
Ledermann 

119 
 

Analysing Digital Maps Online: 
A Reverse Engineering Approach 

 GI_Forum 2018, Issue 2  
Page: 119 - 130 

Full Paper 
Corresponding Author: 

florian.ledermann@tuwien.ac.at 
DOI: 10.1553/giscience2018_02_s119 

 

Florian Ledermann 
Technical University of Vienna, Austria 

Abstract 
The age of ‘Big Data’ and rapid online publishing brings with it a new need for verifying 
and understanding digital media. Cartographers are interested in the analysis of maps 
published online with regards specifically both to their adherence to established 
cartographic techniques and to identifying innovative approaches to geographic 
visualization. But traditional manual cartographic analysis methods, based solely on 
inspecting a map as an image, are limited; they can neither keep up with the volume of 
new maps coming online every day, nor answer all questions about the process of 
creation of the map. This paper proposes a novel approach to analysing maps which 
takes into account the source code of the cartographic program producing the map 
image. It is argued that such a method can surpass manual analysis in both its potential to 
facilitate semi- or fully automated processes as well as the depth of insight that the method 
is able to give into the complete socio-technical assemblage of a digital map artefact.  

Keywords: 
digital cartography, web maps, reverse engineering, transformations, deconstruction 

1 Introduction  

The advent of the web as a distributed publishing platform and the even greater ease with 
which information can be spread via Web 2.0 and social media have raised unique challenges 
for researchers and critical observers of media. The ‘4 V’s’ of Big Data (Hitzler & Janowicz, 
2013) sum up the challenges faced by anyone who wants to engage with information 
published on social media, or on the web in general: the volume and velocity of the stream of 
new messages overwhelm our capacity to engage with their content using traditional 
techniques for analysing individual media artefacts; the variety of content makes it hard to 
establish a single analytical (or even technical) framework; and mixed veracity prevents the 
naïve application of content summarization methods to obtain a reliable overview of trends 
and new developments: there is increased awareness of the questionable trustworthiness of 
unknown actors in the light of the ‘fake news’ debate, and of the potential for paid actors 
and bot networks to skew opinions online. 



Ledermann 

120 
 

As cartographers, we are mainly interested in the ever-increasing number of maps and other 
depictions of geographic phenomena posted online. Scrutinizing maps for their adherence to 
cartographic best practices, cognitive feasibility and the soundness of the depictions of the 
underlying phenomena has long been an important part of the work of cartographers 
(Monmonier, 1996). So, too, has looking out for new techniques or noteworthy examples of 
cartographic production. Typically, cartographers would examine a given map by asking 
questions relating it to an established body of cartographic knowledge: What projection is 
used in this map? How are the colours and other visual variables of map symbols assigned? 
How is the classification of phenomena established? etc. But the developments sketched out 
above have not left geographic media unaffected. Arguably, more maps than ever are shared 
online today, and many of those are produced by map makers who do not have a traditional 
education in cartography, but come, as ‘neocartographers’, from a background as designers, 
coders or journalists (Faby & Koch, 2010; Cartwright, 2012). With new channels for sharing 
and distribution, maps can become ‘viral’, potentially reaching massive audiences and 
triggering the creation of derived maps as ‘memes’ (Robinson, 2018). Furthermore, 
commercial actors from outside academic and standards-based cartography shape to a large 
extent our expectations of how maps look and work online today, without necessarily 
engaging in the open debate and critical reflection on techniques and practices.  

In the wider field of digital humanities, Alier and Casany have discussed the challenges that 
the exponential growth of technology poses for researchers (Alier & Casany, 2017). They see 
potential in leveraging the expanding power of technology for research, but in the face of 
limited research resources and limited knowledge on the one hand, and an exponential 
output of online media on the other, severe challenges remain. In the field of cartography, 
researchers have developed strategies for ‘keeping pace with evolving web mapping 
technologies’ (Roth, Donohue, Sack, Wallace, & Buckingham, 2014), but Roth later argues 
that teaching fundamental concepts is of higher importance in a geography curriculum than 
focusing on the details of individual technologies (Roth, 2016) – a reasonable position, but 
the questions remain of how to engage critically with digital media without detailed technical 
understanding, and what the ‘fundamental concepts’ of a continuously evolving medium 
even are. 

The goal of the ongoing research presented here is to find novel, technology-supported 
methods for non-engineering researchers to critically analyse digital maps. To develop such 
methods, another major trend in digital media is taken into account – one that has changed 
the way in which maps are delivered online: the interaction capabilities of modern web 
browsers and the need to adapt to different devices and contexts by means of ‘responsive 
design’ (Marcotte, 2010; Griffin, Robinson, & Roth, 2017) require that many maps are not 
published online as static ‘flat’ images but instead as interactive experiences, which contain 
program code to adapt, animate or provide the user with means of interaction. The central 
research question of this project is: can we use the digital code of online maps to gain further 
insight into their inner working and creation process, possibly in an automated or semi-
automated fashion, in order to keep up with the volume of new maps posted online and the 
exponential growth of technology? 

The idea that program code is a form of social media, with its own social platforms like 
GitHub, glitch.com or bl.ocks.org for sharing, commenting and ‘remixing’ code, is not new 



Ledermann 

121 
 

(Dabbish, Stuart, Tsay, & Herbsleb, 2012). Analysing code as a medium by using social 
sciences methods such as content analysis or close reading has been practised within critical 
code studies and software studies for some time (Mackenzie, 2006; Fuller, 2008). However, 
as cartographers we are not interested in program code as a textual medium per se; an 
analysis of the program code of maps should seek to further the understanding of the spatial 
and cartographic transformations applied, and new techniques are needed that can help with 
such an analysis. Such a cartographic analysis of program code would therefore tie in with a 
wider interest in how algorithms are used in our society to make decisions and to filter and 
transform data (Roberge & Seyfert, 2017), and with questions of accountability, quality and 
the possibility for critique of such automated processes. In an even wider sense, we would 
hope to contribute to an understanding of what exactly the underlying principles of digital 
maps are, how we can engage critically with them, and what their role in a wider ‘culture of 
the digital’ (Stalder, 2016) may be. 

To elaborate, and hopefully partially answer the questions raised above, this paper will 
proceed as follows: a conceptualization of digital maps as coded transformations from data 
to visual output will be sketched out in the next section, to lay the groundwork of a shared 
understanding of digital online cartography. In Section 3, the possibility of automatic ‘reverse 
engineering’ of such coded transformations will be presented, and in the final section some 
conclusions for future research will be drawn from the findings, including a 
conceptualization of digital maps as ‘deep images’ that reveal the transformations of data for 
each of their graphical elements. 

2 Understanding digital cartography – from data through code to 
pixels (and back again) 

Cartographers have always asked questions about the quality and origin of maps and their 
adherence to cartographic best practices. For historic maps, an educated cartographer can 
estimate whether a map was printed earlier or later in a print run (Campbell, 1989), or can 
use software tools to assess its cartographic projection and spatial distortion (Jenny & Hurni, 
2011). However, such methods based solely on analysing the image of the map require the 
attention of an expert to each artefact to be analysed, and are limited in fundamental ways. 
For example, it is in principle not possible to fully assess from a map image whether and 
which information has been omitted from the map (because there is nothing in the image to 
analyse). Nor, without access to the map’s creators or additional artefacts that reveal 
information about the creation process, is it possible to gain insight into the rationale behind 
some of the cartographic decisions reflected in the map. 

As has been pointed out above, for a subset of maps posted online – those which come in 
the form of program code that is run in the user’s browser to generate the map – we can gain 
access to such an artefact: the map’s source code. While it seems obvious that the code of 
the map says something about the map, scholars have struggled to find ways to make sense of 
that information. Kitchin (2017) sums up the debate as code being a ‘big ball of mud’ (a 
phrase attributed to Foote and Yoder (2000)) and concludes: ‘Even those that have produced 
it can find it very difficult to unpack its algorithms and routines; those unfamiliar with its 



Ledermann 

122 
 

development can often find that the ball of mud remains just that’ (Kitchin, 2017, pp. 22–
23). How, then, can we proceed to make sense of the ‘ball of mud’ to analyse spatial and 
cartographic phenomena? 

Galloway (2010) points out that there are three levels of any software, which are connected 
but do not directly mirror each other. At the level of the software’s author is the source code 
used to write the program; at the level of the machine, the executed code performs 
calculations and transformations on data; at the user’s level, there is the expression of the 
software on the screen, experienced as pixels, graphics and other elements of a user interface. 
Analysing source code (the first level) with the goal of learning about its visual output (the 
map, on the third level) only makes sense if the expressions found in the code can be related 
to the transformations and calculations (on the second level) producing the output. 

Almost 40 years ago, Tobler (1979) established the concept of transformations as a key 
paradigm of cartography, covering a wide range of aspects that one may be interested in in 
cartographic analysis: cartographic projections, classification of continuous values into 
distinct categories, colours assigned to the elements on the map from data values, etc. For 
any digital map, the transformation of raw geographic data (input) to pixels on the screen 
(output) is performed by the computer and must therefore be expressed in the source code 
of the software components involved in that process. If an observer has access to that code, 
she could attempt to read it and thereby reconstruct the transformation processes at work in 
the map.  

Such an approach, based on the ‘close reading’ of code, has been presented by Ledermann 
(2016), with the conclusion that it is possible to identify well-known cartographic concepts 
such as projections or the assignment of visual variables in the source code of maps written 
for different mapping APIs, but the amount of work needed to analyse even simple 
examples makes such a method prohibitively labour intensive. One of the difficulties found 
by this study is that even for small programs dedicated to demonstrating cartographic 
techniques, the proportion of code that actually relates to cartographic transformations and 
their visual output is small. So instead of trying to analyse the code of a cartographic 
program in its totality, an appropriately educated observer could try to locate just the 
essential portions of the code relevant for cartographic analysis. 

Since the map is the starting point for such an analysis, one strategy would be to start with 
the map image and work backwards through the code, at every step asking the question ‘Where 
is the information needed at this point coming from?’ and continuing the analysis at these 
locations. Digital maps on a screen are composed of pixels, so any pixel on the screen can be 
the starting point for such an investigation. The pixel can be associated with an output 
primitive, drawn on the screen by the browser and operating system. The shape and position 
of the output primitive is determined by parameters, which we can locate in the code 
representing the output primitive. Each parameter, in turn, can be traced back to the location 
in the code where it is defined by a calculation or constant. Each calculation will originate 
either in further calculations that can be traced back recursively through the code, or, 
eventually, to its origin in constant values defined in the code or loaded from external data 
files.  



Ledermann 

123 
 

Figure 1 gives an example of such an analysis of a real-world example running in a web 
browser (the tutorial ‘Let’s Make a Map’ by Mike Bostock (2012)). The chosen pixel is part 
of a text label, represented by an SVG text element. The attributes defining its position and 
appearance are class, transform, x, dy, style and the element’s text content. We can trace 
each of those attributes back through the code – in the example, the value of the x parameter 
(determining the text’s position on the screen) is traced back to a decision made in the code: 
print all place names west of the meridian of 1° latitude to the left of the place it refers to, 
and position all place names east of that meridian to the right of the place – a primitive label 
placement algorithm that is sometimes applied for simple maps. The latitude/longitude 
coordinates of the place object can be traced back further, ultimately leading to a data 
structure loaded from a data file named uk.json. 

  
Figure 1: Tracing a single pixel of the map (top right) back through its origins in code. By following the 
arrows representing transformations backwards, each element of the cartographic output can be 
traced back to its origin in data and parameters. 

Once the transformation of data through code into pixels has been uncovered like this (and 
the ‘ball of mud’ untangled for inspection), the investigation can continue using other 
research methods. In modern software projects, code is often stored in a version control 
system (VCS) that retains, for each line of the program, information on the authorship 
history plus comments potentially explaining the rationale behind it. This information can 
now be queried for specific lines of interest to retrieve entry points for an examination of the 
social processes behind the code, and therefore the map. In the example, the line of code 



Ledermann 

124 
 

implementing the label placement algorithm could be investigated and its author contacted 
for an interview about this decision, the potential alternatives considered etc. Similar 
investigations could be performed for the origins of the data fed into the program. (See 
Bates, Lin, & Goodale (2016) for their idea of reconstructing a ‘data journey’, in this case the 
various steps and transformations involved in delivering a weather datum from the sensor 
which originally picks it up to the eventual consumers of aggregated weather data online.) 

By performing such an ‘ethnography’ of a single pixel of a map, using the source code as an 
artefact connecting the various components of the map’s ‘socio-technical assemblage’ 
(Kitchin, 2017), we have uncovered explicit rules and algorithms embedded in the source 
code that determine the output of the map. In the trivial example of the label placement, an 
informed observer could have inferred such an algorithm from careful examination of the 
map image. But other questions of interest that remain opaque to an observer of the map as 
an image only can be imagined (for example, where do the colours on the map come from? 
Are they chosen by the programmer or do they represent some statistical attribute of the 
data?). But even in simple scenarios like the one presented, uncertainty would remain about 
how exactly the underlying cartographic rules are defined, and there would be no way to 
assign fine-grained accountability or to assess the historical evolution of such rules if only the 
map image were taken into account. 

A ‘selective close reading’ approach can uncover truth about maps that would remain opaque 
to an observer of the map as only an image. Using such a method, investigators are 
supported in (i) finding explicit representations of decisions and algorithms that determine 
the visual appearance of the map in the code; (ii) tracing back visual output primitives to 
their origin in data and visualization parameters, both embedded in the code and loaded 
from external sources, and (iii) being provided with points of access to further artefacts (data 
files, version control systems, documentation) that can be used to conduct further 
investigation using social sciences methods. 

However, there are serious limitations to the approach presented in this section that make it 
impractical to apply in many scenarios (especially in the light of the challenges mentioned in 
the introduction), and which limit the depth of insight gained by manual close reading. 

• The method requires a large amount of manual work by an investigator who is 
proficient both in programming and in cartography, a human resource which often 
cannot be made available on a large scale for purely analytical tasks. 

• While selective close reading may highlight quite clearly the relevant portions of 
code to an educated observer, for non-programmers the meaning of that code can 
still remain opaque. For example, it may not be obvious to a non-programmer that 
the line d.geometry.coordinates[0] > -1 ? 6 : -6; has the semantics ‘If the 
longitude of the given point is east of the 1°W meridian, position the label at six 
pixels to the right of the point, else at 6 pixels to the left’. 

• Some of the transformation processes at work in the program are not visible in the 
‘outermost’ layer of code and can be easily overlooked by investigators. Depending 
on the design of the APIs used to create the map, some transformations may be 
represented explicitly in the code, or be performed implicitly behind the scenes. (See 
Ledermann & Gartner (2015) for a discussion of various aspects of cartographic 



Ledermann 

125 
 

API design, including such questions of transparency.) In our example, note how the 
coordinates entry of the data object changes from [7333, 1347] (in the data file, top 
left) to [-2.3515, 51.3831] (in the internal memory representation, bottom left) 
without this transformation being explicitly represented in the depicted code! 

• While in the simple example used for illustration, a reading of the code and a 
visualization of the results are possible and provide some insight, it remains doubtful 
whether a close reading approach can be applied to much more complex real-world 
examples. Furthermore, for commercial and technical reasons, source code is often 
obfuscated, with all human-readable semantics removed from it. Such code, while 
technically still executable code of equivalent functionality for the computer (and 
therefore containing cartographic transformations identical to those of its non-
obfuscated version), is unreadable by human standards or would make an analysis 
orders of magnitude more time-consuming. 

For these reasons, while selective close reading served to illustrate the idea that cartographic 
transformations are indeed represented in source code, it can be applied only to singular 
examples of specific interest. It is unrealistic to expect such an investigation to be applied on 
any larger scale, let alone to a significant proportion of the maps posted online. Manual 
investigation of media artefacts is not suited for coping with the challenges of volume and 
velocity of our age: to engage with even a meaningful proportion of online maps, automated 
approaches must be considered. 

3 Automated reverse engineering of online maps 

Whenever we reach the limits of manual labour (as is the case, as argued in the previous 
section, with the analysis of cartographic programs), it is desirable to look for ways of 
automation (Alier & Casany, 2017). Is it possible to provide tools to support researchers 
carrying out such analyses, or even to create fully automatic systems that perform an analysis 
of cartographic programs autonomously? 

Kitchin (2017) largely dismisses the potential of reverse engineering techniques for the 
analysis of algorithms. Reverse engineering, in his summary, is considered only for ‘black 
box’ scenarios, because if one had access to the code, direct analysis would be possible and 
preferable. However, as has been shown in the conclusions of Section 2, such a direct 
analysis of the source code has severe limitations. A reverse engineering approach based on a 
‘black box’, observing only inputs and outputs of an otherwise hidden algorithm, is also 
limited, as it would allow investigators only to guess at the internal behaviour of the system. 
In the example used in Section 2, this would mean having access only to the map image and 
the input data file (both in the upper part of Figure 1) and trying to infer the rules that 
created the map from that information. Such a ‘black box’ approach must of course be 
considered for scenarios in which access to the source code is not available. For example, the 
actual cartographic images of the Google Maps system are rendered by software on Google’s 
servers, out of reach for a critical analysis of its code. In such cases, all that can be done is to 
infer cartographic processes from the delivered map images. (A recent cartographic feature 
that has been added to Google Maps are coloured ‘areas of interest’ in urban areas. Critical 



Ledermann 

126 
 

observers have pointed out that a detailed analysis of the algorithms that determine whether 
an area is ‘interesting’ or not would be highly desirable (Bliss, 2016)). 

But for many maps and geographic visualizations on the web, the code is actually delivered 
to the user in the form of JavaScript to be run in the browser. This code can be analysed not 
only by a human actor: it can also be analysed by another computer program. The advantage 
of computer code over most other cultural artefacts is that it has unambiguous, precisely 
defined syntax and semantics in terms of how it is understood and performed by the 
computer (the ‘level 2’ of code in Galloway’s taxonomy). It is therefore possible to construct 
a software that, instead of simply executing the code in a given program, records the 
operations performed at each step for every value in the program. For every output value 
(for example, a map pixel), such software could provide an interested observer with a 
complete ‘genealogy’ of how the value has been calculated – similar to the manual analysis 
proposed above, but this time without any effort of a human investigator, automatically 
derived from the program code. 

The complete technical details of such a system have been elaborated elsewhere (Ledermann, 
2018). Our prototype program for cartographic analysis uses the Jalangi framework (Sen, 
Kalasapur, Brutch, & Gibbs, 2013) and the puppeteer software (Google Inc., 2017) to 
autonomously run JavaScript-based programs inside a browser and register every calculation. 
With this system, it is possible to reproduce, for each attribute of each output primitive of a 
map, a transformation graph, representing all inputs and calculations that were performed by the 
code for the purpose of producing the value. 

Figure 2 shows the reconstructed transformation graph of the example from Section 2. In 
contrast to the snippets of program code used to represent the transformations in the 
selective close reading approach, the transformation graph has a much more constrained 
syntax (every ‘node’ in the graph represents a calculation or transformation with a maximum 
of 2 ‘inputs’). Such syntax should be more intuitive to understand even by non-
programmers, and it is also suitable for further processing by software. The automatic 
extraction of the transformation graph is able to retain the connection between operations in 
the graph and the location of their implementation in the source code. It is therefore 
possible to link directly to the secondary information sources that the code provides (variable 
names, comments in the code, authorship information, comments and history stored in a 
VCS etc.) through the transformation graph, making the graph an interface that connects the 
map image, the input data, the parameters of the transformation and the social assemblage 
that produced the code. A prototypical viewer for such information reconstructed from the 
code of online maps has been implemented and is currently being used to analyse various 
case studies of online cartographic practices. 

 



Ledermann 

127 
 

 
Figure 2: The map from Figure 1, analysed and visualized using automated reverse engineering. The 
appearance of the label on the map is defined by various attributes, each of which is associated with 
a transformation graph extracted from the code (here shown for the attribute ‘x’). In this case, the 
value -6 is assigned by a conditional expression (black dot) that checks the condition represented by 
the remainder of the graph. Each node in the graph can be linked back to its definition in the source 
code, which in turn can be related to messages in a version control system (lower left). (VCS message 
fictitious) 

4 Outlook: Computer-assisted critical cartography 

It is still a long way from the fine-grained representation of the internal calculations of a 
program provided by the transformation graph to an understanding of the processes 
represented by it or a critique of their appropriateness. It is further unclear whether such an 
interpretation of the transformation processes involved in the production of a digital map 
can ever be fully automated. Yet we hope that by extracting a representation of these 
transformations independent from their underlying syntactic representation in an automated 
way, a basis can be provided for further research into ‘computer-assisted critical 
cartography’. Since Harley’s call for ‘deconstructing the map’ (Harley, 1989), researchers have 



Ledermann 

128 
 

looked for ways to ‘expose in all its unglamorously dishevelled tangle the threads constituting 
the well heeled image it presents to the world’ (Eagleton, 1986, quoted after Harley). It is 
hoped that the approach presented here could be a first step towards informing, with 
evidence derived from engineering methods, not only practical investigation, but also critical 
and theoretical positions. 

On a practical level, the simple syntax of transformation graphs allows for automatic 
inspection of the patterns of the graph in a subsequent analysis step. Our current ongoing 
research investigates how to identify patterns for well-known cartographic transformations 
(projections, classification, generalization etc.), so that the automatic identification of these 
patterns in online maps becomes possible. The vision is to automatically identify maps that 
don’t adhere to cartographic best practices, such as using a non-area-preserving projection 
for statistical maps or using dubious classification or colour schemes that would skew the 
perception of the depicted data. But also new and creative approaches, not following any 
well-known patterns, could be identified and highlighted for further inspection by human 
investigators. As a vision, the construction of a ‘cartographic search engine’, indexing the 
web or collections of digital maps according to cartographic patterns, seems within reach, 
and would be a major step towards making such materials more accessible to researchers 
from various backgrounds and with diverse research questions. 

The proposed approach also has the potential to advance our conceptualization of digital 
maps. So far, a map on the screen can be judged, in the absence of further information, only 
by its appearance as an image – the colours and other visual variables of the lines, areas and 
symbols on the map. Using automated analysis of the transformation processes at work to 
produce the map, we can assess the map as a ‘deep image’, taking into account for each pixel 
and graphical primitive the technical process that led to its production. Figure 2 can also be 
seen as an illustration of the concept of the ‘deep image’, rooting each pixel in computational 
processes and connected digital artefacts. On a general level, maps can be assessed as 
‘shallow’, for example if all screen coordinates and colours are simply read from a data file 
and drawn directly to the screen, or ‘deep’, if sophisticated transformations take place to 
render the information. While the screen image of a ‘shallow’ map and its ‘deep’ version may 
be identical, the latter opens itself up to investigation, modification and adaption, while the 
former leaves its inner workings and their rationale obscured. 

It has been shown how the visualization of the transformation graph contributes to 
answering the call to ‘unpack the full socio-technical assemblage of algorithms’ (Kitchin, 
2017). It therefore needs to be investigated whether the proposed approach can also be 
applied to other types of artefacts in the digital humanities, or even to the very tools that 
researchers use for analysis and visualization, tools which have, like maps, been criticized as 
opaque and misleading in some cases (Dobson, 2015). The proposed approach is therefore 
very much related to the recent call for openness and interdisciplinarity in the digital 
humanities (Therón & Wandl-Vogt, 2017), with engineers working together with scholars 
from various disciplines to advance the methods available to improve our understanding of 
maps and other artefacts produced by software in the digital age. 

 

 



Ledermann 

129 
 

Acknowledgements 

I would like to thank Georg Gartner, Julia Mia Stirnemann and three anonymous reviewers 
for providing extensive feedback on earlier drafts of this paper. 

References 

Alier, M., & Casany, M. J. (2017). The Need for Interdisciplinary Research on Exponential 
Technologies and Sustainability. In Proceedings of the 5th International Conference on Technological 
Ecosystems for Enhancing Multiculturality (pp. 85:1–85:7). New York, NY: ACM. 
https://doi.org/10.1145/3144826.3145377 

Bates, J., Lin, Y.-W., & Goodale, P. (2016). Data journeys: Capturing the socio-material constitution 
of data objects and flows. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716654502 

Bliss, L. (2016). The Real Problem With ‘Areas of Interest’ on Google Maps. Retrieved January 26, 
2018, from http://www.citylab.com/design/2016/08/google-maps-areas-of-interest/493670/ 

Bostock, M. (2012). Let’s Make a Map. Retrieved April 7, 2017, from 
https://bost.ocks.org/mike/map/ 

Campbell, T. (1989). Understanding Engraved Maps. The Map Collector, 46, 2–10. 
Cartwright, W. (2012). Neocartography: Opportunities, issues and prospects. South African Journal of 

Geomatics, 1(1), 14–31. 
Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social Coding in GitHub: Transparency and 

Collaboration in an Open Software Repository. In Proceedings of the ACM 2012 Conference on 
Computer Supported Cooperative Work (pp. 1277–1286). New York, NY: ACM. 
https://doi.org/10.1145/2145204.2145396 

Dobson, J. E. (2015). Can An Algorithm Be Disturbed? Machine Learning, Intrinsic Criticism, and the 
Digital Humanities. College Literature, 42(4), 543–564. 

Eagleton, T. (1986). Against the Grain: Essays 1975 - 1985. London: Verso. 
Faby, H., & Koch, A. (2010). From maps to neo-cartography. In Proceedings of the 3rd International 

Conference on Cartography & GIS. Nessebar, Bulgaria. 
Foote, B., & Yoder, J. (2000). Big ball of mud. In N. Harrison, B. Foote, & H. Rohnert (Eds.), Pattern 

languages of program design (Vol. 4, pp. 654–692). Boston, Mass.: Addison-Wesley. 
Fuller, M. (2008). Software Studies: A Lexicon. Cambridge, Mass.: MIT Press. 
Galloway, A. (2010). Networks. In W. J. T. Mitchell & M. B. N. Hansen (Eds.), Critical Terms for Media 

Studies. Chicago, IL: University Of Chicago Press. 
Google Inc. (2017). puppeteer: Headless Chrome Node API [GitHub Repository]. Retrieved February 

1, 2018, from https://github.com/GoogleChrome/puppeteer 
Griffin, A. L., Robinson, A. C., & Roth, R. E. (2017). Envisioning the future of cartographic research. 

International Journal of Cartography, 3(sup1), 1–8. https://doi.org/10.1080/23729333.2017.1316466 
Harley, J. B. (1989). Deconstructing the map. Cartographica, 26(2), 1–20. 

https://doi.org/10.3138/E635-7827-1757-9T53 
Hitzler, P., & Janowicz, K. (2013). Linked Data, Big Data, and the 4th Paradigm. Semantic Web, 4(3), 

233–235. 
Jenny, B., & Hurni, L. (2011). Studying cartographic heritage: Analysis and visualization of geometric 

distortions. Computers & Graphics, 35(2), 402–411. 
Kitchin, R. (2017). Thinking critically about and researching algorithms. Information, Communication & 

Society, 20(1), 14–29. https://doi.org/10.1080/1369118X.2016.1154087 
Ledermann, F. (2016). Initial Findings from Close Reading of Cartographic Programs. In Workshop 

'Code Loves Maps’, AGILE 2016. Helsinki, Finland. 



Ledermann 

130 
 

Ledermann, F. (2018). Towards Automatic Extraction of Cartographic Metadata from the Code of 
Online Maps. Presented at the AGILE 2018, 21st Conference on Geo-information science, Lund, 
Sweden. 

Ledermann, F., & Gartner, G. (2015). mapmap.js: A Data-Driven Web Mapping API for Thematic 
Cartography. Brazilian Journal of Cartography, 67(5) (Special Issue ICC2015), 1043–1053. 

Mackenzie, A. (2006). Cutting Code: Software and Sociality. New York: Peter Lang Publishing. 
Marcotte, E. (2010, May 25). Responsive web design. Retrieved January 23, 2018, from 

http://alistapart.com/article/responsive-web-design 
Monmonier, M. S. (1996). How to Lie with Maps. Chicago, IL: University of Chicago Press. 
Roberge, J., & Seyfert, R. (Eds.). (2017). Algorithmuskulturen: Über die rechnerische Konstruktion der 

Wirklichkeit (1st ed.). Bielefeld, DE: transcript-Verlag. https://doi.org/10.14361/9783839438008 
Robinson, A. C. (2018). Elements of viral cartography. Cartography and Geographic Information Science. 

https://doi.org/10.1080/15230406.2018.1484304 
Roth, R. E. (2016). Rethinking cartography curriculum to train the contemporary cartographer. In 

Proceedings of the 6th International Conference on Cartography And GIS (p. 155). Albena, Bulgaria: 
Bulgarian Cartographic Association. 

Roth, R. E., Donohue, R. G., Sack, C. M., Wallace, T. R., & Buckingham, T. M. A. (2014). A Process 
for Keeping Pace with Evolving Web Mapping Technologies. Cartographic Perspectives, (78), 25–52. 
https://doi.org/10.14714/CP78.1273 

Sen, K., Kalasapur, S., Brutch, T., & Gibbs, S. (2013). Jalangi: A selective record-replay and dynamic 
analysis framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software 
Engineering (pp. 488–498). Saint Petersburg, Russia: ACM. 

Stalder, F. (2016). Kultur der Digitalität (1st ed.). Berlin: Suhrkamp. 
Therón, R., & Wandl-Vogt, E. (2017). Overview of the ‘New Trends in Digital Humanities’ Track. In 

Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 
84:1–84:2). New York, NY: ACM. https://doi.org/10.1145/3144826.3145376 

Tobler, W. R. (1979). A Transformational View of Cartography. The American Cartographer, 6(2), 101–
106. 


	1 Introduction
	2 Understanding digital cartography – from data through code to pixels (and back again)
	3 Automated reverse engineering of online maps
	4 Outlook: Computer-assisted critical cartography
	Acknowledgements
	References

