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Abstract 
This study demonstrates how complex image classification workflows can be built using a 
visual modelling tool. Models facilitate the comparison of different classifiers while allowing 
an analyst to experiment with different input features. The models include custom workflow 
steps for preparing input and training data, training the classifier, classifying images and 
evaluating the results. The example models presented here were used to classify Sentinel-2 
imagery of eastern Texas, USA, into five land-use categories that consisted primarily of 
vegetation. Separate models were created for Softmax Regression and Support Vector 
Machine (SVM) classification, each using Sentinel-2 spectral bands and again with an 
additional entropy texture image as input. The results showed that SVM performed better 
than Softmax Regression and that the selected texture measure did not improve 
classification results. A discussion is provided of how the models could be extended further 
to provide different analysis options.  

Keywords: 
classification, Softmax Regression, support vector machine, model, workflow, trainer  

1 Indroduction  

Image classification is a well-known technique used in remote sensing to map land-cover 
types and to monitor changes at the Earth’s surface over time. Most image-processing 
software applications include multiple classifiers, along with the ability to display results and 
to evaluate the accuracy of the classification. Customizing a classification process to go 
beyond these basic steps typically involves writing an API (Application Programming 
Interface). Examples of extending a supervised classification workflow include normalizing 
and randomizing the input data, training the classifier, and minimizing loss prior to 
classifying images. 

This study demonstrates the use of a visual modelling tool in ENVI version 5.5 (available 
from Harris Geospatial Solutions, Inc.) to build custom Softmax Regression and Support 
Vector Machine (SVM) classification workflows to perform these steps. Traditionally, these 
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classification workflows required users to write APIs. While an API allows more flexibility in 
customizing workflows, learning the syntax and details of a specific API can be time-
consuming. The benefit of building a model with a visual programming tool is that inputs, 
outputs, data management operations and processing tasks can be linked with a drag-and-
drop user interface instead of learning API code. Models can be packaged and deployed to 
desktop and cloud-computing environments for reuse and further customization. Model files 
can also be shared with colleagues and incorporated into larger image-processing models. 

As a case study, we compare the results of Softmax Regression and SVM models to classify 
five vegetation land-cover classes in Sentinel-2 multispectral imagery. We ran each model 
using 10 spectral bands as input to classification, and again with an additional entropy texture 
measure for input, to determine whether texture improved classification accuracy. We 
hypothesize that SVM classification will yield more accurate results than Softmax Regression 
and that, compared to using the spectral bands alone, adding a texture measure to the 
spectral bands will improve classification accuracy. 

Choosing the right combination of classifiers and selecting appropriate input features are two 
factors that will affect classification accuracy (Khatami, Mountrakis, & Stehman, 2016). The 
next section describes the classifiers and input features used in this study. 

Summary of Classifiers 

The Softmax Regression classifier used in ENVI is a form of multinomial logistic regression 
that can predict the probabilities of the classes based on input features, after weighting them 
according to their relative importance (Wolfe, Jin, Bahr & Holzer, 2017). Softmax Regression 
is most effective with multi-class classification where the classes are mutually exclusive and 
more than two discrete possible outcomes are possible (Green, 2012). An example is 
classifying an image into distinct classes such as Cloud, Water, Asphalt and Vegetation. Pal 
and Foody (2012) found that multinomial logistic regression classification results were 
similar in accuracy to SVM but required fewer training samples. 

SVM is a well-known supervised classifier derived from statistical learning theory. It 
separates classes using a decision surface that maximizes the margins between the classes 
(Chang & Lin, 2001). SVM classification includes several input parameters (Hsu, Chang & 
Lin, 2010): 

• The kernel type used to give the weights of nearby data points in estimating target 
classes. Four kernel types are used: Radial Basis Function (RBF), Polynomial, Linear 
and Sigmoid. 

• A penalty value that controls the trade-off between allowing training errors and 
forcing strict margins. 

• Based on the selected kernel type, there are other parameters – for example, the 
degree of the kernel if the kernel type is Polynomial, the bias if the kernel type is 
Polynomial or Sigmoid, and the gamma value if the kernel type is RBF, Polynomial or 
Sigmoid. 
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In a scenario where land-cover types with similar spectral characteristics will be separated 
into discrete classes, SVM is expected to perform better than Softmax Regression. Braun, 
Weidner and Hinz (2010) discussed how SVM is better suited for use with hyperspectral 
images or multispectral images that contain many bands. Topaloğlu, Sertel and Musaoglu 
(2016) compared Maximum Likelihood classification to SVM, for both Landsat 8 and 
Sentinel-2 imagery. They found that SVM classification of Sentinel-2 data resulted in the 
highest classification accuracy. 

Input Features 

Several studies have demonstrated the effectiveness of Sentinel-2 spectral bands in land-use 
classification (Gašparović & Jogun, 2017; Georgescu, Vaduva & Datcu, 2017; Sekertekin, 
Marangoz & Akein, 2017). Most have found that the Vegetation Red Edge bands are helpful 
in discriminating between vegetation types (Delegido, Verrelst, Alonso & Moreno, 2011; 
Immitzer, Vuolo & Atzberger, 2016). Qiu, He, Yin and Liao (2017) showed that Vegetation 
Red Edge bands 5 (703.9 µm) and 6 (740 µm) were the most beneficial in improving the 
classification of vegetation land-cover classes, particularly agriculture. Rujoiu-Mare, Olariu, 
Mihai, Nistor and Săvulescu (2017) found that increasing the number of spectral bands as 
input to image classification improved the separability of land-cover classes. 

Additional input features have the potential to increase classification accuracy – for example, 
height data, spectral indices and texture metrics. Murray, Lucieer and Williams (2010) discuss 
the importance of taking into consideration spatial information from pixels rather than 
spectral information alone. Compared to using the spectral bands alone, they achieved higher 
accuracy by adding grey-level co-occurrence matrix (GLCM) texture metrics as input to 
classifying six vegetation classes in IKONOS imagery. Similarly, Salas, Boykin and Valdez 
(2016) improved classification accuracy by using dissimilarity, homogeneity, contrast and 
second-moment GLCM metrics. 

Our study compares the results of image classification using Sentinel-2 spectral bands, with 
and without an additional first-order entropy texture image. Texture should provide an 
additional spatial context to image classification, to help distinguish forest and rangeland 
(rougher textures) from agricultural land (homogenous textures). 

2 Material and Methods 

The case study presented here uses the ENVI Modeler to build two supervised classification 
workflows: one for Softmax Regression and the other for SVM. 

Study Area 

The study area for this research is in eastern Texas, USA, along the Brazos River (Figure 1). 
The site was chosen because it contains a mix of land-cover classes that are predominantly 
vegetative, including wetlands, forest, agriculture and rangeland. The area of interest is 
bounded by coordinates 30.96 – 31.04°N, 96.74 – 96.84°W. 



Wolfe et al 

243 
 

        
Figure 1: U.S. Geological Survey (USGS) High Resolution Orthophoto mosaic of study area (left), 
overview map (right) 

Qiu et al. (2017) similarly chose a study site in eastern Texas for testing Sentinel-2 image 
classification because of its diverse land-cover types. 

Data Preparation 

A Sentinel-2A Level-1C image of the study area was downloaded from the USGS 
EarthExplorer website (http://earthexplorer.usgs.gov/). The image was acquired on 8 
August 2017. Level-1C images have been calibrated to top-of-atmosphere reflectance (ESA, 
2015). 

Additional processing steps were taken to prepare the image for analysis: 

1. Creation of a layer stack of the visible and near-infrared bands, while resampling the 
20-metre bands to 10 metres. 

2. Definition of a spatial subset around a specific area of interest. 
3. Use of QUick Atmospheric Correction (QUAC) to correct the image for atmospheric 

effects. Pixels represent surface reflectance. 
4. Creation and application of a mask of all non-vegetation features such as roads, water 

and buildings. 
5. Updating band names. 

  

http://earthexplorer.usgs.gov/
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The resulting dataset contained 10 bands (Figure 2): 

B2 Blue (496.6 µm)   B6 Vegetation Red Edge (740.2 µm) 
B3 Green (560.0 µm)   B7 Vegetation Red Edge (782.5 µm) 
B4 Red (664.5 µm)   B8A Narrow NIR (864.8 µm) 
B8 NIR (835.1 µm)   B11 SWIR (1613.7 µm) 
B5 Vegetation Red Edge (703.9 µm) B12 SWIR (2202.4 µm) 

 
Figure 2: Colour-infrared view of the Sentinel-2 image. White areas indicate non-vegetation pixels that 
were masked out 

A first-order entropy texture image was created from the red band (band 4) of the Sentinel-2 
image. ENVI uses the technique described in Anys, Bannari, He and Morin (1994) to 
calculate entropy. Figure 3 shows the resulting entropy image. 
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Figure 3: First-order entropy texture image derived from Sentinel-2 Band 4 (664.5 µm). Dark areas 
indicate homogeneous textures that typically correspond to agricultural fields and pastures. Lighter 
areas indicate rough textures that typically correspond to forest 

A separate layer-stacked image was created using the 10 Sentinel-2 bands and the first-order 
entropy texture. 

Training Data 

Field studies to validate ground truth were not feasible in this study, so training data 
consisted of samples of Sentinel-2 image pixels that belonged to each feature type. The 
following feature types were selected for image classification, using land-use terminology 
from Anderson, Hardy, Roach and Witmer (1976): 

• Nonforested Wetland: Characterized by low topography where the water table is 
above or approaching the surface. In the study area, wetlands are located near river 
flood plains and contain an abundance of hydrophytic vegetation and wet soils. The 
Sentinel-2 SWIR bands can help separate these pixels from other classes, since they 
contain more soil moisture. 

• Rangeland: Land dominated by natural vegetation such as grasses, shrubs and brush; 
often associated with lower moisture levels in the soil and canopy, and sparse 
vegetation. 

• Forest: Areas that contain evergreen and deciduous trees with thick canopies. 
• Grass/pasture: Agricultural land used exclusively for growing pasture crops such as 

alfalfa, or open grassland used for grazing. 
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• Cropland: Agricultural land that contains growing or harvested crops, or idle 
cropland where no planting has occurred. This land-use category is often defined by 
geometric fields and rows, along with visible tracks where machinery was used for 
seeding and harvesting. It often has natural and man-made boundaries, along with 
relatively homogeneous textures. 

Distinguishing between these land-use types using remote sensing imagery can be 
challenging, especially since many areas contain a mix of land-use types. Seldom are the 
categories defined by abrupt boundaries, except possibly for cropland. Land-use data from 
the U.S. Department of Agriculture (USDA) CropScape website were used as a rough guide 
in selecting training samples for each feature type. These data define the approximate 
locations of primary land-use types such as agriculture, forest, shrubland and 
grassland/pasture (Figure 4). The class data are from 2017, the same year as the Sentinel-2 
image. 

 
Figure 4: Map of USDA Cropland Data Layer (CDL) classes from 2017 at 30-metre spatial resolution 
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Figure 5: USGS High Resolution Orthophoto mosaic of study area with Regions of Interest training 
samples (pale yellow=cropland, light green=grass/pasture, dark green=forest, khaki=rangeland, bluish 
purple=nonforested wetland) 

The image resolution is 10 metres, which makes visual identification of different land-use 
types difficult. A digital orthophoto of the study area was used as a reference for collecting 
training samples. The orthophoto is a mosaic of USGS High Resolution Orthophoto images 
downloaded from the National Map Viewer at https://viewer.nationalmap.gov/basic/. The 
orthophoto was co-registered with the Sentinel-2 image. It was acquired in 2014, three years 
prior to the Sentinel-2 image; however, the general land-use types did not change 
dramatically over a period of three years. 

Regions of interest (ROIs) were drawn on the Sentinel-2 image for the five feature types 
used for classification (Figure 5).  

Once the layer-stacked images and training data ROIs were assembled, the classification 
workflows could be prepared. 

Classification Workflows 

Figure 6 shows the typical workflows for Softmax Regression and SVM classification, 
respectively. Each step in the workflow represents a corresponding ENVI task that contains 
input and output properties that can be passed from one task to another. 

                  

https://viewer.nationalmap.gov/basic/
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Figure 6: Softmax Regression workflow (left) and SVM classification workflow (right) – modified from 
Wolfe et al., 2017 

Preparing the Data 

The first step is to extract examples from the input image. An example is a one-dimensional 
array of values for a given pixel in all the input bands. This process is automated for every 
pixel in the image. Class values are also extracted from the input data; these are integers that 
identify each class. 

Classifiers are often sensitive to data values that vary widely (HGS, 2018a). Gains and offsets 
were applied to the examples to normalize them to a consistent range of values. The 
normalized examples are shuffled to create a random distribution of data. Finally, the 
examples are split into two separate arrays. Eighty percent of the examples were used to train 
the classifier, and the remaining twenty percent were used to validate the classifier. 

Training the Classifier 

The role of a trainer is to iteratively minimize the classification error by adjusting the 
classifier’s internal parameters until the loss function converges on a minimum value. This 
step, which is described in detail by Wolfe et al. (2017) and HGS (2018a), defines the trainer 
that will be used. 

A gradient descent trainer is typically used with a Softmax Regression classifier (Figure 6). 
This type of trainer iteratively updates the classifier according to the gradient for that 
iteration. It iterates until the loss converges on a minimum value. The gradient descent 
trainer requires three inputs: 

• Maximum iterations: The maximum number of iterations for which to compute the 
minimum, if the convergence criterion is not met. 

• Convergence criterion: Iterations stop when the change in loss value from the 
previous iteration falls below a specified threshold. This threshold is the convergence 
criterion. 

• Learning rate: The step size to take downhill during each iteration. 
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An iterative trainer is typically used with classifiers such as SVM (Figure 6) that already know 
how to update themselves without requiring input on how to change. 

To train the classifier, one set of examples that were split in the Split Examples task (see 
Section “Preparing the Data”) are passed to the trainer. 

Evaluating the Classifier 

This step evaluates the performance of the classifier using the remaining examples (from the 
Split Examples step) for evaluation. The predicted class values are calculated, and a confusion 
matrix and accuracy metrics are produced.  

Running the Classifier 

The final step is to classify the image. Prior to this step, the gains and offsets computed in 
the Apply Gains and Offsets to Examples step are applied to the image. According to Wolfe et al. 
(2017), this ensures that the pixel values are properly scaled among the different feature 
bands. 

Building the Models  

We used the ENVI Modeler to build two models: one for the Softmax Regression 
classification workflow, and the other for the SVM classification workflow. The models 
consist of yellow-coloured nodes that represent individual tasks as well as operations that act 
upon the data (such as extracting array elements, properties and metadata). Nodes can be 
selected from a list of available tasks and data-processing operations, then dragged and 
dropped into a canvas to build a model. Nodes are connected so that input and output 
parameters can be passed from one task to another. 

The first part of a classification model (Figure 7) contains steps to prepare the input data for 
training and classification, as described in Section “Preparing the Data”. The Input 
Parameters node displays a dialogue for the user to select an input image and training data 
ROIs, and to define the names and locations of output files. 

 
Figure 7: Nodes for preparing input data in the classification models 



Wolfe et al 

250 
 

The next part of the model completes the steps for defining and training the classifier, as 
described in Section “Training the Classifier”. Figure 8 shows an example using the gradient 
descent trainer for Softmax Regression. 

 
Figure 8: Nodes for defining the trainer and classifier 

The examples are split and passed to two different nodes, Train Classifier (Figure 8) and 
Evaluate Classifier (Figure 10). Because the examples are in array form, they must first be 
extracted using an Extract Elements from Array node. 

Specific metadata values from the examples are required for the Define Softmax Regression 
Classifier or Define SVM Classifier node, including the class names, number of classes and 
number of bands. An Extract Properties and Metadata node is used for this purpose. When 
connecting these two nodes, a connection dialogue appears (Figure 9) so that metadata from 
the examples can be linked to input parameters required by the classifier nodes. 

 
Figure 9: Connecting metadata fields from the examples to input parameters required for the Softmax 
Regression classifier 
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The Create a Gradient Descent Trainer node in the Softmax Regression model contains the input 
parameters needed for the gradient descent trainer. These must be determined a priori 
through API tests and plots before creating a model. The following values were used: 

• Convergence Criterion: 0.0001 
• Maximum Number of Iterations: 800 
• Learning Rate: 60 

The Create an Iterative Trainer node in the SVM model contains the input parameters needed 
for the iterative trainer. The following values were used: 

• Kernel Type: Radial Basis Function 
• Kernel Degree: 2 
• Kernel Bias: 1 
• Kernel Gamma: Not set 
• Penalty: 100 

Figure 10 shows the last remaining nodes in the model. The Classify Raster node performs the 
actual classification. This node requires input from other nodes such as Input Parameters, 
Apply Gain and Offset and Train Classifier. The Evaluate Classifier node evaluates the trained 
classifier. 

 
Figure 10: Nodes for classifying the raster and evaluating the classifier 

When the model runs, it writes the classification image and confusion matrix to disk. Figure 
11 shows a graphical representation of an entire model. 
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Figure 11: Full Softmax Regression classification model 

An IDL program was created to restore and print the confusion matrix and accuracy metrics 
that were saved to disk. 

Running the models 

The classification models were run with the following scenarios: 

• Softmax Regression using Sentinel-2 bands 
• Softmax Regression using Sentinel-2 bands + entropy texture from Band 4 
• SVM using Sentinel-2 bands 
• SVM using Sentinel-2 bands + entropy texture from Band 4 

3 Results and Discussion 

Models of classification workflows provided a convenient way to experiment with different 
classifiers and input datasets. 

Figures 12–15 show the resulting classification images, and Tables 1–8 show the resulting 
confusion matrices and accuracy metrics. In general, SVM classification using Sentinel-2 
bands performed the best, with an overall accuracy of 89.6% (Table 6). It performed slightly 
better than the combination of spectral bands and first-order entropy texture (89.3%, Table 
8). SVM performed better than Softmax Regression (71.0% with texture band, 72.16% 
without), so our initial hypothesis was validated. However, the choice of an entropy texture 
image as an additional feature layer did not improve the classification in either case.  

Softmax Regression was not as effective at discriminating between vegetation land-use types. 
Figures 12 and 13 show an increased mixture of classes, compared to the SVM classifier 
results in Figures 14 and 15. However, the Softmax Regression models took less than one 
minute to complete, while the SVM models took nearly two hours, most of which was spent 
training the classifier. 

In both classifiers, pixels that were classified as Nonforested Wetland were spuriously mixed 
with other classes. Pixels classified as Rangeland often appeared within Cropland and 
Grass/Pasture regions, where no dry shrubs were present. Pixels classified as Cropland were 
often mixed with the Grass/Pasture class. The Sentinel-2 bands effectively separated Forest 
from Rangeland due to differences in vegetation health and greenness. 
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With regard to the contribution of entropy texture to classification, flat and homogeneous 
areas (such as Grass/Pasture and Cropland) remained relatively unchanged in both 
classifiers, compared to using the spectral bands alone. Adding a texture metric resulted in 
more pixels being classified as Rangeland (due to its high tonal variation) in the Softmax and 
SVM classifiers, but it did not improve the overall classification accuracy in either case. 

In general, additional experimentation and research is needed to find other ancillary datasets 
that can more effectively discriminate between the five land-use cases. 

  
Figure 12: Softmax Regression classification image using spectral bands only 

Table 1: Confusion matrix from Softmax Regression classification using spectral bands only 

Pr
ed

ic
te

d 

Truth 
 Nonforested 

Wetland 
Rangeland Forest Grass/Pasture Cropland 

Nonforested 
Wetland 419 20 5 115 134 

Rangeland 186 2689 136 342 1459 

Forest 239 567 3161 8 1712 

Grass/Pasture 48 391 12 4058 2634 

Cropland 12 10 3 69 10674 
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Table 2: Accuracy metrics from Softmax Regression classification using spectral bands only 

 Nonforested 
Wetland 

Rangeland Forest Grass/Pasture Cropland 

Error of 
commission 0.395 0.441 0.444 0.432 0.009 

Error of 
omission 0.537 0.269 0.047 0.116 0.357 

F1 value 0.525 0.634 0.702 0.692 0.780 

Precision 0.605 0.559 0.556 0.569 0.991 

Producer 
accuracy  0.463 0.731 0.953 0.884 0.643 

Recall  0.463 0.731 0.953 0.884 0.643 

User 
accuracy  0.605 0.559 0.556 0.568 0.991 

 

Overall accuracy 0.722 Kappa coefficient 0.606 

     
Figure 13: Softmax Regression classification image using spectral bands + texture. 
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Table 3: Confusion matrix from Softmax Regression classification using spectral bands + texture 
Pr

ed
ic

te
d 

Truth 
 Nonforested 

Wetland 
Rangeland Forest Grass/Pasture Cropland 

Nonforested 
Wetland 321 15 7 113 196 

Rangeland 176 2864 204 492 1424 

Forest 214 412 2872 4 1708 

Grass/Pasture 22 352 13 3903 2595 

Cropland 3 3 2 62 9722 

Table 4: Accuracy metrics from Softmax Regression classification using spectral bands + texture 

 Nonforested 
Wetland 

Rangeland Forest Grass/Pasture Cropland 

Error of 
commission 0.508 0.445 0.449 0.433 0.007 

Error of 
omission 0.564 0.214 0.073 0.147 0.379 

F1 value 0.463 0.650 0.691 0.681 0.764 

Precision 0.492 0.555 0.551 0.567 0.993 

Producer 
accuracy  0.436 0.786 0.927 0.853 0.621 

Recall  0.436 0.786 0.927 0.853 0.621 

User 
accuracy  0.492 0.555 0.551 0.567 0.993 

 

Overall accuracy 0.711 Kappa coefficient 0.594 
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Figure 14: SVM classification image using spectral bands only 

Table 5: Confusion matrix from SVM classification using spectral bands only 

Pr
ed

ic
te

d 

Truth 
 Nonforested 

Wetland 
Rangeland Forest Grass/Pasture Cropland 

Nonforested 
Wetland 669 20 11 12 2 

Rangeland 100 3078 115 271 343 

Forest 10 106 3195 1 0 

Grass/Pasture 57 227 15 3639 870 

Cropland 56 159 43 613 15491 
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Table 6: Accuracy metrics from SVM classification using spectral bands only 

 Nonforested 
Wetland 

Rangeland Forest Grass/Pasture Cropland 

Error of 
commission 0.063 0.212 0.035 0.243 0.053 

Error of 
omission 0.250 0.143 0.054 0.198 0.073 

F1 value 0.833 0.821 0.956 0.779 0.937 

Precision 0.937 0.788 0.965 0.757 0.947 

Producer 
accuracy  0.750 0.857 0.946 0.802 0.927 

Recall  0.750 0.857 0.946 0.802 0.927 

User 
accuracy  0.937 0.788 0.965 0.757 0.947 

 

Overall accuracy 0.896 Kappa coefficient 0.832 

 
Figure 15: SVM classification image using spectral bands + texture 
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Table 7: Confusion matrix from Softmax Regression classification using spectral bands + texture 
Pr

ed
ic

te
d 

Truth 
 Nonforested 

Wetland 
Rangeland Forest Grass/Pasture Cropland 

Nonforested 
Wetland 621 23 21 14 0 

Rangeland 113 2991 111 246 233 

Forest 14 133 2939 2 1 

Grass/Pasture 50 254 12 3554 907 

Cropland 58 154 13 597 14638 

Table 8: Accuracy metrics from Softmax Regression classification using spectral bands + texture 

 Nonforested 
Wetland 

Rangeland Forest Grass/Pasture Cropland 

Error of 
commission 0.085 0.190 0.049 0.256 0.053 

Error of 
omission 0.275 0.159 0.051 0.195 0.072 

F1 value 0.809 0.825 0.950 0.773 0.937 

Precision 0.915 0.810 0.951 0.744 0.947 

Producer 
accuracy  0.725 0.841 0.949 0.805 0.928 

Recall  0.725 0.841 0.949 0.805 0.928 

User 
accuracy  0.915 0.810 0.951 0.744 0.947 

 

Overall accuracy 0.893 Kappa coefficient 0.829 

4 Conclusions 

This study has demonstrated how complex image classification workflows can be 
represented and built as visual models, using a specific case study for illustration. Model 
nodes can be easily interchanged to accommodate different trainers and classifiers. Unique 
metadata fields and properties can be extracted and used as input to multiple nodes. Models 
can save processing results to disk or to the cloud, and they can include steps to view the 
classification results. This facilitates the comparison of different classifiers on the same 
dataset. Model files can also be shared among colleagues or incorporated into existing 
models.  

The models used in this study could be further extended as follows: 
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• Experiment with additional feature layers to improve classification accuracy, including 
height, spectral indices and other co-occurrence texture measures. 

• Compare classification results from other supervised methods, such as Maximum 
Likelihood, Mahalanobis Distance and Minimum Distance, that do not require 
training.  

• Run SVM classification on a time-series of images, as suggested by Rujoiu-Mare et al. 
(2017). This has the potential to improve the accuracy of the classification. 

• Create and train the Softmax Regression and SVM classifiers on a reference dataset 
using spectral and spatial information, then apply them to similar data in different 
geographic areas (Wolfe et al., 2017). 

• Publish the models as single tasks that can be embedded within other, larger, models. 
• Deploy the models as tools that can be embedded within ArcGIS® software on the 

desktop, in the cloud or online. 
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