
Albrecht

227

Open Source Foundations for
Spatial Decision Support Systems

 GI_Forum 2018, Issue 2
Page: 227 - 239

Full Paper
Corresponding Author:

jochen@hunter.cuny.edu
DOI: 10.1553/giscience2018_02_s227

Jochen Albrecht
City University of New York, USA

Abstract
Spatial Decision Support Systems (SDSS) were a hot topic in the 1990s, when researchers
tried to imbue GIS with additional decision support features. Successful practical
developments such as HAZUS or CommunityViz have since been built, based on
commercial desktop software and without much heed for theory other than what
underlies their process models. Others, like UrbanSim, have been completely overhauled
twice but without much external scrutiny.

Both the practical and the theoretical foundations of decision support systems have
developed considerably over the past 20 years. This article presents an overview of these
developments and then looks at what corresponding tools have been developed by open
source communities. In stark contrast to the abundance of OpenGeo software, there is a
dearth of open source SDSS. The core of the article is a discussion of different approaches
that lend themselves as platforms to develop an open source framework to build a variety
of SDSS.

Keywords:
inference engine, knowledgebases, OLAP, operations research, utility theory

1 Introduction

Over the course of the past ten years, geospatial open source software has become
mainstream (O’Sullivan et al. 2018). From the ubiquitous QGIS to R for spatial analysis
(Lovelace et al. 2018), to web service platforms that are now taken for granted, free and open
source software (FOSS) is – as a minimum – a viable alternative to commercial off-the-shelf
software, and often enough this is the first place we look when we embark on a new project.
One of the advantages of FOSS is its reliance on open standards, which often make it easier
to mesh it with the functionality that is needed in one’s project – be it in an ad hoc manner
or for a larger development effort.

Arguably, one of the main uses of geospatial software is in a spatial decision support context,
where we are trying to solve non-trivial, multi-criteria, and/or multi-objective problems that
require a fair amount of (geospatial) data analysis. It therefore seems surprising that there are

Albrecht

228

currently only two smaller add-on packages to QGIS (InaSAFE and UMEP) that can be
regarded as spatial decision support system (SDSS) in the domain of FOSS, while others like
AequilibraE (2015) and Redistricting (2014) prove that it takes a larger organization’s
sustained support capacity to maintain a multitude of interfaces to ever-changing libraries.
This article seeks to find out why this glaring gap exists and what it would take to develop an
open source SDSS platform. This will be accomplished by first surveying the scene of
widely-used SDSS and creating a list of desiderata that an open source platform would have
to fulfil to successfully compete with existing commercial offerings. Second, as ‘decision
support’ is an obvious necessity, we will look at the state of the art in operations research to
see what could be learned from this neighbouring discipline. A discussion of development
platforms will get us closer to answering the original question of why we still lack a standard
go-to package such as we seem to have in almost all other realms of geospatial FOSS. The
article ends with a list of steps to be undertaken for development of an open source SDSS
platform.

2 SDSS: State of the Art in the 2010s

Other than for a plethora of academic research projects that never survived their initial
funding timelines, SDSS is either implemented as an extension to the market-leading GIS
software from ESRI, or has been developed for in-house applications only (Gheorghe 2005).
In this section, we will briefly describe some of the most popular SDSS, with an emphasis on
the qualities that we would like to see replicated in the open source environment.

HAZUS

HAZUS, sho.rt for Hazards US, began in the 1990s as a natural hazards loss-estimation tool;
in 2004 it was unified into a multi-hazard analysis software suite for the US Federal
Emergency Management Agency (Schneider & Schauer, 2006). Implemented as an (unusually
large) extension package to ArcGIS Desktop, it is used worldwide as well as in thousands of
US local, regional and national agencies. Two aspects that contribute significantly to the
widespread use of HAZUS are: (a) its being packaged with several GBytes of detailed socio-
economic data that make it easy to get started with the program, data which is useful beyond
the immediate application to hazard management; (b) a plethora of courses that provide a
range of specialized introductions to the software.

The HAZUS developers have slowly been trying to move away from their dependencies on
ESRI software (personal communication, 2018). First, the traditional ESRI geodatabase
turned out to be inefficient for larger database and scenario requirements and the developers
adopted an SQL Server. Recent versions moved the source code to C#, and as of summer
2018 the development team has been looking into moving all analysis routines into open
source (OpenHazus 2018). As the HAZUS community as a whole is very familiar with the
ESRI platform, this change is gradually being effected. The user interface, complicated as it
is, cannot be radically changed without upsetting a larger user base.

Albrecht

229

The hallmark feature of HAZUS is its use as a scenario generator. Emergency management
agencies use HAZUS to construct large libraries of scenario runs in order to build
repositories of loss measures for as large a combination of variables and parameters as
possible. As scenario runs are too computing-intensive to be conducted in real time, it is
access to the scenarios and their use in preparatory exercises that allows first responders to
make informed decisions. The highly unlikely scenario of Superstorm Sandy in 2015, for
instance, was part of the fully calculated repository of New York City’s Office of Emergency
Management (OEM). While the scenario itself was deemed too unlikely to commit resources
towards its prevention, the well-known consequences allowed the storm’s effects to be
predicted quite accurately and the prevention of major loss of life (Friedman 2017).

Developed for this specific purpose, HAZUS is not meant to be used by people unfamiliar
with emergency management procedures, but by higher-level, technically well-versed
managers. There is no attempt to make it accessible to first responders directly, for instance.
Instead, the emphasis is on resource management for mitigation. The unwieldiness of the
user interface is almost a feature because the software is aimed to be used before an
emergency event and in a server environment. Public outreach and communication with
other software packages, prominent in other SDSS, are not part of the HAZUS design.

CommunityViz

The design intentions of CommunityViz could hardly be more contrary to those of HAZUS.
Financed by the Orton Family Foundation, its purpose was and is to facilitate public
participation in local planning procedures. The emphasis is on keeping citizens engaged
through visualizations and easy-to-follow or interactive scenario builders. Like HAZUS,
CommunityViz is an extension of ArcGIS Desktop, but its owner, City Explained, Inc., is
continuing its development to a web services environment and creating an API that allows to
link to external modelling tools.

CommunityViz projects tend to be smaller than regional-scale HAZUS projects, and the
building of scenario libraries emphasizes interactivity for the purposes of garnering support
and understanding rather than for subsequent statistical analysis. CommunityViz has two
separate and complementary features which set it apart: (a) it has an enviable easy-to-use user
interface and (b) it has the additional option of looking under the hood to see the inner
workings.

UrbanSim

UrbanSim does not often feature in the lists of common SDSS, although it fulfils all criteria.
It is one of the very few SDSS that transitioned successfully from the academic into the
commercial realm, and the only one to my knowledge that gave up on its open source origins
(although the sources of older versions remain available on
https://github.com/UDST/urbansim). UrbanSim has gone through several major rewrites
from Java to Python to Jupyter, and the latest commercial version is Cloud-based.

Aimed at metropolitan planning associations, UrbanSim was originally used to model urban
land use and transportation demand but now emphasizes real estate markets. Technically, it

https://github.com/UDST/urbansim

Albrecht

230

comes under the umbrella of microsimulation software, and the model equations are
econometric in nature. It is hard to judge the efficacy of its features as virtually all
publications (UDST 2018) are project-based and involve a high degree of customization by
the developers. Successful adaptations of the source code are rare and purely academic in
nature.

There are, nevertheless, a few important lessons to be learned from the UrbanSim project.
The model base is quite sophisticated and easier to manipulate (for the initiated) than similar
features in HAZUS or CommunityViz. Second, at the time of writing (2018), its software
architecture is state of the art, and the thorough embracing of the Python universe opens it
up to a large community of potential developers. This comes at the price of the software
requiring a technical intermediary; to an even greater degree than HAZUS, it cannot usually
be handled directly by the end-user. But with a Pythonista on staff, there are few limits to the
customization of UrbanSim. This potential is documented on the GitHub pages of the
Urban Data Science Toolkit (UDST 2018), with examples for 3D visualizations, US Census
data ETL tools, Open Street Map and GTFS readers.

VisionMaker NYC

Another modern SDSS, with a predominantly pedagogical purpose, is under development by
the Wildlife Conservation Society (WCS 2018). VisionMaker NYC is a browser-based
scenario-builder that interfaces with an ArcGIS Server for pupils to build SimCity-like
models (Terzano & Morckel 2016) based on real-world data. In addition to the
environmental advocacy effect, VisionMaker NYC also serves its developers as an ever-
growing compilation of user models that can be mined for educational, political and
scientific insights. In its current implementation, the project is constrained to where there is
an abundance of data; this is not a problem in New York City, but not as easy to accomplish
in conservation projects around the world, where the tool would be really useful – for
example, to brainstorm with local constituencies about conflicting land uses. Like
CommunityViz, the user interface is exemplary in its simplicity. Except for the ArcGIS
Server, all components are based on FOSS, but the VisionMaker NYC project itself is not in
the public domain.

Based on these four examples, we can now draw up a list of desiderata for a FOSS SDSS:

Albrecht

231

1. Handling large amounts of data,
including scenario setups and results

 Specialized database support, incl. ETL,
OTP and OLAP

2. A GUI that draws users in High degree of interactivity, dynamic
graphics, dashboards and platform
transparency

3. Models and algorithms that go way
beyond what is offered by GIS

 A model description language that allows
for semantic imports of models from
many disciplines and application areas1

4. Leveraging of operations research
(OR) tools

 While the models are domain-specific, the
decision-making procedures should follow
current state-of-the-art tools developed in
OR

3 Operations Research Tools

One potential reason why SDSS have not yet found a firm footing in the FOSS environment
is that this would require bridging two rather separate communities – the geospatial one and
that of operations research (OR). OR has been dealing with geospatial applications for many
years, but it has not embraced them beyond a simple tool level. Instead, regional science,
graph theoretical or econometric algorithms have been incorporated, based on what could be
found in textbooks. There is no joint forum comparable to ones that spatial statisticians and
environmental GIS researchers have established. This mutual ignorance is also reflected in a
lack of SDSS literature, after a flurry of publications in the 1990s (Carver, 1991; Densham,
1991; Diamond & Wright, 1988; Goodchild et al., 1992; Jankowski, 1995; Malczewski, 1999).
A brief introduction to OR is therefore in order.

There are two distinct parts to the analysis that underlies SDSS. One is a reasoning chain of
processing steps that can be abstracted into a Markov process. The other concerns choices.
Most GIS-based SDSS are about the creation of scenarios, each one being the result of a
Markov process. The component that is not captured by GIS (or only barely in the form of a
weighted linear combination) is how to weigh alternative solutions against each other.
Readers are likely to be familiar with some of the theoretical foundations from their statistics
classes: Pascal’s expected value theorem (1670), Wald’s general decision problem (1939), or
von Neumann and Morgenstern’s expected utility theory (1947).

In general, we distinguish between multi-criteria and multi-objective methods. On the multi-
criteria side, the one we are all familiar with from the GIS world is weighted linear
combination (Eastman 1999, Malczewski, 2014). It is noteworthy, however, that although the
SDSS literature is replete with implementations of Saaty’s Analytical Hierarchy Process and
its generalization as an analytical network process (Saaty, 1996), none of these have been
implemented as part of any common GIS package. It is also odd that beyond the Idrisi

1 Classic SDSS application areas include location-allocation, site selection, land use suitability
evaluation, transportation problems, environmental impact assessment, districting, fire and other
hazards.

Albrecht

232

package, none of the freely available add-ons to ArcGIS or QGIS have ever been
incorporated into the core software either.

More squarely in the realm of traditional OR tools are the ‘ideal point’ and the ‘outranking’
methods. Ideal point methods, also known as compromise programming, evaluate
alternatives by measuring the distance from the ideal solution in a multi-criteria solution
space. A power parameter is applied to balance criteria, to weight them according to their
deviation, or to emphasize the greatest deviations. The logic is sometimes turned on its head
by measuring the distance to the worst possible solution. Hwang & Yoon’s (1981) technique
for ordering performance by similarity to the ideal solution combines the two approaches
and is now a standard tool in OR.

Outranking methods are more commonly used in French-speaking areas (or at least in
Europe, where francophone OR schools play a dominant role) and can be applied to rank-
ordered phenomena, tilting them more towards qualitative approaches (Roy, 1968). An
alternative outranks another one if it is better for at least half the criteria. Rather than just
summarizing across all ranks (referred to as concordance), the outranking method then also
calls for a discordance measure, which measures the discomfort experienced by moving from
one level to the next level down for each criterion. Concordance and discordance are then
expressed in the form of a matrix that helps to determine which pair of alternatives is the
most satisficing one.

On the multi-objective side, the goal is to find a utility-maximizing function across a set of
criteria, alternatives and decision variables. Given that criteria are often conflicting, the
classic solution has been described by Pareto (1896) as finding the one set in a multi-
objective space in which no vector improves some objective without deteriorating another
one. It turns out that such a Pareto front optimization tends either to be dominated by
extreme values of one objective (typically not a feasible solution in practice), or to result in
there being no single best compromise solution. OR has therefore developed a set of
weighting and constraint solvers that maximize only one objective while converting the
others into inequality constraints. Another set of tools parallels the distance metrics,
encountered in the ideal point method for multi-criteria problems, which minimizes the
distance between the desired and the achieved solution. Typically, such algorithm collections
include goal programming (Charnes & Cooper, 1961), compromise programming (Zeleny,
1982), and the reference point method (Wierzbicki, 1998, which is favoured in the world of
finance. Goal programming is particularly popular because it employs the Lp norm, which is
widely used in physics, statistics, finance and engineering.

All of the above methods are still a bit idealistic, in the sense that they require more
knowledge or certainty in the choice of parameter values than there is in real-world
situations. Proper decision support systems, therefore, do not provide just libraries
implementing the aforementioned algorithms (referred to as ‘solvers’ in the OR world), but
also room for interactive programming similar to good data mining software. This gets us
into the realm of heuristics, some of which the geocomputational community is familiar with
(Vanegas et al. 2011). Church et al.’s (2003) region growing heuristic or the so-called ‘greedy
algorithms’ that we use in the traveling-salesman problem are good examples. Other
approaches employ a Lagrangian Relaxation (Fischer, 1981), where a group of constraints

Albrecht

233

that are perceived as troublesome are placed into an objective function and assigned weights
(the Lagrangian multiplier).

OR Solvers

All of the above OR methods are not simply confined to descriptions in academic literature:
they have been implemented in a number of software tools, in both commercial and open
source forms. The first commercial integer programming package became available in the
early 1970s (Forest et al., 1974), but only in the late 1990s did robust dual simplex methods
leave the academic realm (CPLEX, 1999). Gurobi Optimization, named after its founders
(Gu, Rothberg and Bixby), was founded in 2009 and revolutionized the mixed-integer
programming world by focusing on solving a public library of over 2,000 real-world
problems that was compiled by the Zuse Institute and resulted in an open source C library
called SCIP (Gleixner et al., 2018; Gurobi Optimization, 2018). Similar to ESRI’s dominance
in the commercial GIS world, Gurobi is the standard against which all other OR tools,
commercial or otherwise, are measured. Also as for ESRI, a generous academic licensing
scheme helped to spread the software fast and wide.

SCIP, the more generic GNU Linear Programming Toolkit, and the computational
infrastructure for operations research (COIN-OR) are examples of algorithms that are
typically called from C(#) libraries. Some Java libraries also exist, with Python running a
distant third. This is something to be kept in mind by developers of a FOSS SDSS, because it
constrains the platform options if the ‘D’ in SDSS is to be taken seriously.

For an extreme example of how far the development of a fully-fledged (open source)
decision support system can be taken, readers are invited to have a look at DAKOTA.
Under development at Sandia National Laboratory, this optimization software project
enables design exploration, model calibration, risk analysis, and quantification of margins and
uncertainty via computational models (Sandia National Laboratory 2018). Designed for
engineering applications, its iterative system analysis methods, all implemented in C++, are
flexible enough to be extended to geospatial simulations.

4 Mining Analysis Results

As we have seen from the SDSS examples in Section 2, in addition to significantly-sized
input data, a future-proof SDSS needs to be able to store and analyse the results of hundreds
if not thousands of analysis runs. Currently, this requirement is the Achilles heel of existing
packages. Except for the non-spatial DAKOTA, the design and organization of model runs
is left to the user, as is the analysis of model results, meaning that the user must rely on
external tools. This section therefore discusses the database needs and possible tools for the
exploration of simulation results.

Database needs

The geospatial data community’s default database management systems (DBMS) rely on
relational approaches. For smaller projects, these might be SQL Server Express or SpatiaLite

Albrecht

234

solutions; for larger projects, the question is usually determined by whatever vendor the
project sponsor is aligned with. In the open source world, especially if geospatial data is
involved, there seems to be only one solution: Postgres/PostGIS. These relational databases
are good for traditional ETL tasks but rather limiting given the many different types of data
we want to store, and the kind of analyses that need to be run on simulation results. At some
point, traditional relational DBMS will not suffice when it comes to storing procedures (all
the parameters that describe models and their respective runs) or providing rapid access to
model results. Postgres is also a less than ideal solution for cloud-based access to large spatial
databases. OLAP databases address the rapid access to analysis results question, allowing the
interactive analysis of multidimensional data from multiple perspectives. OLAP hypercubes
are dissections of the multidimensional database, similar to how an octree tessellates a 3D
space. Each cube contains aggregated data related to elements along each of its dimensions.
A typical user interface to interact with the data cubes is a Pivot table. The combination of all
possible aggregations plus the base data contains the answers to every query that can be
answered from the data. The universe of all possible aggregations is, of course, huge.
Consequently, only the more likely ones get pre-calculated to guarantee a very fast response
to queries.

An example of an open source OLAP database is the Druid (2018) toolkit for event data.
Closer to SDSS applications is the column-oriented Pinot datastore developed by LinkedIn
(Pinot, 2018). The data is stored in an HDFS (Hadoop distributed file system), which allows
it to be linked with SpatialHadoop (2018). Hadoop’s Pig Latin can be extended via user-
defined functions, which users can write in Java, Python, JavaScript, Ruby or Groovy, and in
the case of SpatialHadoop mimic PostGIS’s functionality. An alternative open source OLAP
implementation is Apache Kylin (Kylin, 2018), which is built on top of Hadoop/Spark and
can hence be linked with GeoMesa (2018) for very fast geospatial analytical web services.
Kylin’s ODBC and JDBC drivers support tools such as Tableau for immediate graphical
inspection (if the FOSS SDSS development team wants to avoid dealing with the specifics of
the user interface). The European OpenCube Toolkit (2018) is a fine example of how all this
can be put together to process RDF data cubes. All user interactions are browser-based,
including the Pivot table view and all OLAP operations. The OpenCube Toolkit executes R
scripts, has interactive visualization widgets, and even a map interface in support of OLAP
operations on the geo-spatial dimension. Finally, without OLAP support but adhering to a
number of OGC standards, we have GeoWave (2018), which links sorted big data key-value
datastores to GeoTools-compatible data sources such as GeoServer (2018). Rob Emanuele
(2016) provides an excellent comparison between the two vector-based geospatial big data
frameworks GeoMesa and GeoWave. As larger SDSS implementations will invariably make
use of distributed data stores and web services, a future-proof open source SDSS will have to
incorporate either of these two or the raster-based GeoTrellis (2018) framework.

An AI data mining toolbox

As the OpenCube Toolkit shows, once the data is stored, the real task is to make sense of all
the simulation results. Until recently, SDSS have had no urgent need to provide support for
that, as the simulations were handpicked by domain experts and manageable in number.
Now, however, long-term users of HAZUS are struggling to keep track of all the scenarios

Albrecht

235

they have run. Also, with increasing computing power and Cloud processing, we will soon be
in a position to run really large numbers of scenarios that need not only to be stored but then
also mined. Our solutions space has now become large enough to warrant genetic
algorithms, simulated annealing, tabu search and swarm intelligence, in addition to traditional
machine learning tools like neural networks, scikit-learn (2018) or Weka (2018).

These three traditional tools are all used to perform multi-directional and global searches to
explore the set of Pareto solutions. This is usually done with two or more objective functions
and a number of constraints (Li et al., 2018; Liu et al., forthcoming). Classic OR algorithms
may require more knowledge than we actually have, in which case these AI tools provide for
something like an ‘automated heuristic’.

In geospatial circles, swarm intelligence is better known as an agent-based modelling system
(ABMS). ABMS are quintessential simulation tools and, as exemplified by our discussion of
UrbanSim, lend themselves eminently to be used in or even as SDSS. ABMS deserve a closer
look in our investigation of potential SDSS platforms because by definition they fulfil almost
all the criteria listed at the end of Section 2. A system like the open source Repast Simphony
(2018) includes a database, a model base, model creation (specification) tools, a scheduler,
comprehensive metadata management, full import and export support for raster and vector
data, and lots of links to external tools like JoSQL, Jung, Pajek, R and Weka. It could be
argued that with a tool like this, we would ‘only’ have to add some OR tools to arrive at a
fully-fledged SDSS.

5 Choosing a Platform

We are now in a position to compare five different potential platforms for building a FOSS
SDSS from scratch.

GIS-based SDSS

If we were to follow the most successful commercial examples, then the choice is clear: most
SDSS are basically extensions of existing GIS, and for a good reason – the learning curve for
users who are already well-versed in GIS should be minimal. It therefore seems to make a lot
of sense to add SDSS to the list of OSgeo projects and work with some combination of
QGIS, SAGA, gvSIG or GRASS. On the other hand, adding fully-fledged database support
(preferably of the OLAP kind), scenario builders, model specification tools and OR
algorithms is bound to shatter user experience, and it would arguably be more streamlined to
build a FOSS SDSS from low-level OSgeo libraries rather than on top of an existing desktop
GIS.

Database-based SDSS

DBMS have a lot going for them. They have built-in multi-user management and the
versioning mechanism would be useful in scenario management. DBMS are extremely
robust, as exemplified by well-established ETL tools. They are also ideal for storing process
models encoded in something like the business process execution language (WSBPEL,

Albrecht

236

2017). OR and AI tools can be implemented as extensions, just as we are used to from the
spatial extensions that turn Postgres into a GIS. Compared to all these advantages, the list of
drawbacks is fairly short: none of the common FOSS DBMS support OLAP, and while SQL
can be extended, to do that in support of OR and AI tools would be so unorthodox that a
DBMS-based SDSS would be highly unique (i.e., not standards-based). This, in turn, would
violate the robustness requirement that standard DBMS fulfil so well. The discussion of the
OpenCube Toolkit (Section ‘Database needs‘) shows that it is possible to develop a DBMS-
based SDSS – but this example, as convincing as it is for the purpose it was built for, is so
specialized that it hardly serves as the basis for a general SDSS.

R-based SDSS

Readers of this article might be surprised that R is considered a general enough platform to
allow an SDSS to be built on top of it. But R has a huge developer community, including in
all areas singled out in our list of desiderata for an SDSS. There are very active communities
for geo-spatial, OR and machine learning tools. Packages like rattle() illustrate how
convenient it is to develop a workflow-based user interface. The main drawback to
conceiving of R as an SDSS platform is the underdeveloped link to databases. There are
plenty of packages that aim to provide links to DBMS, but they are slow and a de facto
bottleneck. Calling R routines from a DBMS would be far more convincing.

Eclipse-based SDSS

Eclipse is a comprehensive and comfortable development environment for computer
programming. Originally designed for developing Java applications, it now supports more
than 25 of the most common programming languages. The agent-based modelling system
Repast Simphony, as well as earlier versions or UrbanSim, are examples of Eclipse-based
applications. Eclipse is extremely versatile, and its multi-language support and excellent
library management make it relatively easy to cobble together all the necessary components
of an SDSS. Its advantages, however, carry in themselves the seeds of the drawbacks. It is an
environment for programmers – not decision makers. Hiding the platform basics from the
end-user is a challenge. The multi-language support, if made use of, poses higher demands
on project management. An example of that is the need to identify a development
framework, which all the previously-suggested platforms have already solved.

Jupyter-based SDSS

Depending on which industry survey one follows, Python has become the most popular
programming language. The advent of Jupyter notebooks likely contributed to this popularity
significantly. Jupyter has been expanded and now provides support for R and Julia kernels,
with dozens of additional language kernels (including several C dialects) maintained by the
user community. Like Eclipse, this multi-language capability opens the doors to just about
every geospatial, OR, AI, visualization, GUI-building, etc. library that one can think of.
UrbanSim’s move from Eclipse to Jupyter gives an indication of where things are heading.
Jupyter’s integration with web services and its easy user interface suggest that more
interesting applications like muck (King, 2018) are just around the corner.

Albrecht

237

In summary, the choice of development platform is mostly dependent on the background of
the people who are getting together to develop a FOSS SDSS. Each of the options discussed
here seem feasible; as a matter of fact, non-representative surveys after the author’s
presentations found a just about equal distribution among the supporters of each platform.
The purpose of this article is to provide an overview of the issues involved. The hope is that
it provides sufficient background for an informed discussion by the GI_Forum community
about open source foundations for spatial decision support systems.

References

AequilibraE (2015). Documentation and repository available online at
https://github.com/AequilibraE/AequilibraE, last accessed 22 Sep 2018.

Carver, S. (1991). Integrating multi-criteria evaluation with geographical information systems,
International Journal of Geographical Information Systems, 5(3), 321-339.

Chares, A. and W. Cooper (1961). Management models and industrial applications of linear
programming. New York: Wiley.

Church, R., Gerrard, R., Gilpin, M. and P. Stine (2003). Constructing cell-based habitat patches useful
in conservation planning. Annals of the Association of American Geographers, 93(4), 814–827.

City Explained (2018). CommunityViz. http://www.city-explained.com, last accessed 22 Aug 2018.
COIN-OR (2018). Computational Infrastructure for Operations Research Foundation.

https://www.coin-or.org/, last accessed 22 Aug 2018.
CPLEX Optimization (1999). Using the CPLEX Callable Library. ILOG Inc.
Densham, P. (1991). Spatial decision support systems, In: Maguire, D., Goodchild, M. and D. Rhind,

(Eds.), Geographical Information Systems: Principles and Applications, Vol.1, Harlow, UK: Longman, pp.
403-412.

Diamond, J. and J. Wright (1988). Design of an integrated spatial information system for
multiobjective land-use planning, Environment and Planning B, 15(2), 205-214, 1988.

Druid (2018). https://github.com/druid-io/druid, last accessed 22 Aug 2018.
Eastman, R. (1999). Multi-criteria evaluation and GIS. Chap. 35. In: Longley, P, Goodchild, M,

Maguire, D and D Rhind (Eds) Geographical information systems. New York: Wiley, pp. 493-502.
Emanuele, R. (2016). GeoMesa and GeoWave Comparative Analysis: Final Report. Online document

available at
https://github.com/azavea/geowave-geomesa-comparative-nalysis/blob/master/docs/report.md,
last accessed 22 Sep 2018.

Fischer, M. (1981). The Lagrangian Relaxation Method for Solving Integer Programming Problems.
Management Science, 27(1), 1-18.

Forest, J., Hirst, J. and J. Tomlin (1974). Practical solution of large mixed integer programming
problems with UMPIRE. Management Science, 20: 736-773.

Friedman, J. (2017). GIS at the NYC Office of Emergency Management. Presentation to the Geography
Department, Hunter College, City University of New York.

GeoMesa (2018). Documentation and repository available online at https://www.geomesa.org/, last
accessed 22 Sep 2018.

GeoServer (2018). Documentation and repository available online at http://geoserver.org/, last
accessed 22 Sep 2018.

GeoTrellis (2018). Documentation and repository available online at
https://github.com/locationtech/geotrellis, last accessed 22 Sep 2018.

GeoWave (2018). Documentation and repository available online at
https://github.com/locationtech/geowave/, last accessed 22 Sep 2018.

Albrecht

238

Gheorghe, A. (Ed) (2005). Integrated Risk and Vulnerability Management Assisted by Decision Support Systems.
Dordrecht, NL: Springer.

Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R., Hendel, G., Hojny, C.,
Koch, T., Lübbecke, M., Maher, S., Miltenberger, M., Müller, B., Pfetsch, M., Puchert, C.,
Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J., Walter, M.,
Wegscheider, F., Witt, J. and J. Witzig (2018). The SCIP Optimization Suite 6.0. ZIB report 18-26.
Berlin: Zuse Institute.

GLPK (2018). GNU Linear Programming Toolkit. https://www.gnu.org/software/glpk/, last
accessed 22 Aug 2018.

Goodchild, M., Haining, R. and S. Wise (1992). Integrating GIS and spatial data analysis: problems
and possibilities, International Journal of Geographical Information Systems, 6(5), 407-423.

Gurobi Optimization (2018). Gurobi Optimizer, version 8.0. http://www.gurobi.com/, last accessed 22
Aug 2018.

HAZUS (2018). https://www.fema.gov/hazus, last accessed 22 Aug 2018.
Hwang, C. and K. Yoon (1981). Multiple Attribute Decision making: Methods and Applications.

Berlin: Springer.
InaSAFE (2018). QGIS plugin for estimating impact from natural disasters. Documentation and

repository available online at http://inasafe.org/, last accessed 22 Sep 2018.
Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision

making methods, International Journal of Geographical Information Systems, 9(3), 251-273.
King, G. (2018). Muck, a build tool for data projects. https://github.com/gwk/muck, last accessed

2018.
Kylin (2018). http://kylin.apache.org/, last accessed 22 Aug 2018.
Li, Y., Kou, Y. and Z. Li (2018). An Improved Nondominated Sorting Genetic Algorithm III Method

for Solving Multiobjective Weapon-Target Assignment. International Journal of Aerospace Engineering,
2018: 8302324, DOI:10.1155/2018/8302324.

Liu, Z., Wang, Y. and P. Huang (forthcoming). A Many-Objective Evolutionary Algorithm with
Angle-Based Selection and Shift-Based Density Estimation. Information Sciences DOI:
10.1016/j.ins.2018.06.063.

Lovelace, R., Nowosad, J. and J. Muenchow (2018). Geocomputation with R. London: CRC/Chapman &
Hall.

Malczewski, J. (1999). GIS and Multicriteria Decision Analysis, New York, NY: John Wiley and Sons.
O’Sullivan, C., Wise, N. and P. Mathieu (2018). The Changing Landscape of Geospatial Information

Markets in Mathieu, P. and C. Aubrecht (Eds), Earth Observation Open Science and Innovation, pp. 3-
23. Cham, CH: Springer-Nature. DOI: 10.1007/978-3-319-65633-5.

OpenCube Toolkit (2018). http://opencube-toolkit.eu/, last accessed 22 Aug 2018.
OpenHazus (2018). OpenHazus – FEMA’s Loss Estimation Model. Program goals for 2018-2022 in

alignment with FEMA strategic plan. PowerPoint presentation shared with the author by the
OpenHazus development team.

Pascal, B. (1670). Pensées. Christian Classics Ethereal Library.
http://www.ccel.org/ccel/pascal/pensees.html, last accessed 22 Aug 2018.

Pinot (2018). https://github.com/linkedin/pinot, last accessed 22 Aug 2018.
Rattle (2018). Rattle: a graphical user interface for data mining using R. Togaware.

https://rattle.togaware.com/, last accessed 22 Aug 2018.
Redistricting (2014). Documentation and repository available online at

https://github.com/seanclaude/Redistricting, last accessed 22 Sep 2018.
Repast Simphony (2018). https://repast.github.io/, last accessed 22 Aug 2018.
Roy, B. (1968). Classement et choix en présence de points de vue multiples (la méthode ELECTRE).

RIRO, 2, 57–75.

Albrecht

239

Saaty, T. (1996). Decision Making with Dependence and Feedback: The Analytic Network Process. Pittsburgh:
RWS Publications

Sandia National Laboratory (2018). DAKOTA. Explore and predict with confidence. Project website:
https://dakota.sandia.gov/, last accessed 22 Aug, 2018.

Schneider, P. and B. Schauer (2006). HAZUS—Its Development and its Future. Natural Hazards
Review, 7(2): 40-44.

SCIP (2018). Solving Constraint Integer Programs. http://scip.zib.de/, last accessed 22 Aug 2018.
SpatialHadoop (2018). A MapReduce Framework for Spatial Data. http://spatialhadoop.cs.umn.edu/,

last accessed 22 Aug 2018.
Sugumaran, R., Meyer, J. and J. Davis (2004). A Web-based Environmental Decision Support System

for Environmental Planning and Watershed Management, Journal of Geographical Systems, 6(3):307-
322.

Terzano, K. and V. Morckel (2016). SimCity in the Community Planning Classroom. Journal of Planning
Education and Research, 37(1): 95-105. doi: 10.1177/0739456X16628959.

UDST (Urban Data Science Toolkit) (2018). http://www.urbansim.com/udst/ and
https://github.com/UDST, last accessed 20 Aug 2018.

UMEP (2018). Urban Multi-scale Environmental Predictor. Documentation and repository available
online at https://umep-docs.readthedocs.io/en/latest/, last accessed 18 Sep 2018.

Vanegas, P., Cattrysse, D. and J. Van Orshoven (2011). A multiple criteria heuristic solution method
for locating near to optimal contiguous and compact sites in raster maps. In Murgante, B.,
Borruso, G. and A. Lapucci (Eds.), Geocomputation, sustainability and environmental planning: Studies in
computational intelligence, pp. 35–56. Berlin/Heidelberg: Springer.

von Neuman, J. and O. Morgenstern (1947). Theory of Games and Economic Behavior. Princeton, NJ:
Princeton University Press.

Waddell, P., Boeing, G., Gardner, M. and E. Porter (2018). An Integrated Pipeline Architecture for Modeling
Urban Land Use, Travel Demand, and Traffic Assignment. Technical Report for U.S. Department of
Energy SMART Mobility Urban Science Pillar: Coupling Land Use Models and Network Flow
Models. Berkeley, CA: University of California.

Wald, A. (1939). Contributions to the Theory of Statistical Estimation and Testing Hypotheses. Annals
of Mathematical Statistics, 10(4): 299-326.

WCS (Wildlife Conservation Society) (2018). VisionMaker NYC. Documentation and repository
available online at https://visionmaker.us/nyc/, last accessed 22 Sep 2018.

Wierzbicki, A. (1998). Reference point methods in vector optimization and decision support. (Interim
Report IR-98-017, Laxenburg, Austria: International Institute for Applied Systems Analysis.

WSBPEL (2017). OASIS Web Services Business Process Execution Language, version 2. Organization for the
Advancement of Structured Information Standards.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, last accessed 22 Aug 2018.

Zeleny, M. (1982). Multiple Criteria Decision Making. New York: McGraw-Hill.

http://www.urbansim.com/udst/
https://github.com/UDST

	1 Introduction
	2 SDSS: State of the Art in the 2010s
	3 Operations Research Tools
	4 Mining Analysis Results
	5 Choosing a Platform
	References

