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Abstract 
Spatial Decision Support Systems (SDSS) were a hot topic in the 1990s, when researchers 
tried to imbue GIS with additional decision support features. Successful practical 
developments such as HAZUS or CommunityViz have since been built, based on 
commercial desktop software and without much heed for theory other than what 
underlies their process models. Others, like UrbanSim, have been completely overhauled 
twice but without much external scrutiny.  

Both the practical and the theoretical foundations of decision support systems have 
developed considerably over the past 20 years. This article presents an overview of these 
developments and then looks at what corresponding tools have been developed by open 
source communities. In stark contrast to the abundance of OpenGeo software, there is a 
dearth of open source SDSS. The core of the article is a discussion of different approaches 
that lend themselves as platforms to develop an open source framework to build a variety 
of SDSS. 

Keywords: 
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1 Introduction  

Over the course of the past ten years, geospatial open source software has become 
mainstream (O’Sullivan et al. 2018). From the ubiquitous QGIS to R for spatial analysis 
(Lovelace et al. 2018), to web service platforms that are now taken for granted, free and open 
source software (FOSS) is – as a minimum – a viable alternative to commercial off-the-shelf 
software, and often enough this is the first place we look when we embark on a new project. 
One of the advantages of FOSS is its reliance on open standards, which often make it easier 
to mesh it with the functionality that is needed in one’s project – be it in an ad hoc manner 
or for a larger development effort. 

Arguably, one of the main uses of geospatial software is in a spatial decision support context, 
where we are trying to solve non-trivial, multi-criteria, and/or multi-objective problems that 
require a fair amount of (geospatial) data analysis. It therefore seems surprising that there are 
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currently only two smaller add-on packages to QGIS (InaSAFE and UMEP) that can be 
regarded as spatial decision support system (SDSS) in the domain of FOSS, while others like 
AequilibraE (2015) and Redistricting (2014) prove that it takes a larger organization’s 
sustained support capacity to maintain a multitude of interfaces to ever-changing libraries. 
This article seeks to find out why this glaring gap exists and what it would take to develop an 
open source SDSS platform. This will be accomplished by first surveying the scene of 
widely-used SDSS and creating a list of desiderata that an open source platform would have 
to fulfil to successfully compete with existing commercial offerings. Second, as ‘decision 
support’ is an obvious necessity, we will look at the state of the art in operations research to 
see what could be learned from this neighbouring discipline. A discussion of development 
platforms will get us closer to answering the original question of why we still lack a standard 
go-to package such as we seem to have in almost all other realms of geospatial FOSS. The 
article ends with a list of steps to be undertaken for development of an open source SDSS 
platform. 

2 SDSS: State of the Art in the 2010s 

Other than for a plethora of academic research projects that never survived their initial 
funding timelines, SDSS is either implemented as an extension to the market-leading GIS 
software from ESRI, or has been developed for in-house applications only (Gheorghe 2005). 
In this section, we will briefly describe some of the most popular SDSS, with an emphasis on 
the qualities that we would like to see replicated in the open source environment. 

HAZUS 

HAZUS, sho.rt for Hazards US, began in the 1990s as a natural hazards loss-estimation tool; 
in 2004 it was unified into a multi-hazard analysis software suite for the US Federal 
Emergency Management Agency (Schneider & Schauer, 2006). Implemented as an (unusually 
large) extension package to ArcGIS Desktop, it is used worldwide as well as in thousands of 
US local, regional and national agencies. Two aspects that contribute significantly to the 
widespread use of HAZUS are: (a) its being packaged with several GBytes of detailed socio-
economic data that make it easy to get started with the program, data which is useful beyond 
the immediate application to hazard management; (b) a plethora of courses that provide a 
range of specialized introductions to the software. 

The HAZUS developers have slowly been trying to move away from their dependencies on 
ESRI software (personal communication, 2018). First, the traditional ESRI geodatabase 
turned out to be inefficient for larger database and scenario requirements and the developers 
adopted an SQL Server. Recent versions moved the source code to C#, and as of summer 
2018 the development team has been looking into moving all analysis routines into open 
source (OpenHazus 2018). As the HAZUS community as a whole is very familiar with the 
ESRI platform, this change is gradually being effected. The user interface, complicated as it 
is, cannot be radically changed without upsetting a larger user base.  
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The hallmark feature of HAZUS is its use as a scenario generator. Emergency management 
agencies use HAZUS to construct large libraries of scenario runs in order to build 
repositories of loss measures for as large a combination of variables and parameters as 
possible. As scenario runs are too computing-intensive to be conducted in real time, it is 
access to the scenarios and their use in preparatory exercises that allows first responders to 
make informed decisions. The highly unlikely scenario of Superstorm Sandy in 2015, for 
instance, was part of the fully calculated repository of New York City’s Office of Emergency 
Management (OEM). While the scenario itself was deemed too unlikely to commit resources 
towards its prevention, the well-known consequences allowed the storm’s effects to be 
predicted quite accurately and the prevention of major loss of life (Friedman 2017). 

Developed for this specific purpose, HAZUS is not meant to be used by people unfamiliar 
with emergency management procedures, but by higher-level, technically well-versed 
managers. There is no attempt to make it accessible to first responders directly, for instance. 
Instead, the emphasis is on resource management for mitigation. The unwieldiness of the 
user interface is almost a feature because the software is aimed to be used before an 
emergency event and in a server environment. Public outreach and communication with 
other software packages, prominent in other SDSS, are not part of the HAZUS design. 

CommunityViz 

The design intentions of CommunityViz could hardly be more contrary to those of HAZUS. 
Financed by the Orton Family Foundation, its purpose was and is to facilitate public 
participation in local planning procedures. The emphasis is on keeping citizens engaged 
through visualizations and easy-to-follow or interactive scenario builders. Like HAZUS, 
CommunityViz is an extension of ArcGIS Desktop, but its owner, City Explained, Inc., is 
continuing its development to a web services environment and creating an API that allows to 
link to external modelling tools.  

CommunityViz projects tend to be smaller than regional-scale HAZUS projects, and the 
building of scenario libraries emphasizes interactivity for the purposes of garnering support 
and understanding rather than for subsequent statistical analysis. CommunityViz has two 
separate and complementary features which set it apart: (a) it has an enviable easy-to-use user 
interface and (b) it has the additional option of looking under the hood to see the inner 
workings. 

UrbanSim 

UrbanSim does not often feature in the lists of common SDSS, although it fulfils all criteria. 
It is one of the very few SDSS that transitioned successfully from the academic into the 
commercial realm, and the only one to my knowledge that gave up on its open source origins 
(although the sources of older versions remain available on 
https://github.com/UDST/urbansim). UrbanSim has gone through several major rewrites 
from Java to Python to Jupyter, and the latest commercial version is Cloud-based.  

Aimed at metropolitan planning associations, UrbanSim was originally used to model urban 
land use and transportation demand but now emphasizes real estate markets. Technically, it 

https://github.com/UDST/urbansim
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comes under the umbrella of microsimulation software, and the model equations are 
econometric in nature. It is hard to judge the efficacy of its features as virtually all 
publications (UDST 2018) are project-based and involve a high degree of customization by 
the developers. Successful adaptations of the source code are rare and purely academic in 
nature.  

There are, nevertheless, a few important lessons to be learned from the UrbanSim project. 
The model base is quite sophisticated and easier to manipulate (for the initiated) than similar 
features in HAZUS or CommunityViz. Second, at the time of writing (2018), its software 
architecture is state of the art, and the thorough embracing of the Python universe opens it 
up to a large community of potential developers. This comes at the price of the software 
requiring a technical intermediary; to an even greater degree than HAZUS, it cannot usually 
be handled directly by the end-user. But with a Pythonista on staff, there are few limits to the 
customization of UrbanSim. This potential is documented on the GitHub pages of the 
Urban Data Science Toolkit (UDST 2018), with examples for 3D visualizations, US Census 
data ETL tools, Open Street Map and GTFS readers. 

VisionMaker NYC 

Another modern SDSS, with a predominantly pedagogical purpose, is under development by 
the Wildlife Conservation Society (WCS 2018). VisionMaker NYC is a browser-based 
scenario-builder that interfaces with an ArcGIS Server for pupils to build SimCity-like 
models (Terzano & Morckel 2016) based on real-world data. In addition to the 
environmental advocacy effect, VisionMaker NYC also serves its developers as an ever-
growing compilation of user models that can be mined for educational, political and 
scientific insights. In its current implementation, the project is constrained to where there is 
an abundance of data; this is not a problem in New York City, but not as easy to accomplish 
in conservation projects around the world, where the tool would be really useful – for 
example, to brainstorm with local constituencies about conflicting land uses. Like 
CommunityViz, the user interface is exemplary in its simplicity. Except for the ArcGIS 
Server, all components are based on FOSS, but the VisionMaker NYC project itself is not in 
the public domain.  

Based on these four examples, we can now draw up a list of desiderata for a FOSS SDSS: 
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1. Handling large amounts of data, 
including scenario setups and results 

 Specialized database support, incl. ETL, 
OTP and OLAP 

2. A GUI that draws users in  High degree of interactivity, dynamic 
graphics, dashboards and platform 
transparency 

3. Models and algorithms that go way 
beyond what is offered by GIS 

 A model description language that allows 
for semantic imports of models from 
many disciplines and application areas1 

4. Leveraging of operations research 
(OR) tools 

 While the models are domain-specific, the 
decision-making procedures should follow 
current state-of-the-art tools developed in 
OR 

3 Operations Research Tools 

One potential reason why SDSS have not yet found a firm footing in the FOSS environment 
is that this would require bridging two rather separate communities – the geospatial one and 
that of operations research (OR). OR has been dealing with geospatial applications for many 
years, but it has not embraced them beyond a simple tool level. Instead, regional science, 
graph theoretical or econometric algorithms have been incorporated, based on what could be 
found in textbooks. There is no joint forum comparable to ones that spatial statisticians and 
environmental GIS researchers have established. This mutual ignorance is also reflected in a 
lack of SDSS literature, after a flurry of publications in the 1990s (Carver, 1991; Densham, 
1991; Diamond & Wright, 1988; Goodchild et al., 1992; Jankowski, 1995; Malczewski, 1999). 
A brief introduction to OR is therefore in order. 

There are two distinct parts to the analysis that underlies SDSS. One is a reasoning chain of 
processing steps that can be abstracted into a Markov process. The other concerns choices. 
Most GIS-based SDSS are about the creation of scenarios, each one being the result of a 
Markov process. The component that is not captured by GIS (or only barely in the form of a 
weighted linear combination) is how to weigh alternative solutions against each other. 
Readers are likely to be familiar with some of the theoretical foundations from their statistics 
classes: Pascal’s expected value theorem (1670), Wald’s general decision problem (1939), or 
von Neumann and Morgenstern’s expected utility theory (1947). 

In general, we distinguish between multi-criteria and multi-objective methods. On the multi-
criteria side, the one we are all familiar with from the GIS world is weighted linear 
combination (Eastman 1999, Malczewski, 2014). It is noteworthy, however, that although the 
SDSS literature is replete with implementations of Saaty’s Analytical Hierarchy Process and 
its generalization as an analytical network process (Saaty, 1996), none of these have been 
implemented as part of any common GIS package. It is also odd that beyond the Idrisi 

                                                           
1 Classic SDSS application areas include location-allocation, site selection, land use suitability 
evaluation, transportation problems, environmental impact assessment, districting, fire and other 
hazards. 
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package, none of the freely available add-ons to ArcGIS or QGIS have ever been 
incorporated into the core software either.  

More squarely in the realm of traditional OR tools are the ‘ideal point’ and the ‘outranking’ 
methods. Ideal point methods, also known as compromise programming, evaluate 
alternatives by measuring the distance from the ideal solution in a multi-criteria solution 
space. A power parameter is applied to balance criteria, to weight them according to their 
deviation, or to emphasize the greatest deviations. The logic is sometimes turned on its head 
by measuring the distance to the worst possible solution. Hwang & Yoon’s (1981) technique 
for ordering performance by similarity to the ideal solution combines the two approaches 
and is now a standard tool in OR. 

Outranking methods are more commonly used in French-speaking areas (or at least in 
Europe, where francophone OR schools play a dominant role) and can be applied to rank-
ordered phenomena, tilting them more towards qualitative approaches (Roy, 1968). An 
alternative outranks another one if it is better for at least half the criteria. Rather than just 
summarizing across all ranks (referred to as concordance), the outranking method then also 
calls for a discordance measure, which measures the discomfort experienced by moving from 
one level to the next level down for each criterion. Concordance and discordance are then 
expressed in the form of a matrix that helps to determine which pair of alternatives is the 
most satisficing one. 

On the multi-objective side, the goal is to find a utility-maximizing function across a set of 
criteria, alternatives and decision variables. Given that criteria are often conflicting, the 
classic solution has been described by Pareto (1896) as finding the one set in a multi-
objective space in which no vector improves some objective without deteriorating another 
one. It turns out that such a Pareto front optimization tends either to be dominated by 
extreme values of one objective (typically not a feasible solution in practice), or to result in 
there being no single best compromise solution. OR has therefore developed a set of 
weighting and constraint solvers that maximize only one objective while converting the 
others into inequality constraints. Another set of tools parallels the distance metrics, 
encountered in the ideal point method for multi-criteria problems, which minimizes the 
distance between the desired and the achieved solution. Typically, such algorithm collections 
include goal programming (Charnes & Cooper, 1961), compromise programming (Zeleny, 
1982), and the reference point method (Wierzbicki, 1998, which is favoured in the world of 
finance. Goal programming is particularly popular because it employs the Lp norm, which is 
widely used in physics, statistics, finance and engineering. 

All of the above methods are still a bit idealistic, in the sense that they require more 
knowledge or certainty in the choice of parameter values than there is in real-world 
situations. Proper decision support systems, therefore, do not provide just libraries 
implementing the aforementioned algorithms (referred to as ‘solvers’ in the OR world), but 
also room for interactive programming similar to good data mining software. This gets us 
into the realm of heuristics, some of which the geocomputational community is familiar with 
(Vanegas et al. 2011). Church et al.’s (2003) region growing heuristic or the so-called ‘greedy 
algorithms’ that we use in the traveling-salesman problem are good examples. Other 
approaches employ a Lagrangian Relaxation (Fischer, 1981), where a group of constraints 
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that are perceived as troublesome are placed into an objective function and assigned weights 
(the Lagrangian multiplier).  

OR Solvers 

All of the above OR methods are not simply confined to descriptions in academic literature: 
they have been implemented in a number of software tools, in both commercial and open 
source forms. The first commercial integer programming package became available in the 
early 1970s (Forest et al., 1974), but only in the late 1990s did robust dual simplex methods 
leave the academic realm (CPLEX, 1999). Gurobi Optimization, named after its founders 
(Gu, Rothberg and Bixby), was founded in 2009 and revolutionized the mixed-integer 
programming world by focusing on solving a public library of over 2,000 real-world 
problems that was compiled by the Zuse Institute and resulted in an open source C library 
called SCIP (Gleixner et al., 2018; Gurobi Optimization, 2018). Similar to ESRI’s dominance 
in the commercial GIS world, Gurobi is the standard against which all other OR tools, 
commercial or otherwise, are measured. Also as for ESRI, a generous academic licensing 
scheme helped to spread the software fast and wide. 

SCIP, the more generic GNU Linear Programming Toolkit, and the computational 
infrastructure for operations research (COIN-OR) are examples of algorithms that are 
typically called from C(#) libraries. Some Java libraries also exist, with Python running a 
distant third. This is something to be kept in mind by developers of a FOSS SDSS, because it 
constrains the platform options if the ‘D’ in SDSS is to be taken seriously. 

For an extreme example of how far the development of a fully-fledged (open source) 
decision support system can be taken, readers are invited to have a look at DAKOTA. 
Under development at Sandia National Laboratory, this optimization software project 
enables design exploration, model calibration, risk analysis, and quantification of margins and 
uncertainty via computational models (Sandia National Laboratory 2018). Designed for 
engineering applications, its iterative system analysis methods, all implemented in C++, are 
flexible enough to be extended to geospatial simulations.  

4 Mining Analysis Results 

As we have seen from the SDSS examples in Section 2, in addition to significantly-sized 
input data, a future-proof SDSS needs to be able to store and analyse the results of hundreds 
if not thousands of analysis runs. Currently, this requirement is the Achilles heel of existing 
packages. Except for the non-spatial DAKOTA, the design and organization of model runs 
is left to the user, as is the analysis of model results, meaning that the user must rely on 
external tools. This section therefore discusses the database needs and possible tools for the 
exploration of simulation results. 

Database needs 

The geospatial data community’s default database management systems (DBMS) rely on 
relational approaches. For smaller projects, these might be SQL Server Express or SpatiaLite 
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solutions; for larger projects, the question is usually determined by whatever vendor the 
project sponsor is aligned with. In the open source world, especially if geospatial data is 
involved, there seems to be only one solution: Postgres/PostGIS. These relational databases 
are good for traditional ETL tasks but rather limiting given the many different types of data 
we want to store, and the kind of analyses that need to be run on simulation results. At some 
point, traditional relational DBMS will not suffice when it comes to storing procedures (all 
the parameters that describe models and their respective runs) or providing rapid access to 
model results. Postgres is also a less than ideal solution for cloud-based access to large spatial 
databases. OLAP databases address the rapid access to analysis results question, allowing the 
interactive analysis of multidimensional data from multiple perspectives. OLAP hypercubes 
are dissections of the multidimensional database, similar to how an octree tessellates a 3D 
space. Each cube contains aggregated data related to elements along each of its dimensions. 
A typical user interface to interact with the data cubes is a Pivot table. The combination of all 
possible aggregations plus the base data contains the answers to every query that can be 
answered from the data. The universe of all possible aggregations is, of course, huge. 
Consequently, only the more likely ones get pre-calculated to guarantee a very fast response 
to queries. 

An example of an open source OLAP database is the Druid (2018) toolkit for event data. 
Closer to SDSS applications is the column-oriented Pinot datastore developed by LinkedIn 
(Pinot, 2018). The data is stored in an HDFS (Hadoop distributed file system), which allows 
it to be linked with SpatialHadoop (2018). Hadoop’s Pig Latin can be extended via user-
defined functions, which users can write in Java, Python, JavaScript, Ruby or Groovy, and in 
the case of SpatialHadoop mimic PostGIS’s functionality. An alternative open source OLAP 
implementation is Apache Kylin (Kylin, 2018), which is built on top of Hadoop/Spark and 
can hence be linked with GeoMesa (2018) for very fast geospatial analytical web services. 
Kylin’s ODBC and JDBC drivers support tools such as Tableau for immediate graphical 
inspection (if the FOSS SDSS development team wants to avoid dealing with the specifics of 
the user interface). The European OpenCube Toolkit (2018) is a fine example of how all this 
can be put together to process RDF data cubes. All user interactions are browser-based, 
including the Pivot table view and all OLAP operations. The OpenCube Toolkit executes R 
scripts, has interactive visualization widgets, and even a map interface in support of OLAP 
operations on the geo-spatial dimension. Finally, without OLAP support but adhering to a 
number of OGC standards, we have GeoWave (2018), which links sorted big data key-value 
datastores to GeoTools-compatible data sources such as GeoServer (2018). Rob Emanuele 
(2016) provides an excellent comparison between the two vector-based geospatial big data 
frameworks GeoMesa and GeoWave. As larger SDSS implementations will invariably make 
use of distributed data stores and web services, a future-proof open source SDSS will have to 
incorporate either of these two or the raster-based GeoTrellis (2018) framework. 

An AI data mining toolbox 

As the OpenCube Toolkit shows, once the data is stored, the real task is to make sense of all 
the simulation results. Until recently, SDSS have had no urgent need to provide support for 
that, as the simulations were handpicked by domain experts and manageable in number. 
Now, however, long-term users of HAZUS are struggling to keep track of all the scenarios 
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they have run. Also, with increasing computing power and Cloud processing, we will soon be 
in a position to run really large numbers of scenarios that need not only to be stored but then 
also mined. Our solutions space has now become large enough to warrant genetic 
algorithms, simulated annealing, tabu search and swarm intelligence, in addition to traditional 
machine learning tools like neural networks, scikit-learn (2018) or Weka (2018). 

These three traditional tools are all used to perform multi-directional and global searches to 
explore the set of Pareto solutions. This is usually done with two or more objective functions 
and a number of constraints (Li et al., 2018; Liu et al., forthcoming). Classic OR algorithms 
may require more knowledge than we actually have, in which case these AI tools provide for 
something like an ‘automated heuristic’. 

In geospatial circles, swarm intelligence is better known as an agent-based modelling system 
(ABMS). ABMS are quintessential simulation tools and, as exemplified by our discussion of 
UrbanSim, lend themselves eminently to be used in or even as SDSS. ABMS deserve a closer 
look in our investigation of potential SDSS platforms because by definition they fulfil almost 
all the criteria listed at the end of Section 2. A system like the open source Repast Simphony 
(2018) includes a database, a model base, model creation (specification) tools, a scheduler, 
comprehensive metadata management, full import and export support for raster and vector 
data, and lots of links to external tools like JoSQL, Jung, Pajek, R and Weka. It could be 
argued that with a tool like this, we would ‘only’ have to add some OR tools to arrive at a 
fully-fledged SDSS.  

5 Choosing a Platform  

We are now in a position to compare five different potential platforms for building a FOSS 
SDSS from scratch. 

GIS-based SDSS 

If we were to follow the most successful commercial examples, then the choice is clear: most 
SDSS are basically extensions of existing GIS, and for a good reason – the learning curve for 
users who are already well-versed in GIS should be minimal. It therefore seems to make a lot 
of sense to add SDSS to the list of OSgeo projects and work with some combination of 
QGIS, SAGA, gvSIG or GRASS. On the other hand, adding fully-fledged database support 
(preferably of the OLAP kind), scenario builders, model specification tools and OR 
algorithms is bound to shatter user experience, and it would arguably be more streamlined to 
build a FOSS SDSS from low-level OSgeo libraries rather than on top of an existing desktop 
GIS.  

Database-based SDSS 

DBMS have a lot going for them. They have built-in multi-user management and the 
versioning mechanism would be useful in scenario management. DBMS are extremely 
robust, as exemplified by well-established ETL tools. They are also ideal for storing process 
models encoded in something like the business process execution language (WSBPEL, 
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2017). OR and AI tools can be implemented as extensions, just as we are used to from the 
spatial extensions that turn Postgres into a GIS. Compared to all these advantages, the list of 
drawbacks is fairly short: none of the common FOSS DBMS support OLAP, and while SQL 
can be extended, to do that in support of OR and AI tools would be so unorthodox that a 
DBMS-based SDSS would be highly unique (i.e., not standards-based). This, in turn, would 
violate the robustness requirement that standard DBMS fulfil so well. The discussion of the 
OpenCube Toolkit (Section ‘Database needs‘) shows that it is possible to develop a DBMS-
based SDSS – but this example, as convincing as it is for the purpose it was built for, is so 
specialized that it hardly serves as the basis for a general SDSS. 

R-based SDSS 

Readers of this article might be surprised that R is considered a general enough platform to 
allow an SDSS to be built on top of it. But R has a huge developer community, including in 
all areas singled out in our list of desiderata for an SDSS. There are very active communities 
for geo-spatial, OR and machine learning tools. Packages like rattle() illustrate how 
convenient it is to develop a workflow-based user interface. The main drawback to 
conceiving of R as an SDSS platform is the underdeveloped link to databases. There are 
plenty of packages that aim to provide links to DBMS, but they are slow and a de facto 
bottleneck. Calling R routines from a DBMS would be far more convincing. 

Eclipse-based SDSS 

Eclipse is a comprehensive and comfortable development environment for computer 
programming. Originally designed for developing Java applications, it now supports more 
than 25 of the most common programming languages. The agent-based modelling system 
Repast Simphony, as well as earlier versions or UrbanSim, are examples of Eclipse-based 
applications. Eclipse is extremely versatile, and its multi-language support and excellent 
library management make it relatively easy to cobble together all the necessary components 
of an SDSS. Its advantages, however, carry in themselves the seeds of the drawbacks. It is an 
environment for programmers – not decision makers. Hiding the platform basics from the 
end-user is a challenge. The multi-language support, if made use of, poses higher demands 
on project management. An example of that is the need to identify a development 
framework, which all the previously-suggested platforms have already solved. 

Jupyter-based SDSS 

Depending on which industry survey one follows, Python has become the most popular 
programming language. The advent of Jupyter notebooks likely contributed to this popularity 
significantly. Jupyter has been expanded and now provides support for R and Julia kernels, 
with dozens of additional language kernels (including several C dialects) maintained by the 
user community. Like Eclipse, this multi-language capability opens the doors to just about 
every geospatial, OR, AI, visualization, GUI-building, etc. library that one can think of. 
UrbanSim’s move from Eclipse to Jupyter gives an indication of where things are heading. 
Jupyter’s integration with web services and its easy user interface suggest that more 
interesting applications like muck (King, 2018) are just around the corner. 
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In summary, the choice of development platform is mostly dependent on the background of 
the people who are getting together to develop a FOSS SDSS. Each of the options discussed 
here seem feasible; as a matter of fact, non-representative surveys after the author’s 
presentations found a just about equal distribution among the supporters of each platform. 
The purpose of this article is to provide an overview of the issues involved. The hope is that 
it provides sufficient background for an informed discussion by the GI_Forum community 
about open source foundations for spatial decision support systems. 
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