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Abstract 
With the advent of wearable GNSS devices and activity trackers, new opportunities for 
automatic travel-mode detection arise. Although physiological measures such as heart 
rates carry a high potential for travel-mode detection, little research has been done that 
exploits this data. This paper presents a rule-based method for the detection of the travel 
modes walk, bike, bus, train and car, based on the combination of GNSS and heart-rate 
data from off-the-shelf fitness watches. The aim of this research is to minimize the input 
variables and reference data for mode detection. In the case study, the proposed 
workflow performed very well and substantially reduced the confusion between active 
and motorized travel modes compared to a workflow that did not take heart rate into 
consideration, although the differentiation among motorized travel modes could be further 
enhanced with additional data. Combining GNSS data with physiological variables such 
as heart rate allows a clear reduction in the amount of reference data and processing 
effort required for mode detection.  
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1 Introduction  

Understanding people’s everyday mobility with respect to different modes of transport is 
crucial for fields such as transport modelling and planning. While traditional methods focus 
on questionnaires and mobility diaries, in recent decades more studies have made use of 
technological approaches and analysed volunteers’ everyday-mobility movement data, 
recorded using wearable GNSS (Global Navigation Satellite System) loggers and 
accelerometers (Nitsche, Widhalm, Breuss, Brändle & Maurer, 2014; James et al. 2016; Siła-
Nowicka et al., 2016). Movement data from GNSS loggers consist of a temporal sequence of 
recorded point locations, which we refer to as records. One trajectory, that is one countable 
journey from start to end point, can consist of multiple modes, for example going by bike to 
the station, then going a few stops by train, and afterwards walking from the station to the 
final destination. These intermodal trips are of great interest to mobility research. Travel-
mode detection (TMD) aims to divide trajectories into single-mode segments and identify 
the respective modes.  
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In addition to GNSS data, the spread of wearable location-aware activity trackers enables 
inexpensive collection of heart rate and other physiological parameters. Heart rates exhibit a 
relatively clear relationship, across different types of physical activity of moderate to high 
intensity, with the intensity of the activity (Brage et al., 2007). The potential of heart rates for 
travel-mode detection, especially for the distinction between active and motorized 
movement, is thus obvious. Although used for related purposes (e.g. Costa et al., 2015), to 
the best of our knowledge no studies have successfully used the combination of GNSS and 
heart-rate data for travel-mode detection. 

In this paper, we propose a rule-based method for travel-mode detection based on data from 
off-the-shelf fitness watches. Our method makes use of the additional category of 
physiological indicators (heart rate) and relies exclusively on GNSS and heart-rate data. This 
could help distinguish active and motorized travel modes more efficiently, and substantially 
reduce the number of input variables and reference data required for travel-mode detection. 

The remainder of this paper is structured as follows: Section 2 gives an overview on related 
work; Section 3 describes the proposed method for travel-mode detection; Section 4 
presents a case study where the method was successfully applied. In Section 5, the results are 
summarized and discussed along with potential starting points for further research.  

2 Related Work 

Existing methods on travel-mode detection often rely on map-matching, where trajectories 
are matched to a reference graph in order to identify the road that a vehicle or person was 
moving along (Quddus, Ochieng & Noland, 2007). The underlying part of the road graph 
can then give information about the travel mode – e.g. a vehicle travelling along a bus lane is 
most probably a bus. One of the drawbacks of map-matching is its dependence on a highly 
accurate road graph. In addition, map-matching is particularly difficult for bike trips, e.g. due 
to narrow bike lanes next to roads and the variability of cyclists’ behaviour. 

While most previous studies on travel-mode detection use machine learning or probabilistic 
methods, a range of researchers also use rule-based methods (e.g. Bohte & Maat, 2009; 
Gong, Chen, Bialostozky & Lawson, 2012; Stopher et al., 2008). Gong, Morikawa, 
Yamamoto & Sato (2014) identify three categories of input variables to determine travel 
modes: GNSS-related indicators such as speed and acceleration; GIS indicators such as road 
network, rail lines or bus stops; the information provided by study participants. Zong et al. 
(2017) provide a table of characteristic parameter values which can serve as a reference for 
ruleset development.  

Physiological indicators such as heart rate represent an additional category of indicators for 
travel-mode detection. Existing research on heart rates in different travel modes mostly 
focuses on the time spent moving in a particular mode in order to quantify health impacts of 
commuting (Ogilvie et al., 2016; Costa et al., 2015). In a study that went beyond travel-mode 
detection, Pärkkä et al. (2006) used over 20 different sensors, including GPS and 
physiological sensors, for the classification of everyday activities. In their study setup, heart 
rates did not represent a helpful indicator for activity recognition due to high inter-individual 
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differences. It should be noted that the relationship between heart rate and physical activity 
intensity varies significantly between individuals, depending on factors such as gender, age 
and fitness. For a meaningful comparison of heart rates, it is thus necessary to calibrate 
them. As Brage et al. (2007) and others have shown, the simple approach of using heart rates 
above resting level while adjusting for gender can already make heart rates more comparable. 
For instance, Costa et al. (2015) calibrated their heart-rate data based on sleeping heart rates, 
age and gender. However, in anonymized data this individual-based information is not 
available and an alternative calibration approach is required. Our approach addresses these 
issues as it leverages anonymized heart-rate data using an inexpensive calibration, and thus 
helps to overcome the need for prior map-matching. 

3 Methods 

The method proposed here relies on GNSS and heart-rate data from off-the-shelf fitness 
watches, with a regular high sampling interval (i.e. a few seconds) for both GNSS location 
and heart rate. This approach allows the number of input variables to be minimized, and 
dispenses with the need for prior map-matching as well as other indicators, such as 
acceleration and heading. Heart rates are made comparable using a calibration based on an 
approximated resting heart rate, thus making the method suitable for anonymized data. 

After data preprocessing (Section below), trajectories are segmented in a two-stage procedure 
(Section ‘Two-stage Trajectory Segmentation’). The travel modes are classified following a 
specified hierarchy, based on iterative ruleset adjustment (Section ‘Rule-based Travel-Mode 
Detection – TMD’ + see Figure 1). The applicability of the method is proved in Section 
‘Case Study’. 

 Figure 1: Workflow  
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Data Preprocessing 

Fitness watches commonly allow the recording of individual trajectories, where the user 
actively has to start and stop the recording. Leveraging the regular sampling interval, the 
speed between each position recorded can be calculated using the distance from the previous 
record. As off-the-shelf fitness watches do not usually provide GNSS accuracy indicators 
such as dilution of precision (DOP), records with low locational accuracy cannot be filtered 
in advance and become evident as zero or unrealistically high speed values. As speed values 
are a major indicator for trajectory segmentation and travel-mode detection in our proposed 
method, it is necessary to systematically filter out speed outliers and correct respective speed 
values. More details on the correction of speed values as implemented in the case study are 
provided in Section 4.2. 

Two-stage Trajectory Segmentation 

To divide trajectories into single-mode segments, this approach uses a two-stage 
segmentation process inspired by Zhang, Dalyot, Eggert & Sester (2011). First, trajectories 
are segmented according to stops, while in the second stage trajectories are divided into 
single-mode segments. 

Stop-Point Detection and Segmentation 

Assuming that mode changes can only occur at stop points, these must first be identified. 
Stop points occur when a person’s or a vehicle’s movement comes to a halt, for instance in 
stop-and-go traffic, at bus stops or at traffic lights. To account for measurement errors, the 
average speed of two consecutive GNSS records is used. As suggested by Gong et al. (2012), 
a threshold of 1.6 km/h can be used for the initial detection. In the second step, records 
below 3.6 km/h within five metres of the initial stop points are also classified as stop points. 
Trajectories are then divided into segments based on stop points, which we refer to as stop-
point segments. Enabled by the high sampling frequency, this method offers a fine-grained 
detection of stop points and stop-point segments. To avoid a high number of very short, 
irrelevant segments, stop-point segments below a specified number of records can also be 
declared stop points. The duration, length and speed-related indicators are then derived from 
each stop-point segment. 

Mode-Change Detection and Identification of Single-Mode Segments 

Up to this point, trajectories are divided into segments based on stops, but there is no 
information regarding where the travel mode was changed. To determine at which of the 
stop points a mode change occurred, we make use of the unique characteristics of walk 
segments. As previous studies have shown (Chung and Shalaby, 2005; Tsui and Shalaby, 
2006; Witayangkurn et al., 2013), on a fine scale the change of travel mode can be assumed 
always to be accompanied by a walk segment. Due to the fine-grained segmentation enabled 
by the high sampling rate, even if, for example, a person changes from bike to bus, there is a 
short walk segment in between, which helps to detect the mode change. 

Walk segments can be easily detected due to their consistently low speeds (see Section ‘Input 
variables’ for details on speed-related variables). To avoid undetected mode changes, we 
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propose not to use a minimum duration for walk segments. As suggested by Witayangkurn et 
al. (2013), mode-change points are detected by searching for the following patterns within 
consecutive segments: 

• non-walk – stop – walk 
• walk – stop – non-walk  

Whenever a stop-point segment that has not been classified as walk (a non-walk segment) is 
followed by a walk segment, the stop point in between is declared a mode-change point. 
These mode-change points are the basis for the identification of single-mode segments – i.e. 
the second, higher-level segmentation stage. Single-mode segments are subsets of trajectories 
with distinct travel modes. They occur between two mode-change points and comprise one 
or more stop-point segments, as illustrated in Figure 2. Duration, length and speed-related 
indicators as well as aggregated heart rates are derived for single-mode segments as input 
variables for travel-mode detection, as described in the following sections. 

 
Figure 2: Schematic illustration of the two segmentation levels 

Rule-based Travel-Mode Detection (TMD) 

The proposed approach relies solely on the combination of speed-related variables, heart 
rates, and variables derived from the two-stage segmentation. The input variables, the 
iterative ruleset development and the classification procedure are described in more detail 
below. 

Input variables 

Speed-related variables 
A basic but important variable for travel-mode detection is speed. As suggested by Stopher 
et al. (2008), our method uses the 85th percentile of speed per segment to identify a mode, as 
percentiles help to remove outliers caused by inaccurate GNSS measurements. Additionally, 
the standard deviation of speed within a single-mode segment is used, as it is expected to be 
considerably higher for motorized modes than for active modes. 
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Variables derived from two-stage segmentation 
Information about stop patterns can be derived from the two segmentation stages and is 
especially valuable for the distinction of motorized transport modes. An overview on 
segment-derived variables is provided in Table 1. In general, these segmentation-based 
variables allow a fine tuning of rulesets to regional characteristics, such as the distance 
between bus stops. However, in turn this limits the transferability of the rulesets. 

Heart rate variables 
Heart rate is a well-suited indicator for the intensity of physical activities, but due to inter-
individual differences comparing raw heart rates may not be meaningful. In anonymized 
data, detailed information on gender, age and measured resting heart rates for individual 
calibration is not available. As an approximated value for the resting heart rate, we propose 
to use the 0.1st percentile of the heart rate per person. The raw heart-rate values in beats per 
minute are converted into percentages over the resting heart rate of the person concerned. 
Then for each single-mode segment, the 85th percentile of percentages over resting heart 
rate is derived. 

Table 1: Input variables for Travel-Mode Detection based on single-mode segments 

Speed variables Segment-derived variables Heart rate variables 

85th percentile of speed per 
single-mode segment 

 
Standard deviation of speed 
per single-mode segment 

Median stop-point segment 
duration* 
 
Median stop-point segment 
length* 
 
Count of stop points* 
 
Median stop-point duration* 
 
Single-mode segment length / 
count of stop points  
 
* calculated per single-mode 
segment 

85th percentile of percentage 
over resting pulse per single-
mode segment 

 
 
 

 
 
 

 
 
 

Iterative ruleset development 

Based on the input variables discussed above, each travel mode is described by one or 
several rules. The specific rule thresholds have to be calibrated based on the relevant dataset 
and adjusted in an iterative process of frequent plausibility checks. When visualizing random 
trajectories in a GIS environment, an expert familiar with the study area can easily identify 
the travel mode being undertaken, for example based on the routes taken. These visual 
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checks and the adjustment of rulesets form an iterative process to improve the classification 
stepwise (see Figure 1). 

It may occur that different types within one mode can be distinguished. For example, 
regional and city buses may have different speed and stop characteristics. In this case, it is 
preferable to differentiate these types in separate rulesets rather than to set generous 
thresholds which fit both types. Depending on the specific application, the different 
variables may be more or less conclusive for different travel modes. We propose using 
specific value ranges for the 85th speed percentiles and speed standard deviations for every 
mode. Segment-derived variables such as stop patterns are used for the distinction of 
motorized modes. Heart rates are expected to be especially valuable for differentiating 
between active and motorized modes. For active modes, we propose setting a threshold for 
the minimum heart rate in percentage over resting heart rate. However, we do not 
recommend determining a maximum value for heart rates in motorized modes, as for these 
modes speed is the more conclusive indicator.  

Hierarchical classification procedure 

Depending on the characteristics of the dataset at hand, the classification of some travel 
modes may perform better than others. Based on visual inspections, the expert who 
performs the classification can judge the reliability of the classification of the different modes 
and introduce a classification hierarchy by ranking the modes accordingly. If a segment 
matches several rulesets, the travel mode with the higher rank in the hierarchy is favoured 
and assigned. If a segment does not comply with any of the rulesets, it will remain 
unclassified. 

Heart rates are an important additional indicator for the detection of active modes. This is 
expected to increase the reliability of the classification of active modes, giving them a higher 
rank in the classification hierarchy. Due to the hierarchy of modes, the classifications of 
different modes are interdependent. Thus heart rate improves the classification not only of 
active modes, but also of motorized ones. 

4 Case Study 

This section describes a case study in which the proposed method was successfully applied in 
the region of Salzburg, Austria. To assess the added value of the heart-rate data, the 
classification was conducted with and without heart rates. The analysis was performed in a 
PostgreSQL/PostGIS database using Structured Query Language (SQL). For visual 
inspection and plausibility checks, we used the software packages QGIS and Tableau 
Desktop. Adjusting the rulesets in our SQL scripts and frequent visual checks formed an 
iterative process. The description of specific rulesets and value ranges as defined in the case 
study is provided in the Supplementary Material section. However, it should be noted that 
rulesets and parameterization may not be transferable and that they always need to be 
calibrated based on the dataset at hand.  
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Data 

The data used for this case study was collected in the context of the GISMO research project 
(Geographical Information Support for Healthy Mobility) in Salzburg, Austria, led by the 
Department of Geoinformatics, Z_GIS, University of Salzburg. One of the aims of the 
project is to investigate the health effects of switching from car to active commuting, 
stimulated by measures in the context of corporate mobility management. Within the 
GISMO project, 70 subjects from a randomized, clinical intervention study are required to 
document their commuting trips in a travel diary and wear fitness watches (Polar ® M200) 
for 2 weeks at the beginning and end of the one-year intervention period. The raw data from 
the first two weeks comprised 2.17 million location and heart rate records, belonging to 
1,007 trajectories recorded at a regular sampling rate of one second. 

Data Preprocessing 

First, we removed (a) trajectories without location information; (b) trajectories that were 
short in terms of either distance or time; (c) records at the beginning or end of a trajectory 
without any location information; (d) trajectories without any significant movement. After 
data cleansing, about 74% of the original data records were used for further analysis – that is, 
about 1.6 million records for 810 trajectories. The speed for each record was calculated using 
the distance from the previous record. For the detection of speed outliers, we used variables 
such as the speed z-score per trajectory, and adjusted the thresholds based on frequent 
checks with the dataset. The outliers identified were interpolated using the average of the 3 
preceding and 3 following records, while excluding the outliers themselves. For more details 
on speed-correction for outliers, see the Supplementary Material. Even though the speed 
values were interpolated in less than 2% of all records, speed diagrams showed that the 
quality of the speed values was increased substantially. It should be noted that the 
interpolation only affects the speed values; location inaccuracies are not corrected. 

Segmentation and travel-mode detection 

The two stages of segmentation were performed, as described in Section ‘Two-stage 
Trajectory Segmentation‘. On average, a trajectory had 1.9 change points, which seems 
plausible assuming that only walk segments do not have any mode-change points. Details on 
the detection of each mode are outlined below. 

Motorized travel modes 

As characteristics such as the speed ranges of motorized modes differ in urban and rural 
contexts, subcategories were introduced. While car segments within the city boundaries were 
characterized by lower speed thresholds, those from highways or motorways were detected 
using a ruleset with higher speed thresholds. For cars, the stop-point duration was of special 
interest, as it was found that cars tended to stop for a shorter time than buses or trains. 

The different characteristics between city and regional buses also required the development 
of two different rulesets, while the train mode was split into three categories: local train, 
regional train and high-speed train. For the bus and train rulesets, besides speed variables, 
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segment-derived variables such as duration and length between stop points, total number of 
stop points and duration of stop points were especially useful. 

Active travel modes 

Heart rates are a valuable additional indicator to prevent confusion of active and motorized 
modes. But as the walk mode clearly differs from other modes due to its considerably lower 
speeds, it is not necessary to include heart rates for walk-mode detection. Therefore, heart 
rates were only included in the bike rulesets, in addition to value ranges for the 85th speed 
percentile. For bike mode, we distinguished two subcategories: slower cycling with lower 
heart rates, and faster cycling with higher heart rates. 

The reliability hierarchy of the modes (from low to high reliability) was found to be: car – 
train – bus – bike – walk. 

The travel-mode detection was performed without and with heart rates, in order to 
determine the added-value of considering heart rates. Figure 3 provides an example of 
different classifications for the two versions. In this example, a person walks from the start 
point to a bus stop, takes the bus to the station, and then changes to the train. In the 
classification without heart rates, the bus segment is falsely classified as bike. In the 
classification with heart rates, the ruleset for bike mode includes a minimum threshold for 
bike classification of 57% over resting heart rate. With 30% over the resting level, the 
segment does not meet this threshold. As a consequence, it is classified correctly as bus. 

 
Figure 3: Example of a trajectory with bus segment falsely classified as bike in the TMD without heart 
rates (left), and correctly classified as bus segment in the TMD with heart rates (right) 

speed* - 85th percentile of speed  
percentage over rhr* - 85th percentile of percentage over resting heart rate  
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Validation 

The application of the proposed method was validated with ground truth data from study 
participants’ travel diaries. Out of 2,209 classified segments, the validation was performed for 
409 segments where complete ground truth was available. As, in the diaries, bus and train 
modes were not reported individually but subsumed as public transport, these modes were 
also taken together for validation. The validation results for the method both without and 
with heart rates are provided in Tables 2 and 3. 

The Producer’s accuracy (Pa) represents the share of correctly identified segments. The very 
high rate of 98.3% correctly classified bike segments even without heart rates is striking. But 
this can be explained by an overclassification due to the higher weight that was given to the 
bike mode in the hierarchical classification process: if a segment matches several modes, e.g. 
bike and bus, it is always classified as bike. While this means that almost all bike segments are 
correctly identified as bike (high Pa), it also leads to a high number of segments that are 
classified as bike while actually being motorized modes (lower User’s accuracy (Ua) of 87.4% 
for bike). This error can be reduced substantially by including heart rates in the classification. 
The user’s accuracy for bike mode is improved by 10.7 percentage points (pp), from 87.4% 
to 98.1%. Likewise the Pas for motorized modes are substantially improved when heart rates 
are included, by 11.1 pp for car mode, and 17.7 pp for public transport; for the bike and walk 
Pas and the total accuracy (Ta), the heart rate does not make a big difference. In other words, 
the number of falsely classified bike segments is clearly reduced, while the number of 
correctly classified motorized mode segments is clearly increased. In summary, heart rates 
proved to be very valuable for differentiating motorized and active modes. 

Table 2: Confusion matrix for classified segments without consideration of heart rates 
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Table 3: Confusion matrix and differences in accuracies for classified segments with consideration of 
heart-rates 

 

In those segments which were correctly classified, heart rate percentages over resting level 
for walk, bike and motorized modes vary significantly (see Figure 4). The clearly higher 
heart-rate levels for bike mode are striking and confirm that a minimum heart-rate threshold 
for bike mode is highly useful. In contrast, walk mode exhibits a higher dispersion towards 
lower heart-rate levels, which confirms that a threshold for heart rate for walk mode is not 
advisable.  

  
Figure 4: Boxplots of heart-rate percentages over resting level for walk, bike and motorized modes in 
the correctly classified segments 
* based on 85 percentile heart rate per single-mode segment 
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5 Results and Discussion 

This paper presents a rule-based method for travel-mode detection for data from off-the-
shelf fitness watches based exclusively on speed, heart rate and derived features, making 
equipment requirements minimal. Heart rates are calibrated based on an approximated 
resting pulse per person, which makes the method suitable for anonymized data without 
individual-based information on gender, age or fitness levels. In our case study, the method 
performed very well and substantially improved the differentiation between active and 
motorized modes compared to detection that did not consider heart rates. Walk segments 
could be classified very accurately based on their low speed. But heart rates proved to be a 
highly useful additional indicator to reliably distinguish bike from motorized modes. 

We showed that heart rates in combination with GNSS data are very useful for travel-mode 
detection. This combination allows a considerable reduction in the number of input 
variables, and a substantial scaling-down of the processing effort, especially as prior map-
matching can be omitted. 

One of the limitations of the proposed method is its need for laborious calibration to the 
dataset of interest. Once calibrated, the rulesets for motorized modes in particular, which 
depend on stop patterns, are tailored to regional characteristics and therefore cannot be 
transferred to other datasets. In the future, the differentiation among motorized modes as 
well as the transferability of the method could be further improved by including additional 
variables such as acceleration, heading and GIS data. The method was designed for detection 
of the travel modes walk, bike, bus, train and car, but further travel modes could also be 
considered. 

The growing amount of data from location-aware activity trackers is a valuable data source 
for mobility research, particularly for the detection of intermodal trips. Our method makes 
use of these new data sources and takes into account the potential of physiological indicators 
for automatic travel-mode detection. 

Supplementary Material 

A detailed description of the rulesets and value ranges as used in the case study is provided 
at: https://petrastutz.wordpress.com/2018/06/18/workflow-for-travel-mode-detection/ 
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