-fifth of today’s levels (Table 7). This is an example of weak decoupling, since A is
expected to rise considerably by then. The lack of evidence of strong decoupling is discon-
certing, considering that many environmental studies argue that current levels of human
impact on land systems and biodiversity are already unsustainable (Steffen et al., 2015;
Dasgupta, 2021).

The left panel in Figure 1 depicts the land use impact if historical trends continue and T
declines by 3.2% per year (Approach 1). We complement this finding with a model that
accounts for extrapolations of historical trends based on cereal yields, generating an annual
T decrease of 2.1% per year (Popp et al., 2017) (Supplementary material, Figure S.2). The
difference between these two models is that the first represents total production, while the
second refers only to production in the form of crop yields, reflecting intensification tech-
nologies such as industrial fertilisers for a given land area (although crop yields will be
higher at lower levels of land use as more productive land is used). These models are rela-
tively consistent in that they both result in significant decreases in land use impacts in 2100.
Approach 1 implies that the land use impact at the end of the century will be only 0.07 of
current levels (Table 7).

Table  Technology, T, in 2100 as related to levels in 2020 for climate and land use impacts; these data are also

displayed in Figure 1

Dimension

Methods to project T

Approach 1: Extrapolation
of historical trends

Approach 2: STIRPAT-
derived projections

Approach 3: Forecasts in
previous research

Climate 0.09 0.55 0.06

Land use 0.07 0.47 0.19
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Sensitivity analyses

We further explore how changing trajectories of population, affluence and technology
would change environmental impacts as seen through an IPAT lens. Here, we want to illus-
trate the importance of the time horizon and the difference in T across the two environmental
dimensions and the three modelling approaches (Table 1). These aspects influence the
extent to which changes in P and A will actually affect I. Our models can thus be used
to highlight the relevance of addressing environmental concerns through policies aimed
at reducing population or affluence.

Population

Given the very nature of an IPAT model, a 10% reduction in population in 2100 compared
to the middle-of-the-road scenario would decrease the climate impact to the same extent as
in Approach 1. For example, carbon emissions would be 0.47 of current levels instead of
0.52 (Table 8), which is a rather modest reduction. In this approach, the small T of 0.09 of
current levels (Table 7) compensates for the relatively large anticipated values for P and A
of 1.32 and 4.54, respectively, of today’s readings (Figure 1). However, in the scenarios that
are based on STIRPAT (Approach 2), the impact of a 10% decrease in population is much
larger, as it implies that the carbon impact (I = 2.91) is considerably lower than in the
middle-of-the-road scenario (I = 3.28) (Table 8). Put differently, a 10% decrease in popu-
lation would reduce the impact in 2100 by 37% compared to current levels. Regarding
forecasts in previous research (Approach 3), our models suggest that the effect of a 10%
decrease in population would be less relevant for climate than for land use; I would be
reduced from 1.13 to 1.02 of current levels for land use, compared to from 0.35 to 0.32 for
climate (Table 8). In absolute terms, this suggests that population policies would have a
larger effect on the land use impact than on the climate impact, although the relative impact
would be similar in a strict IPAT-type framework.

Our IPAT models of environmental impact as related to the UN WPP’s (2022) three
population prospects illustrate that the high rates of growth implied by the constant fertility
scenario have very large impacts in all cases, whereas low fertility rates are associated

Table  Impact I in 2100 compared to in 2020, showing ranges (andmiddle-of-the-road values) for ± 10% changes

in population and affluence compared to the middle-of-the-road outcomes depicted in Figure 1

Dimension

Impact I

Policy

Approach 1:
Extrapolation of
historical trends

Approach 2:
STIRPAT-derived

projections

Approach 3:
Forecasts in previous

research

P ± 10% Climate
Land use

[0.47–0.58] (0.52)
[0.40–0.49] (0.44)

[2.91–3.65] (3.28)
[2.53–3.08] (2.80)

[0.32–0.39] (0.35)
[1.02–1.24] (1.13)

A ± 10% Climate
Land use

[0.47–0.58] (0.52)
[0.40–0.49] (0.44)

[3.09–3.47] (3.28)
[2.66–2.94] (2.80)

[0.32–0.39] (0.35)
[1.02–1.24] (1.13)
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with much smaller effects (Supplementary material, Figures S.3 and S.4). Note that the
STIRPAT-derived models (Approach 2) show a similar sensitivity to population as the
other two approaches in relative terms (Table 9). This is because the elasticities for popu-
lation are relatively close to one for both climate (1.12) (Table 4) and land use (0.99)
(Table 5). However, in absolute terms, variations in population have the largest consequen-
ces in these models (Approach 2), because they imply that T is quite high in 2100 compared
to current levels, at 0.55 for climate and 0.47 for land use (Table 7). Note further that the
constant fertility scenario has a larger absolute impact on land use (I = 2.09 vs. 1.13 in the
middle-of-the-road scenario) than on climate (I = 0.66 vs. 0.35) in the models that are based
on forecasts in previous research (Approach 3). This suggest that population policies are of
greater importance for land use than for climate change.

Affluence

Table 8 shows variations in per capita affluence by ± 10% in 2100 compared to the middle-
of-the-road scenario, and Figures S.5 and S.6 in the Supplementary material show the cor-
responding graphs. These variations imply proportional impacts in the models that are
based on the extrapolation of historical trends (Approach 1) and forecasts in previous
research (Approach 3) (Supplementary material, Figures S.5 and S.6). These two methods
both imply that variations in A by ± 10% perfectly reflect the corresponding variations in P,
which is an inherent effect of this type of IPAT modelling. The effects of ± 10% changes in
affluence are the highest in the models in which T is the highest, the STIRPAT-based pro-
jections (Approach 2). Notably, these models result in impacts that vary quite a lot, from
3.09 to 3.47 for climate and from 2.66 to 2.94 for land use (Table 8). However, this also
means that the relative changes in the impact are smaller, because in these models we
assume that the elasticity of income is less than one for both climate (0.58) (Table 4) and
land use (0.50) (Table 5).

Table  Impact I in 2100 compared to in 2020, assuming the UN WPP’s (2022) three population projections:

low, medium and constant fertility; all other models in this paper are based on the WPP’s (2022) medium

scenario

Dimension

Impact I in 2100 relative to 2020 for different population prospects

Approach 1:
Extrapolation of
historical trends

Approach 2:
STIRPAT-derived

projections

Approach 3:
Forecasts in previous

research

Climate 0.35 (low)
0.52 (medium)
0.97 (constant fertility)

2.12 (low)
3.28 (medium)
6.56 (constant fertility)

0.24 (low)
0.35 (medium)
0.66 (constant fertility)

Land use 0.30 (low)
0.44 (medium)
0.82 (constant fertility)

1.91 (low)
2.80 (medium)
5.17 (constant fertility)

0.76 (low)
1.13 (medium)
2.09 (constant fertility)
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Technology

Environmental impacts with different assumptions for T are shown in Figure 2 and Figure 3,
and Section S5 in the Supplementary material lists values of I in 2100. The left panels
in Figures 2 and 3 show that neither climate nor land use impact is particularly sensitive
to ± 10% changes in T if historical trends continue (Approach 1). For example, these
models imply that a 10% decrease in T results in climate impact that is 0.47 of current
levels, compared to 0.52 in the middle-of-the-road scenario (Supplementary material,
Table S.1). This is because reductions in T are very large in these scenarios, with T = 0.09
and T = 0.07 of current levels for climate impact and land use impact, respectively (Table 7).

The central panel in Figure 2 shows variations in climate impact as an effect of a range of
STIRPAT elasticities in eq. 2, accounting for the first and the third quartile in the literature.
It is noteworthy that none of these models result in climate impacts that are small enough to
meet global goals, as they range from 2.22 to 5.45 of current levels (Supplementary material
S6, Table S.2). Correspondingly, calculations of the land use impact in 2100 as related to
different elasticities suggest that the effects will be much worse compared with current
levels (Supplementary material S5, Table S.2).

Figure  IPAT projections of climate impact (I, red) as related to variations in assumptions for technology

(T, green). The left panel shows projections in which technology is based on historical trends ± 10% (Approach 1);

the central panel is based on STIRPAT estimates of climate impact elasticities, with the first and third quartiles in

addition to themedian (Approach 2); and the right panel shows trajectories based on the IPCC’s SSP2 projection for

different RCPs (Approach 3).
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As an additional robustness check we also generate a STIRPATmodel based on findings
in Liddle (2015), who highlighted the importance of accounting for differences across
OECD countries and non-OECD countries, with larger elasticity estimates in the latter
group. For income elasticity, we assume c = 1.0 (eq. 2) for non-OECD countries (Liddle,
2015), and our baseline value for OECD countries (c = 0.58) (Table 4).We thenweigh these
values based on OECD/non-OECD shares of global GDP in 2020 (World Bank, 2023),
generating a global weighted average of c = 0.75. For the population elasticity, we assume
Liddle’s (2015) global estimate of b = 1.0. For comparison, note that our baseline model for
climate impact assumes b = 1.12 and c = 0.58 (Table 4). The resulting graph (Supplemen-
tary material, Figure S.7) suggests that the climate impact in 2100 may be even more severe
than in our baseline scenario, with I = 4.10 vs. I = 3.28 (baseline) of 2020 levels.

The right panel in Figure 2 shows the IPCC’s SSP2 projections given different levels
of radiative forcing in 2100 (see Supplementary material, Figure S.1). It includes the only
climate scenario in this study in which emissions are below net zero in the 2050s (SSP2
and RCP 1.9), in alignment with global climate targets to keep global warming below
1.5 °C. However, as illustrated in our IPAT models, this scenario is associated with

Figure  IPAT-based projections of land use impact (I, red) as related to variations in technology (T, green).

The left panel shows projections in which T is based on the extrapolation of historical trends ± 10% (Approach 1),

and the right panel is based on STIRPAT-based estimates of population and income elasticities, accounting for the

first and third quartiles in addition to the median in the literature (Approach 2).We did not find any variations in the

literature regarding forecasts of land use (Approach 3).
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exceptional improvements in the climate impact per unit of production. For example, it
implies that T will be reduced to less than one-quarter of current levels already in 2040
(Figure 2).

Discussion

The IPAT framework connects to earlier studies on how societies can manage environmen-
tal challenges. While it was developed to highlight the role of population, it can be used to
argue for nearly any relationship of the constituting elements (Chertow, 2000). Here we
have shown that IPAT is a helpful tool for comparing future environmental impacts when
the relative role of T compared to A and P varies. Articulating differences across domains is
important because it improves our understanding of how the trade-offs involved diverge.
Distinct forms of ethical and political reasoning may apply in different environmental
dimensions. We have intuitively illustrated that larger reductions in T imply smaller
effects of changing P and A in absolute terms. We have modelled this as either low elas-
ticities between impact and affluence or population, or through exogenously defined
trajectories.

Environmental ecology theories

The overall interlinkages of P, A and T have been discussed extensively in the environ-
mental literature from a number of different theoretical perspectives. It is our hope that
our IPAT-type modelling can clarify how these different theories implicitly (and occa-
sionally explicitly) put different weights on the various parts of this identity. The original
proponents of IPAT highlighted the negative consequences of anticipated growth in P
and A (Ehrlich and Holdren, 1971), and they were thus sceptical of improvements in
T. Contemporary environmentalists who focus on degrowth are similarly sceptical of
such improvements, but they concentrate almost entirely on A. In contrast, researchers
proposing green growth put considerable emphasis on mitigation through T. Our models
have highlighted how substantive such technology improvements must be in light of
mainstream forecasts of global GDP, especially if one considers contemporary consump-
tion to be (already) above sustainable levels – a view that is common in the environmen-
tal literature. Broadly, our models are consistent with previous research that reasoned that
the IPAT framework highlights T as the most dynamic and important part of the equa-
tion (Chertow, 2000). They are especially helpful for pinpointing the situations in which
large reductions in T are feasible, and P and A are therefore of less relative importance.
Our models also illustrate the extent to which technological improvements underlie dif-
ferent actors’ forecasts.

Green growth perspective

Our projections relate to different perspectives within environmental ecology. Broadly, the
results can be seen as consistent with the green growth theory, or modernisation in the
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framing of York et al. (2003a), at least in the limited sense that they imply relative (weak)
decoupling of the environmental impact from economic growth. In a comparison of levels
in 2100 and 2020, T decreases while A increases in all our models. However, the results
of only a few of the models imply that an absolute (strong) decoupling of the growth of
affluence A from impact I is likely to occur. Indeed, in many of our models, I in 2100 is
projected to increase from current levels.

Nevertheless, the projections that are grounded in the extrapolation of historical trends
(Approach 1) support modernisation, as they imply that both climate and land use impacts
will be lower at the end of the century than they are now (Figure 1, left panel). It is, however,
important to be aware that both of these models assume exceptionally small values of T in
2100 (Table 7), which implies a massive adoption of environmentally-friendly policies
and technologies in the 21st century. In the case of land use, the models assume enormous
increases in yields for a given amount of land.

Human ecology and political economy perspectives

Our projections based on forecasts (Approach 3) imply that the impacts in 2100 will be
much larger than what many argue are sustainable levels, as the climate impact is projected
to be far above zero and the land use impact is even projected to be above current levels.
These predictions support the human ecology and political economy perspectives. Even
more disconcerting, the models based on STIRPAT (Approach 2) imply that both environ-
mental impacts increase as an effect of anticipated growth in P and A because the impact
elasticities for both factors are above zero (Tables 4 and 5). Thus, theories that argue for
degrowth, such as the political economy perspective, and those that promote the need
for population policies, such as the human ecology view, find the most support from these
models.

While population size contributes to the environmental impacts in all our models,
in some scenarios this effect is small relative to the impact of the projected growth in
affluence. The importance of changing A and P can be considered in relation to the size
of T in the different projections. For example, it becomes clear that the higher T in forecasts
of land use (Approach 3) implies that the relative importance of anticipated growth in P
and A is greater for this environmental dimension than it is for climate (Table 7). This
suggests that land use impacts are harder to mitigate than climate impacts through means
other than reduced consumption or fewer people. An emphasis on the importance of
population policies for mitigating environmental challenges is consistent with the human
ecology perspective. Thus, this perspective may be more relevant for land use impacts than
for climate impacts.

How do population and affluence affect environmental impacts?

In line with earlier research using this approach, our STIRPAT-type modelling has
highlighted the difficulties in disconnecting affluence and population from environmen-
tal impacts. These models, which are derived from observed trends over time and across
regions, consistently give the highest environmental impacts. They suggest that to

22 Emma Engström and Martin Kolk

https://doi.org/10.1553/p-n5en-z38a



reach global environmental goals, our economic, technological and political systems
may need to work in fundamentally different ways than they have in recent decades.
Business-as-usual scenarios likely imply limited decoupling of I from and P or A. In our
STIRPAT-based models, the differences between projections across environmental
dimensions are driven by variations in the impact elasticities of P and A, which imply
alternative paths for T. Thus, our models highlight that in standard climate models such
as the SSP2 RCP 4.5, substantial weight is given to future technological improvements,
and the near-total decoupling of affluence and population from climate impacts is
assumed. As such, the IPCC’s middle-of-the-road prediction clearly reflects a green
growth perspective.

Another inference that can be drawn from our models is that population policies (“fewer
people”) and degrowth (“less consumption”) are less relevant strategies for addressing
climate impacts than land use impacts if the mainstream SSP2 trajectories are assumed to
be realistic. This is because there are promising technologies for mitigating climate impacts,
especially within the energy supply sector (see Davis et al., 2018). By contrast, for land use
change, population policies or reduced consumption appear to be more relevant. This is
underlined in our STIRPAT-based approach, which indicates that land use impacts will
increase substantially from levels that many argue are already unsustainable. We are not
aware of many empirical and analytical studies on land use in the scientific literature that
would clearly contradict such a perspective.

Our models suggest that climate impacts may be decoupled from affluence (and,
relatedly, from population). These findings are supported by existing technologies and
policies that would substantially reduce climate impacts, as shown in the right panel in
Figure 1. Still, it is important to note that achieving green growth in the context of
climate change means that the impact per dollar spent needs to decrease steeply for I
to go down sufficiently. The reduction in T must be larger than the anticipated increase
in P×A; for example, if P = 1.2, and A = 5, then T must be 1=6 for a constant I, or 1=12
for reductions in I by half in a green growth scenario. Assuming access to clean energy,
it is imaginable that the carbon elasticities of population can be reduced to near zero,
which implies that there will be no additional climate impact of an extra person in
the world. We have one IPAT trajectory that reflects this positive trend (Figure 2, right
panel).

However, we have found little evidence of the corresponding pattern for land use
change. Our models have thus illustrated that the anticipated technological and behaviou-
ral developments in carbon intensity do not necessarily translate into improvements in
land use systems. Instead, our models have shown that while achieving green growth
may be a realistic goal in the context of climate change, it is less applicable to land use.
Consequently, the political economy view that calls for a stagnant economy (degrowth) is
likely to be more relevant for mitigating land use impacts than for addressing climate
impacts. In parallel, our results suggest that population policies, which are related to the
human ecology perspective, may have a larger effect on the likelihood of reaching global
goals for land use change than for climate change. Policymakers need to be aware of
the different approaches that will be required to address these different environmental
impacts.
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Limitations

Our models are generalisations of the world, and therefore suffer from several limitations.
They are based on several theoretical simplifications, the most important of which is prob-
ably that we have largely avoided examining potential endogeneities between P, A and T.
By harmonising the different types of models into one framework, we have thus excluded
some of the causal ways that these aspects may be linked; hence, our models should pri-
marily be seen as putting different approaches into a similar scale and a similar theoretical
perspective to allow for comparisons. The models should be considered in this light, rather
than as precise projections of environmental impacts. Consequently, we see this article
as mainly representing a theoretical contribution. Any single IPAT-type model we have
presented can be discussed, as different operationalisations or competing models in the
secondary literature could have been chosen and may have been equally plausible. Never-
theless, we have found that this exercise has been helpful in interpreting the radically
diverse perspectives found in the environmental literature.

Moreover, it is important to keep in mind that we have relied solely on experts in this
study, as our modelling inputs are grounded in a literature review. Thus, the study has
assumed that this literature is sufficiently rich to capture key dynamics.While the STIRPAT
literature on climate impacts is relatively extensive, it has been more challenging to find
related studies on land use. Moreover, we have assumed elasticities to be temporally con-
stant, and it could be argued that our STIRPAT models for climate change are simplistic
compared to models that also include factors such as energy use and future energy prices
(Kaya and Yokobori, 1997; Liddle and Huntington, 2020). Our method is a simplification,
which also relates to variations across income levels. There is only limited research on how
elasticities change over different levels of affluence, but the few studies on this topic have
suggested that the estimates are relatively robust (see e.g., Liddle, 2015). The modelling
in this study is based on our own assessments of what constitutes relevant empirical inputs.
For example, we have assumed that the slightly different definitions of climate impact that
we adopt in the three modelling approaches (Table 1) do not have a large influence on the
findings in general. Thus, our modelling assumes that variations in climate impact over time
are not fundamentally different across these different specifications.

Another related limitation is that our STIRPAT-based climate impact model
(Approach 2) uses the median of the listed studies in two literature reviews (Liddle, 2015;
Pottier, 2022), even though Liddle (2015) argued that published studies in this field are
sometimes flawed. Nevertheless, we note that the values that we assume in our baseline
model are within a reasonable range based on Liddle’s (2015) recommended estimates,
as discussed in the subsection Technology in the sensitivity analysis. Furthermore, the
results of our sensitivity analysis that specifically accounts for Liddle’s (2015) recom-
mended values (Supplementary material, Figure S.7) largely mirror our baseline results
(Figure 1, central panel), although they also suggest that the climate impacts in 2100
may be even more severe than in our baseline projection. We refer to Liddle (2015) and
Liddle and Huntington (2020) for more thorough discussions on the wide-ranging estimates
for carbon emissions elasticities of population and affluence in the literature, for example,
relating to cross-sectional dependence and variations over time.
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Another potential concern is that we use a single set of trajectories for P and A in
our IPAT modelling, while the various forecasting scenarios that we base our models
on use different, but related, trajectories. The most important difference between these
approaches is that we use the UN WPP (2022), while many SSP-based projections have
used population forecasts from the Wittgenstein Centre for Demography and Global
Human Capital and IIASA (KC and Lutz, 2017). The harmonisation of a diverse set
of scenarios was necessary in our approach, which aimed to synthesise a sprawling
literature and a large set of models with different assumptions regarding P and A. This
highlights the importance of interpreting our results primarily as a theoretical tool for
understanding conceptual differences, rather than as competing forecasts of environ-
mental problems.

Conclusion

Our models are generally consistent with common views in the environmental sciences
of how affluence and population affect environmental challenges. They show the follow-
ing: (i) Consumption and wealth are the largest drivers of many environmental challen-
ges. (ii) As the impact of population on environmental challenges is often close to one-
to-one, population reductions will likely affect many environmental problems propor-
tionally, rather than substantially less or more. There are both empirical and theoretical
reasons to see population as a scalar to environmental impacts. (iii) Green growth is
possible and is likely in the sense of relative decoupling in which declining T is com-
bined with increasing A; in contrast, it is much more challenging to achieve absolute
decoupling involving decreasing I over time, which implies very small values for T
in long-term scenarios in which P×A is expected to increase considerably. (iv) Some
environmental challenges, such as achieving zero emissions energy production or radical
decreases in the climate impact per unit of consumption, seem more feasible than others,
such as radically changing land use and halting conversions of forests to farmland.
(v) Even though large-scale technological transformation is viewed as plausible by
the scientific community (e.g., the IPCC), such scenarios assume dramatic reductions
in environmental impacts per unit of consumption (T ). We believe that using IPAT
to harmonise models across different types of impacts can help to improve our under-
standing of and inform our conclusions about the strategies for addressing environmental
challenges.

Supplementary material
Available online at https://doi.org/10.1553/p-n5en-z38a
Supplementary file 1. Climate impact for different RCPs given projections of P and A in the
SSP2 (S1); Land use impact assuming the continuation of historical trends (S2); Environmental
impacts as related to variations in population (S3); Environmental impacts as effects of variations
in per capita affluence (S4); Environmental impacts as related to variations in technology (S5);
Climate impact as an effect of variations of T in STIRPAT accounting for differences across
OECD/non-OECD countries (S6).
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