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Editorial 
 

Digital Earth for Sustainable Societies. 

 

Digital Earth is a global initiative aimed at harnessing the world’s data and information 
resources to describe and digitally represent our planet, and to monitor, measure and forecast 
natural and human activities on earth. Digital Earth is the name referring to a concept by former 
US vice president Al Gore, describing a virtual representation of the Earth connected to the 
world's digital knowledge. In his remarkable 1998 speech, Gore described a digital future where 
children - indeed all the world's citizens – could interact with a computer-generated three-
dimensional spinning virtual globe and access vast amounts of scientific and cultural 
information to help them understand the Earth and human activities.  

We have come a long way since 1998, mostly along an evolutionary trajectory. More recently, 
though, we experienced serious disruption potentially generating a strong impulse accelerating 
digital transformation in general. Making the best possible use of this disruptive impulse, 
‘surfing’ it towards a broader acceptance of integrating real with virtual worlds for the benefit 
of humankind and its sustainable livelihoods is the challenge, and the opportunity we are facing 
right now.  

The University of Salzburg and its Department of Geoinformatics – Z_GIS host the 12th 
International Symposium on Digital Earth (ISDE12) from 06-08 July 2021. The Covid-19 
pandemic required various changes to the organizers. In fact, the Covid-19 pandemic fostered 
the digital transition and made ‘dashboards’ popular to mass internet users. Surely, the 
underlying methods and technologies – broadly speaking: Earth Observation, 
GIS/Geoinformatics, positioning (GNSS) and location services – had come a long way, from 
technical wizardry to the ubiquitous use by the masses.  

It is now safe to say – almost 23 years after Al Gore’s visionary speech - that the creation of the 
digital society is on its way through technological development, theoretical and empirical 
scientific research and increasingly inclusive and seamless technology.  

Talking about Digital Earth: do we consider this simply a new name for established concepts 
around Geoinformatics? We aim far beyond that. Anything starting with ‘Geo’ tends to be put 
into a little box together with disciplines with a long and different track record. Digital 
transformation of our societies, economies and all the processes driving them requires a much 
broader approach. It requires location, though, to connect all the relevant elements and actors. 
Digital Earth therefore establishes fundamental geospatial concepts all across, serving as a 
strong transversal approach to future-proofing an information-driven world. 

ISDE12 therefore links a broad range of research areas. We are pleased to present work by 
researchers who actively contribute to the creation of the Digital Earth society. Next to classic 
research papers we created a category “Best practice papers for Sustainable Development 
Goals” and can now publish the 28 best papers that underwent a rigorous blind review.  

The symposium hosted prominent keynote speakers who addressed the main conference topic 
and encouraged further discussion. Ryosuke Shibasaki, Martin Visbeck, Huadong Guo, Martin 



Raubal, Karl Steinitz, Nadine Alameh, Barbara Ryan, Lawrie Jordan, Yana Gevorgyan in the 
plenary sessions and another key note speakers in the sub-events shared their insights into new 
developments in the field, and by doing so inspiring new research and cooperative initiatives. 

We truly thank our partner organisations who significantly helped to make this symposium 
possible, particularly the Austrian Academy of Sciences – ÖAW, the State of Salzburg with its 
ITG – Innovations- und Technologietransfer GmbH and all industry and media partners! 

Neither the symposium nor this publication would have been possible without the help of many 
people working in the background. We are deeply indebted to all those who contributed to the 
conference and supported us as editors through their work, effort, time and, above all, 
patience. We would like to mention the authors who underwent a rigorous review process 
resulting in high quality publications. We particularly thank Julia Wegmayr (University of 
Salzburg) who provided invaluable assistance with her competent handling of general 
conference affairs (from contribution registration to public relations). 

We do hope that the symposium gives a wide picture of current developments in Digital Earth, 
that the ideas presented here encourage further research, and thus foster development of 
powerful methods and tools as well as effective strategies for sustainable societies. 

Josef Strobl, Thomas Blaschke and Julia Wegmayr 
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Abstract 

More than half of the U.S. dams are privately owned and experienced the overgrowth of 

trees. There is a need to improve dam inspection and maintenance in a timely manner. Small 

Unmanned Aircraft Systems (sUAS) have been increasingly utilized for near-surface 

landscape mapping and reconnaissance. This study tests an sUAS protocol of closed-

canopy tree survey on earthen dams. A DJI Matrice 100 flight was launched on September 

22, 2020. The orthoimage and 3D point cloud are extracted, and the canopy height model 

is built. Treetops and crowns are delineated using an integrated watershed segmentation 

and image segmentation procedure. The results include a tree survey inventory that 

contains the locations, tree heights and crowns of 284 trees growing on the downslope of 

the dam. Given the flight flexibility and fine 3D details acquired from inexpensive drones, 

sUAS has a high potential for assessing tree overgrowth toward remediation solutions of 

earthen dams. 

Keywords: sUAS remote sensing, watershed segmentation, 3D tree inventory, earth 

observation  

1 Introduction  

Dams provide beneficial functions such as flood control in our living environment. Of the 
90,000 dams listed in the U.S. National Inventory of Dams, 65% are privately owned earthen 
dams, ageing and lacking maintenance (NID 2018), raising serious concerns about their 
hydraulic stability against extreme weather events. Trees growing on dams, for example, have 
been recognized as an attributor to dam erosion. Tree roots loosen the soil mass and create 
root cavities that may lead to seepage failure (FEMA 2005). Remediation varies depending on 
the size, health, and location of trees growing on the dam. Knowing the location and structural 
information of trees helps to understand the stability and potential remediation of a dam. 
However, earthen dams are generally small in size. Conventional remote sensing, even the 
high-resolution satellite imagery freely accessible via web platforms such as Google Earth, 
could not reach the resolution needed for a detailed tree survey on these dams.  

Defined as Personal Remote Sensing (Jensen 2017), small Unmanned Aircraft Systems (sUAS), or 
drones, have been increasingly utilized for timely near-surface observations. Recent 
technological advancements have equipped drones with an improved capacity of payload, 
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sensors and flight time to accomplish various field missions. With highly overlapped images 
taken from a drone flying above the canopy, the 3D landscape can be obtained (Dong et al. 
2020). It makes the sUAS imaging superior to the 2D satellite/airborne remote sensing. The 
low-cost sUAS may also outcompete LiDAR on affordability, accessibility and operational 
efficiency in the vertical dimension.  

This study aims to test the feasibility of sUAS for 3D canopy reconstruction and tree survey 
on earthen dams experiencing an overgrowth of trees. It indicates the potential of sUAS 
remote sensing in dam inspection. With the rapid development of sUAS technology, it may be 
operationally deployed for improved observations of land properties to assist societal decision 
making.   

2 Materials and Methods  

2.1  Study site and data sets 

An earthen dam, the Sweet Bay Pond Dam in downtown Columbia, South Carolina, is selected 
as the study site. It is 180 meters long and is a state-regulated C1 dam, i.e., with high hazard 
potentials in loss of life or severe damage to infrastructure (FEMA 2005). As shown in the 
fall-season picture (Fig.1), dense trees grow into closed-canopy woodland on the downslope 
of the dam. Along with tree overgrowth, signs of seepage erosion on the downslope were 
spotted during our field survey. The most common tree is black gum (Nyssa sylvatica) that is 
leaf-off and shows a light grey tone in the figure. Another dominant tree is tulip poplar 
(Liriodendron tulipifera), which is still green but starts to show its fall colour. Loblolly pine (Pinus 
taeda) remains dark green. 

 

Figure 1: An oblique view of Sweet Bay Pond Dam in Columbia, SC. Photo was taken with a DJI Mavic 

Pro on October 26, 2019.  
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The sUAS data was collected on September 22, 2020, using DJI Matrice 100 (M100) assembled 
with a 5-band MicaSense RedEdge-M sensor: blue, green, red, red edge, and near-infrared 
(NIR). The flight was made around noon on a sunny day at a flight height of 90m above 
ground. The images were taken at an 85% endlap and 80% sidelap. Ground control points 
(GCPs) was collected with a survey-grade GNSS Base+Rover unit. Forty-two trees were 
surveyed, and tree heights were measured. Also used in the study is the U.S. Geological Survey 
(USGS) LiDAR point cloud product collected in 2010 at 1.4m footprint and 18cm vertical 
accuracy.  

2.2  Approaches  

The sUAS images are calibrated in the Pix4DMapper package. Relying on the Structure from 
Motion (SfM) technique (Westoby et al. 2012), the 3D perception of the landscape is resolved, 
enabling the extraction of orthoimage and point cloud. The orthoimage is resampled to 5cm 
pixel size. With the 3D mass points from the point cloud, the Digital Surface Model (DSM) is 
created that represents the top elevation above ground. The Digital Terrain Model (DTM) is 
the elevation of the bare earth surface. Since sUAS point cloud is based on photogrammetry, 
it only contains a single z value at a given (x,y) location. Therefore, the DTM is not available 
in vegetated areas where the camera cannot view the ground. 

Here we propose to integrate the airborne LiDAR with sUAS point clouds to create the DTM. 
LiDAR allows multiple returns at a single location owning to the strong penetration capacity 
of laser signals. Ground returns in LiDAR product are extracted, which fairly represent the 
terrain on the bare earth. For sUAS point cloud, point returns on open ground (no shrubs or 
forbs) such as dam crest are also extracted. Both sources of ground returns are merged to build 
the DTM product. Our previous study compared their ground returns on a bare dam, 
confirming that the sUAS-extracted elevation is comparable to LiDAR elevation (Morgan et 
al. 2020). Therefore, geo-matching of the two sources is not performed.  

The DTM and DSM raster layers are resampled to 20cm cell size. The Canopy Height Model 
(CHM) is simply calculated as (DSM – DTM), which represents the height of all cells above 
ground (Mielcarek et al. 2018). Only pixels with CHM >10m are considered as tree canopy. 
The topmost point of an individual tree (treetop) in the CHM is identified using a Variable-
sized Window Filter (Popescu and Wynne 2004). It identifies the local maxima with a height-
dependent crown searching window. A circular searching window is used in this study, and 
the extracted local maxima represent treetops of individual trees.  

Two approaches are adopted to extract tree crowns. A Marker-Controlled Watershed 
Segmentation approach (Meyer and Beucher 1990) is first applied. Assuming a tree crown 
follows the mathematical morphology of an inversed watershed, the approach divides the 
CHM into multiple segments or tree crowns. This procedure works fine in delineating 
standalone trees against the ground. However, poor performance has been commonly 
observed in closed-canopy when tree crowns overlap each other. The dam in this study has an 
overgrowth of trees, which often grow in closed canopy at a similar height. The CHM-based 
watershed segmentation could not effectively delineate these overlaid crowns. The orthoimage 
is then used to leverage the deficiency. The RedEdge-M image depicts the spectral variation 
of trees in the visible-NIR region. Adjacent pixels with similar spectral and textural features 
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are grouped into segments using the Mean Shift approach, a nonparametric classifier to 
delineate clusters with complex shapes from multimodal feature space (Comaniciu and Meer 
2002).  

Tree crowns are thus extracted by intersecting the watershed segments and image segments. 
The colour information on the orthoimage allows breaking large watersheds while the height-
based morphological feature breaks large image classes. Finally, the extracted tree height is 
compared with field measurements for accuracy assessment. Two commonly applied 
evaluation metrics are used: the root mean square error (RMSE) and the mean absolute error 
(MAE).   

3 Results and Discussion 

3.1  Orthoimage and point cloud  

Fig.2 displays the sUAS orthoimage overlaid with the point cloud. The flight date is in early 
fall. As shown in the orthoimage, trees are still green but start to show signs of fall colour (e.g. 
the darker tone of black gum trees). The point cloud is visually continuous due to its highly 
dense points at cm-level spacing. An average density of 70 points/m2 reveals more structural 
details of the tree canopy than the 0.5 points/m2 USGS LiDAR product. The study site has an 
elevation range of 47.5-79.06m above sea level. Dam crest and open areas have lower elevation 
with a blueish tone. For trees in the woodland, taller ones stand out in a reddish tone. The 
large gaps in the top right of the figure represent data missing from calibration errors of sUAS 
images.  

3.2  Digital terrains and canopy height  

The sUAS point cloud on the dam crest and open areas are extracted after removing all 
points that have apparent vertical structures. The LiDAR ground returns have a much lower 
density, but there are enough ground points under the tree canopy. The integrated ground 
points from both sources are used to create the DTM. The grid size is set to 20cm to 
compensate for the two data sources. With densely distributed sUAS point cloud, canopy 
height is extracted in high details. Fig.3a demonstrates the 3D profile of a pine tree in which 
all points align to make up its crown’s shape. The treetop is easily measured at the height of 
27.66m. In the canopy height map (Fig.3b), trees grow into a closed canopy. Taller trees  



Wang et al 

9 
 

 

Figure 2: The sUAS-extracted orthoimage and point cloud. 

stand out as individual clumps in a dark green tone. Similarly, the TIN noises in the 
southwest end of the mission area reflect image calibration errors. 

3.3  Treetop and crown delineation  

The CHM allows the delineation of treetops and crowns from the continuous canopy cover. 
A treetop is a point with the local maximum of CHM that represents the topmost point of a 
tree. One tree is assumed to have one treetop point. A total of 286 crowns are extracted (Fig.4). 
A treetop point is associated with a watershed segment but not necessarily the image segment.   

 

Figure 3 Example 3D profile of a pine tree (a) and the CHM map (b). 
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Therefore, some tree crowns do not have their treetops marked. For trees with relatively 
standalone crowns, for example, those at the northwest entrance, circular-shaped tree crowns 
are identified. Inside the woodland, trees turn to grow together in a close canopy; therefore, 
tree crowns become irregularly shaped and inter-connected.  

 

Figure 4 The extracted tree crowns and treetops. 

With 27 randomly selected points on the flat dam crest, the average sUAS-extracted elevation 
is 3.59cm higher than the LiDAR-recorded elevation, indicating that the sUAS point cloud has 
decent vertical accuracies. Of the 42 field-measured trees, the sUAS-extracted tree height has 
a linear agreement with field records (r = 0.517, p<0.001). However, the sUAS results have an 
omnidirectional overestimation, with the MAE and RMSE values 6.59m and 7.37m, 
respectively.  

The overestimation of tree height may partially come from the imperfect field measurements 
using Nikon Forestry Pro. In the ideal circumstance of flat terrain and open areas, the laser 
rangefinder can reach a 1.0m accuracy. At our study site, trees grow in a dam downslope that 
is lower than the crest. Due to dense tree covers, tree height can only be measured by the 
surveyor standing at the crest. Its readings are inevitably lower when assuming a flat ground 
of the woodland. The tree base is also easily biased by a dense understory canopy. A more 
rigid field experiment will be conducted in the future for an improved validation process.  

Integrating orthoimage and point cloud enables the 3D imaging that considers both colour 
and height information in canopy reconstruction. It is superior to conventional remote sensing 
due to the much finer spatial details. We can launch flexible sUAS missions to collect data over 
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the interested area at desired dates. In this sense, sUAS serves as user-controlled remote 
sensing or “personal remote sensing” as defined in current literature. Despite these technical and 
operational advances, image calibration errors are a common drawback for sUAS missions 
over dense forests. Our M100/RedEdge-M has a net weight of 2,663g, and the mission has a 
calibration rate of 92% at a 90m flight altitude. Uncalibrated images result in data missing. 
Another challenge of the low-cost sUAS for 3D tree survey in closed-canopy is the need for 
bare earth surface because sUAS point cloud only records the elevation of the top canopy. 
Nowadays, the LiDAR data products have been popularly available, which provide a reliable 
source of ground elevation for sUAS deployment.  

Overall, this study demonstrates the high potential of sUAS in quantitative tree survey in dense 
forests. Owing to its fine spatial details, time efficiency and flexibility in data acquisition, sUAS 
remote sensing could bridge traditional remote sensing and intensive in-situ field experiments 
in monitoring our ever-changing environment. Earth observation for social well-being is an 
essential aspect of the Digital Earth information system. As the 3D imaging for dam inspection 
showcased in this study, sUAS may provide improved Earth observations for our society.  

4 Conclusion 

This study tests the feasibility of sUAS for 3D tree survey of closed-canopy woodland. With 
the reconstructed 3D canopy from sUAS orthoimage and point cloud, treetops are extracted 
using a local maxima approach. Tree crowns are delineated by an integrated approach of 
watershed segmentation and image segmentation. A tree survey inventory is established that 
includes a total of 284 trees with records of the location, height, and crown size. A comparison 
of elevation on the dam crest shows that the M100 point cloud has decent vertical accuracy 
against LiDAR (<5cm). The sUAS-extracted tree height indicates an overestimation of 6-7 
meters, although it may partially attribute to imperfect field measurements. Image calibration 
error in dense woodland remains an issue for drone deployment, which needs further 
investigation of flight configuration for more stable sUAS missions. Nevertheless, the study 
indicates that sUAS could become an efficient tool of 3D tree surveys for engineers to assess 
the impact of tree overgrowth on dam performance. With high-resolution satellite imagery 
readily available, 3D imaging from sUAS offers consumer-oriented updating of our living 
environment to assist societal decision making. 
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Abstract 

Defining spatial distribution of airborne volcanic ash in the neighbourhood of an erupting 

volcano is a synoptic scale problem, severely impacting lives and livelihoods. Robust 

algorithms are needed to model such complex phenomenon from sparse field data. This 

study investigated optimal modelling of the spatial dispersion of ash using Empirical Bayesian 

Kriging (EBK): a geostatistical, probabilistic algorithm. Both distance and ash temperature 

values of samples from the 2010 Icelandic eruption were spatially correlated using 

semivariograms to generate prediction and error surfaces. Results showed that block 

averages were 90% accurate as validated against NCEP NWP model data. The work 

supports the utility of EBK in datasets where spatial autocorrelation is not significant. 

Furthermore, the results could help generate risk maps to delineate safety zones for aircrafts. 

Keywords: volcanic ash, kriging, geostatistics, spatial analysis 

1 Introduction  

Waldo Tobler's First Law of Geography, states "Everything is related to everything else, but 
near things are more related than distant things." This law provides the foundation of the 
fundamental concepts in spatial dependence and spatial autocorrelation, and is utilized 
specifically in spatial interpolation techniques. Spatial autocorrelation (Zhu et al., 2019) is a key 
concept that is used to analyse the degree of dependency among observations (samples) in a 
given geographic space. Distance between neighbours, lengths of shared borders, and 
orientation are just some of the measurements used in conjunction, when modelling a given 
field, to estimate the unknowns.  

When given a random spatial field with unbounded variation causing high or low spatial 
autocorrelation, it is necessary to analyse how the choice of the geostatistical method can 
accurately model the variable of interest. This paper will investigate the appropriateness of the 
spatial interpolation technique Kriging, in particularly for clustered, heteroskedastic datasets.   

In addition, the generation of highly accurate prediction estimates, even in severe weather 
scenarios over synoptic scales: embracing a pure spatial analysis approach can be a powerful 
method to supplement grid-based models. Deterministic techniques, in general do not model 
uncertainties accurately. Therefore, stochastic geostatistical methods are needed to model even 
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small-scale spatial variances. To demonstrate and evaluate this, we have chosen a variant of 
Kriging named Empirical Bayesian Kriging (EBK), and applied it in this study. 

Kriging is primarily a spatial algorithm. When spatiotemporal data must be analysed, usually 
the datasets are either grouped or split based on temporal criteria, to apply kriging, or to study 
the patterns (van Stein et al., 2020 and Krivoruchko et al., 2020). In this investigation, we chose 
four main data clusters spatially disjointed in both 2D and 3D (Altitude wise), as well as 
temporally (across four days). While performing kriging, the assumption was to treat the input 
data (May 16th, 17th and 18th) samples as pure spatial data. However, the temperature 
prediction and error estimate outputs have been rigorously evaluated against the available 
fourth day’s test data (May 14th), which in reality, was also spatially and temporally disjoint 
from the input dataset. A process has been defined on how to customize spatiotemporal data 
sampled in transects, and appearing spatially random to be redefined as a spatially clustered 
dataset. Meaning, a technique like EBK, which was primarily designed purely for transect 
samples, can still be applied in other spatiotemporal contexts. Therefore, the site under study 
can be modelled as accurately as possible.  

2 Study Site 

The 2010 eruption of an Icelandic volcano, called Eyjafjallajokull, was selected for this study. 
The ash was dispersed across the European airspace for several days. Facility for Airborne 
Atmospheric Measurements (FAAM) aircrafts were flown in-sync with satellite overpasses for 
multiple days, near potentially hazardous ash laden regions to collect a variety of scientific data. 
British Atmospheric Data Centre (BADC, 2013) released a subset of the weather data for 
research purposes.  

The data collected by the BOMEM Michelson interferometer over four days (May 14, May16, 
May 17, May 18) was chosen for this study, and depicted in the Minimum Bounding Region 
(MBR) created, including the vent location as shown in the Figure 1. While the field sampling 
durations extended several hours, a small portion of the recorded temperature data considered 
to be from an ash-significant regions was prepared. The processing involved mapping the 
attribute data against the flight path information by referring to the discussions made amongst 
the scientific crew on board the sorties. 
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Figure 1: Map showing the MBR with Data Locations w.r.t. Volcanic Vent over Europe 

For the 4 days of flight data, 16th, 17th and 18th were used as input, while 14th data was 
considered as test dataset for evaluating the accuracy of estimations. The MBR encompasses 
around 5 lakh square Kilometers of area. The temperature distribution across those days were 
compared and plotted in Figure 2. 

 

Figure 2: Temperature Distribution Plot of Data Samples 

2.1  Validation Dataset 

An Ash Dispersal Forecast and Civil Aviation Workshop [9] was conducted post eruption to 
benchmark dispersion models based on ash & weather data from the Hekla eruption in 
2000.Ash concentration contour maps were generated at different flight levels.  
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While all the operative models were tested and compared based on properties of ash, our paper 
focuses on temperature variable as a proxy to model the ash dispersion. The NCEP/NCAR 
(National Centre for Environmental Prediction/National Centre for Atmospheric Research) 
reanalysis climate/weather dataset from the USA used in the workshop was therefore chosen 
for validation. Data for each day was downloaded from the repository (NCEP/NCAR 20th 
Century Reanalysis Weather Data Repository, 2016) according to the pressure altitude of the 
flight routes, and time duration (set to European Projection configuration).  

The initial step was to understand the temperature profiles simulated by Numerical Weather 
Prediction (NWP) models such as NCEP, theoretically, over continental and oceanic Europe 
for the same period and region of interest. Daily composites for the period between May 14-
May18 were compared annually from 2008-2011, minimum and maximum temperature values 
predicted at 350/400/700/800 mb Pressure Altitudes it was observed that there were no 
variations in temperature greater than 8K in total. Contrastingly, May 17th 2010 samples 
(collected by flight) revealed a variation of up to 22K at very short spatial scales. Furthermore, 
up to a 27K drop in air temperature was observed on May 17th when compared against the 
usual Environment Lapse Rate (ELR) (expected at 700 mb).  

 

Figure 3: Map showing Overlay of Grids of NCEP Rasters from May 14th to May 18th 2010 

Figure 3 clearly shows that coarse grid sizes used in NWP models do not accurately represent 
the state of the atmosphere even during large volcanic eruptions in any given region. The 
average temperature of the overlay created from using rasters of each day was ~253K. This 
paper (Threnbert et al., 1988) describes the interpolation approach used in NCEP models, and, 
discusses the limitations arising in accuracy of model outputs in the context of large geographic 
regions.  
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3 Methodology – Kriging 

Linear regression techniques can produce good estimates of global mean, but are not very 
effective in modelling the observed small-scale variations accurately. Consequently, a robust 
spatial interpolation technique, based on stochastic geostatistical theory, called Kriging, 
originally drafted for mining industry, is cross-applied on air temperature data sampled from 
the affected region, at various altitudes to interpolate values at unknown locations. Kriging or 
Gaussian Process is a weighted average technique that assigns higher weights on nearby 
observations, based on the distance and direction characteristics.  

The process involves, the generation of a semivariogram, which expresses the rate of change 
of regionalized variable w.r.t. different distance bands. By interpreting the sampled data as the 
result of a random process, kriging builds a methodological basis to provide a scope for 
estimating the spatial inference of quantities in unobserved locations.  Kriging is also useful in 
quantifying uncertainty associated with the estimator since the sample values are expected to 
be correlated between themselves owing to their locational proximity. Using Linear Mixed 
Model framework in a Bayesian context, clusters are modelled using EBK. This method 
calculates, structured drift, spatial variations and errors separately.  EBK produces surface 
outputs for prediction by fitting different transitive functions. 

4 Empirical Bayesian Kriging 

EBK implemented in ArcGIS software (Gribov et al., 2020 and Krivoruchko et al., 2019) 
effectively represents the stochastic spatial process locally as non-stationary random field, 
where the parameters vary across space. Local models are built by simulating multiple 
theoretical semivariograms, created by sub setting the input data to apply the REML 
(Restricted Maximum Likelihood Estimation) method.  

In EBK, the Bayesian framework estimates only prior distributions using observed marginal 
distributions. The estimates were predicted by considering temperature concentrations as a 
response variable; while location variables, derived from flight data, were used as predictors. 
EBK model is calculated by:  

𝛾(ℎ) = 𝑁𝑢𝑔𝑔𝑒𝑡 + 𝑏|ℎ|𝛼                                                                                                 (1) 

ϒ is the semivariance, b is the positive slope; α is the power between 0.25-1.75, Nugget which 
has a positive value. 
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4.1 Block Grade – Prediction and Error Estimates 

To compare the NCEP temperature averages (measured in Kelvin) with the prediction 
estimates of kriging, 1x1 degree grids were created. EBK block averages, shown in Figure 4, 
reveal a narrow range of global temperature estimates: ranging between 241K to 251K. The 
global mean is ~243K, around 10K less than NCEP average. 

 

 

Figure 4: Maps showing Block Grade EBK – Prediction Estimates (above) & Error Estimates (below) 

5 Verification & Validation 

The interpolated values were verified and validated using the methods below. 

5.1 Verification 

Error Analysis 

While the Root Mean Square (RMS) value is desired to be as low as possible for any 
interpolation algorithm: a special metric to assess Kriging efficiency is RMS-Standardized, 
which is expected to be close to 1. EBK had an RMS of 2.596989 and RMSS of 0.938776.  
RMS values close to zero indicates that the estimates are unbiased. EBK met the criteria with 
high accuracy (0.018348). 

EBK Profile Analysis 

Although the correlation between the distances and temperature is low (R² = 0.294), due to 
the clustered distribution of the samples, EBK profile (figure 5) reveals a steady decrease in 
temperature as the distance from the vent gradually increases, as observed in the sampled 
inputs for the MBR.  

-12.790884, 48.34026
 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community

-12.790884, 48.34026
 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community
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Figure 5: Plot of Temperature Prediction vs Distance Profile (above) and Error Profile (below) 

The errors are also not highly correlated with distance, however, are higher in magnitude as 
the distance from the vent increases.  

5.2 Validation 

EBK vs NCEP - Profile Analysis 

As shown in Figure 6, when EBK averages were validated against the NCEP NWP model 
values for the same duration in the area of interest, a consistent deviation of 10K was observed. 
However, the small-scale spatial variations were also accurately estimated using the EBK 
method with a maximum deviation of ~12K.  
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Figure 6: Plot Validating EBK Prediction Profile against NCEP Profile 

Figure 7 shows the non-parametric probability density estimation for NCEP and EBK block 
averages. While EBK estimates had a Standard Deviation of ~3K, NCEP measured at ~0.57K.  

 

Figure 7: Plot of Probability Density Estimates - EBK Prediction vs NCEP 

Against Test Data – 14th May 2010 

Out of the four days of samples, three (16th, 17th, 18th May) were used to interpolate data, 
while one (14th May) was used as test data to validate the predicted results. Figure 8 compares 
the flight data on May 14th against the kriged output, using 16th/17th/18th data for the same 
location. Spatially, these test samples were located almost at the centre of the Minimum 
Bounding Region, and were equidistant from each day's cluster, and the vent. Although altitude 
information was not used for kriging, The test dataset was from the highest altitude (8000 
meter) and hence all values were below 250K. The test dataset had just 122 samples in 
comparison to the 200+ each from the other 3 datasets, making ideal to be used for 
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verification. Altitude into validation scope solely aided in comparing kriged estimates against 
NCEP data at specific pressure bands 

 

Figure 8: Plot showing Validation of Kriged Temperature Estimates Against May 14th Flight Temperature 

Samples 

The global prediction estimates of EBK using point kriging method had a range spanning 
approximately 70K. On average, an overestimation error of less than 8K was observed when 
tested against 14th May 2010 (test data). Thus, the error is within 10% threshold for EBK 
prediction estimates.  

Local Estimates 

Prediction and error estimates were grouped into intervals of 5K to compare the input data 
against the kriged outputs for each day. The comparative visualization in Figure 9 reveals the 
degree of unbiasedness (<1K global error in locations where each day’s temperature data is 
available). The map below (figure 9) compares the variations observed for input data against 
the predicted data, where samples from the 14th May were located. This clearly shows EBK is 
an acceptable exact interpolator for variance. 

   

Figure 9: Maps Showing Temperature Variations - Flight Samples against Kriged Estimates on May 14th 

6 Results – Discussion 

For a three hour forecast of normal weather, the measure of success for prediction of 
temperatures is defined by UK Met Office (2021) to be within ±2º C 92% of the time it is 
reported. The smallest size of the grid cell achieved for this study site with kriging was 4x2/2x4 
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units. The error range for this zone was found to be between 0K-2K. With EBK, the defined 
success rate was achieved for a spatial resolution as low as 2km x 4km.  

In the aerospace industry, this roughly translates the detection of potential ash laden field as 
early 20 seconds ahead of time by jet aircrafts in cruising altitude with high airspeeds and wind 
speed conditions. This methodology is highly suited to augment onboard severe weather alert 
systems, despite its probabilistic origins and simulation scope. The study can also help to define 
guidelines for sample data collection during future eruptions to assess the safety of an airspace. 

7 Mapping Risk Zones 

Given a potential use case in the aviation industry, we try to generate Go/No-Go Zones using 
the point prediction map produced using EBK by comparing against NCEP values. The 
NCEP has a narrow temperature range of 251.4K-253.9. Figure 10 shows regions with same 
range of observations highlighted in green (~247K to ~254K). Areas with gradual  

Areas with gradual variations in orange reveal EBK underestimations/overestimations against 
NCEP (±25K), while regions with red depict significant overestimations in comparison against 
NCEP (~+40K). 

 

Figure 10: Map Showing Risk Zones Categorized As Go/No-Go Regions 

Irrespective of the significant global variations in the input temperature across days, the EBK 
risk map reflects integration of unbiased global averages and small-scale variations, wherever 
adequate data is available. 

8 Conclusion 

In summary, it is observed that the EBK not only produces estimates of block mean with up 
to 90% accuracy closer to NWP averages, but also models small-scale spatial variances better 
than NWP models, even at coarser spatial resolutions.  In addition, it is also evident that when 
EBK is applied as a punctual kriging method, it can produce unbiased averages even for 

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China
(Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User
Community
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spatially clustered, heteroskedastic datasets. Hence, even in nonstationary datasets with 
absence of significant spatial autocorrelation, EBK can be used to assess the likelihood of 
volcanic ash concentration exceeding a defined threshold at a given place, so that risk to 
aviation operations can be determined.  

The method involved partitioning the whole dataset into small subsets to model each partition, 
and then by combining all outputs to predict at unknown locations using a distance metric in 
a Bayesian framework. The Kriging technique, though originally conceived, designed, and 
implemented for Gaussian world with higher emphasis on Spatial Autocorrelation, is well 
suited for ash dispersion modelling. In addition, for smaller datasets, we established that EBK 
is an appropriate method to model the simultaneous existence of spatial autocorrelation and 
spatial heterogeneity at different degrees. These are typically observed in events that obey 
Pareto conditions, and can therefore be used to generate accurate maps for airborne volcanic 
ash dispersion. 
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Abstract 

Until now, most severity products are generated from a reclassification of dNBR index ranges. 

In this study, we focused on an automated global burn severity mapping approach. Using 

the catalogue of satellite imagery and the high-performance computing power of 

GoogleEarthEngine we propose an automated pipeline to generate severity maps of 

burned areas at a medium scale of 30 and 10m from the time series of Landsat and Sentinel2 

images. Landsat-8 images available during 2020 and the dNBR spectral index were used to 

calculate the severity level of each pixel using a calibration model and linear regression 

adjustments, which were taken in the field from the CBI index in an app developed for field 

capture. A calibration approach was carried out to give the severity level of the final burned 

areas after several carefully designed logic filters on the normalized burn rate (NBR). This 

script focuses on the fires that occurred in Honduras in 2020. The regression model found a 

similar spatial distribution and strong correlation between the areas analyzed in the field and 

those generated from the dNBR. The preliminary global validation showed that the overall 

accuracy reached 53.85%. However, the adjustments through the correlation models im-

proved the results, yielding an R2 of 0.93 for the quadratic model, 0.79 for the Exponential 

model and 0.72 for the linear model. 

Keywords: burn severity, Composite Burn Index (CBI), GEE, disaster management, regression 

models 

1 Introduction  

Accurately mapping burned areas is essential for quantifying carbon budgets (Chuvieco et al., 
2018; Padilla et al., 2015) and for analyzing the relationship between vegetation and climate. It 
is needed to assess the impacts of fire as a land management tool and quantify trends and 
patterns in fire occurrence, among other relevant applications. Digital image processing aiming 
to map fire activities has been applied to a variety of images from sensors of various spatial, 
temporal, and spectral resolutions (Alonso-Canas and Chuvieco, 2015; Chuviecoet al., 2018). 
Considering the computational power of Google Earth Engine (GEE) it is a powerful tool to 
enhance image preprocessing and algorithm application to big datasets. Common datasets used 
for image classification, burn severity detection or change detection in GEE are Landsat (Long 



Ariza et al 

25 
 

et al., 2019), MODIS or Sentinel-1 radar imagery. Analyses experienced a major improvement 
using (semi-)automatic image classification and thus are based on a greater database of thou-
sands of images. Implementing new algorithms from Machine Learning for image classifica-
tion and damage detection, big steps towards an automated burn severity workflow have been 
taken (Parks et al., 2018). Nevertheless, all these remote sensing data workflows show difficul-
ties in integrating ground truth data to validate the created results. One of the major short-
comings in remote sensing image processing is that several common techniques use validation 
with reference images (Parks et al., 2018). Further, it is crucial to integrate ground truth data 
from the field into the methodology. This is enabled considering the power of Citizen Science 
and modern web applications like EpiCollect, which allows bi-directional communication be-
tween workers in the field and the image repository of their project (Ananensen et al., 2019). 
Regarding the applicability of EpiCollect in the field of Geosciences and Remote Sensing, the 
advantages of real-time ground truth data for validation of computed results are apparent 
(Hoffmann et al., 2016). 

2 Area of Study 

The Central Forest Corridor region is located in the centre of Honduras. It has a size of 
186,525 ha and is delimited to safeguard water-producing areas of 13 municipalities.  

3 Methodology 

In this study, the limits of the severity map were defined by the spatial extent of the Central 
American fires in spring 2020. The resolution of the severity products was 30 and 10 m. The 
severity mapping of the burned area through GEE is described in Figure 1. 
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Figure 1: Workflow from image processing (chapter 3.1), field data (chapter 3.2) and model calibration 

and validation (chapter 3.3) 

As shown in Figure 1, the pipeline consisted mainly of three steps: model training, per-pixel 
processing and modelling of the burned area. 

3.1  Datasets and Image processing 

We produced fire severity metrics for the study area in GEE based on the Landsat 8 and 
Sentinel 2 Surface Reflectance. The data has been corrected atmospherically using the Land 
Surface Reflectance Code (LaSRC)1, which uses the quality assurance (QA) layers, which are 
produced during the atmospheric correction process, to estimate the amount of high aerosol 
that impact the derived surface reflectance. The clouds were masked using FMask (Zhu & 
Woodcock, 2014) as well as a per-pixel saturation mask in Landsat images, and the maskS2sr 
function based on the Sentinel 2 band 'QA60' the correction was concluded.  

In this phase, we generate Landsat and Sentinel composites for the cloudless dates before the 
fire (from 06 to 30 March) and after the fire (from 15 to17 April) using a pixel-based approach 
within the GEE platform, and then we reduce pixel unmasking in the reflectance stack com-
posite using pre-and post-fire "mosaic". Then, we calculated spectral transformations in order 
to enhance the discrimination of changes in the land surface. In this study, we calculated two 

                                                      

1https://www.usgs.gov/media/files/landsat-8-collection-1-land-surface-reflectance-code-product-

guide 
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spectral transformations, the Normalized Burn Ratio (Formula 1), which contrasts the differ-
ence in reflectance between the NIR and the SWIR-2 (Short Wave Infrared), and the temporal 
index version dNBR (Formula 2) (Miller et al., 2007). We calculated spectral transformations 
in order to enhance the discrimination of changes in the land surface.  

𝑁𝐵𝑅 = ( 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
) 

Formula 1: Normalized Burn Ratio 

𝑑𝑁𝐵𝑅 = (𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒) × 1000 

Formula 2: Differential Normalized Burn Ratio 

The dNBR shows the best contrast between healthy photosynthetic vegetation and burnt 
vegetation. This index, similarly to NDVI, has values between -1 and 1, but it was multiplied 
by 1000 in order to manage the data type (integer) better, to follow the convention established 
by Key and Benson (2006). Therefore, higher values above 100 dNBR are set as the "burnout" 
threshold. In the same way, the dNBR can be used to assess the severity of burns, as areas 
with higher dNBR values indicate more serious damage. In contrast areas with negative dNBR 
values may show higher vegetation productivity. dNBR can be classified according to the 
ranges of severity of burns. The thresholds of severity levels used in this study were those 
proposed by the United States Geological Survey (USGS), in this case, the class marks of the 
unburned to high ranges of the Key and Benson (2006) classification were used. These dNBR 
thresholds thus establish the respective fire severity classes (Table 1). 

Table 1: Thresholds of severity levels from dNBR index 

 

3.2 Field data 

The field data represents the composite burn index (CBI) (Key and Benson, 2006), which rates 
factors such as surface fuel consumption, soil char, vegetation mortality, and scorching of 
trees. CBI is rated on a continuous scale from zero to three, with CBI = 0 reflecting no change 
and CBI = 3 reflecting the highest degree of fire-induced ecological change.  
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The field data were collected using EpiCollect, a tool developed in 2009 by the Imperial Col-
lege London research group, which allows taking and sending georeferenced information from 
phones to a central website. The information there is analyzed graphically and filtered accord-
ing to the variables, using Google Maps/Earth. The stored data can be downloaded and viewed 
directly on the phone in Google Maps. The tool to capture field data is available here: 
(https://five.epicollect.net/project/cbi). 

3.3 Severity calibration model 

We aimed to determine whether our GEE based methodology (the calibration by regression 
models via CBI method) produced Landsat-based fire severity datasets with equivalent or 
higher validation statistics than severity datasets produced using one pre-fire and one post-fire 
scene (i.e., the standard approach since these metrics were introduced). 

This calibration has two components, first the result of the dNBR index classified into five 
severity intervals (Carl and Key, 2006), and second the CBI field index which relies on 13 field-
plots covering the research area, with a homogenean distribution per every severity class. Of 
the 13 field-based CBI plots, 23% are considered not burnt, (CBI=0), low severity (CBI <1.0) 
23%,  moderate-low severity (CBI 1.0 and <1.5) 8 %, moderate-high severity (CBI 1.5 and 
<2.0) 23 %, and 23% are high severity (CBI >2.0).  

 (Figure 2). 

After, we evaluated the global accuracy of preliminary classification through the confusion 
matrix. Subsequently, the dNBR values were adjusted through regression analysis by three 
different models (linear, exponential and quadratic), evaluated through an ANOVA test in 
order to determine how well each model fits the field data. Using the SPSS tool, a variety of 
goodness-of-fit statistics are presented, using the value of R squared (R2), and the statistic F. 
Finally, we extracted GEE-derived dNBR, values based on spatial analysis and then applied 
linear regression through statistic reducer function "ee.Reducer.linearRegression", to evaluate 
the performance of each severity metric. Specifically, we quantified the correspondence of 
each severity metric (the dependent variable) to CBI (the independent variable) as the coeffi-
cient of determination, which is the R2 of a linear regression between predicted and observed 
severity values.  

We conducted this analysis for the fire study area and reported R2 values. We then conducted 
a parallel analysis but used dNBR reclassify derived severity mapping. This parallel analysis 
allows a comparison of severity datasets produced using one pre-fire and one post-fire image 
(e.g., CBI-derived metrics) with the calibration by regression approach as with GEE. 

 

 



Ariza et al 

29 
 

4 Results and Analysis 

Using GEE, we were able to produce dNBR quickly, and CBI including composite burned 
index on (specifically to calibration by regression method) for the 13 fields-plots analyzed; fire 
averaged about 237,40 hectares (Figure 2).  

 

Figure 2: Severity mapping and location of the 13 CBI included in the calibration of the differential nor-

malized burn ratio (dNBR). Tegucigalpa, Honduras 

The entire process took approximately one minute, though this is a rough estimate that de-
pends on the size and available resources shared with other users (Gorelick et al., 2017). None-
theless, the processing time is quick with fairly low investment in terms of human labour. 

The confusion matrix results showed the outcome of the preliminary classifier dNBR, with an 
overall accuracy of 53,8%However, as can be seen in Table 2, the regression analysis results of 
R2, the value of the F test, and its significance value for each of the three models are presented. 
Although the linear regression model presents a moderate value of R2 (0.87), its significance 
value F is the highest (83.58), while the quadratic model with the highest value of R2 (0.93) 
presents a significance value of F minor (79.37), all models with a significance of 0.000, less 
than 0.05 which allows concluding that there is a significant relationship between the variables 
(dNBR and CBI), is much stronger in the linear and quadratic model.  



Ariza et al 

30 
 

Table 2: Regression Analysis Results of dNBR as dependent variable and CBI as an independent 

variable 

Model  
Equation 

Model summary 
Parameter Esti-

mates 
R2 F df1 df2 Sig b1 b2 

Linear 0.874 83.579 1 12 .000 332.757 

139.751 
Quadratic 0.935 79.376 2 11 .000 -7.299 
Exponten-
tial 0.729 32.218 1 12 .000 2.932 

The correspondence between CBI and each severity metric for 13 plots covering fire was eval-
uated simultaneously using the regression models; the adjust was consistently higher for the 
GEE-derived severity high and moderate class as compared to the unburned class (Figure 3).  

 

Figure 3: Regression models showing the correlation of CBI control points with dNBR. a) linear R²= 0.87; 

b) exponential R² =0.79; c) quadratic R² = 0.93 

In general terms, the linear and quadratic models improve the fit of the severity mapping 
through the dNBR. Furthermore, the inclusion of the CBI increased the correspondence to 
field severity measure for the fire In this case, all terms in the linear, exponential and quadratic 
regressions for severity metric were statistically significant (p < 0.05). 

a) b) 

c) 
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5 Conclusions 

This paper presented a practical and efficient methodology for producing one Landsat 8 and 
Sentinel 2 based fire severity metric: dNBR and specifically the calibration by regression CBI 
method. This method relies on Google Earth Engine and provides expanded potential in terms 
of fire severity monitoring and research in regions outside of Honduras that does not have a 
dedicated program for mapping fire severity. We aimed to evaluate differences between the 
GEE-based calibration by a regression of the CBI method approach to the standard approach 
in which one pre-fire and post-fire Landsat scene is used to produce severity datasets through 
the thresholds of severity levels from dNBR index. The inclusion of the CBI provided addi-
tional improvements in the class severity Thresholds definitions for fire severity mapping on 
GEE. This provides further evidence that the inclusion of the field data should be considered 
when multiple fires are of interest (Parks et al., 2018). In conclusion, the application of the 
different regression models (Linear, Quadratic and Exponential) under the test of general sig-
nificance (F) is greater than their level of significance, which allows us to conclude that the 
application of the regression model (Linear and Quadratic) provides a better fit of the severity 
obtained by the CBI than the dNBR-only intercept model. 
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Abstract 

To improve the understanding of current trends in global urbanisation, we have launched 

the World Settlement Footprint (WSF) suite, a collection of novel datasets aimed at providing 

accurate, reliable and frequent information on the location and extent of human 

settlements, as well as on their morphology and built-up density. In this paper, we present 

three of its products (i.e., the WSF-Evolution, WSF2019 and WSF3D), which are expected to 

become an asset for national statistical offices, local authorities, academia, civil society, 

private sector, geospatial information community, as well as international organisations 

involved in the implementation of the Sustainable Development Goal 11 of the United 

Nations and the New Urban Agenda. 

Keywords: global urbanisation, settlement extent, settlement growth, building height, 

world settlement footprint 

1 Introduction 

The Sustainable Development Goal (SDG) 11 of the United Nations (UN) aims at renewing 
and planning human settlements in a way that offers opportunities for all, including access to 
essential services, transportation, green public spaces, housing and energy, while reducing the 
impact on the environment and the use of the resources. In this context, accurate, reliable and 
frequent information is needed on the location and extent of human settlements and their 
morphology and built-up density. To this purpose, the increasing availability of Big Earth data 
(as from satellite observations) and related analytics tools (e.g., Artificial Intelligence) has 
recently opened unprecedented opportunities. However, in the last few years, this has led to 
the generation of several global layers, primarly focusing only on delineating the actual 
settlement extent, sometimes with low quality. 

To overcome this limitation, the German Aerospace Center (DLR) in collaboration with the 
European Space Agency (ESA) and the Google Earth Engine team has been generating the 
World Settlement Footprint (WSF) suite, an unprecedented collection of global datasets aimed 
at advancing the understanding of urbanization at the planetary scale. In this framework, the 
first layer to be completed and released open-and-free has been the WSF2015, a 10m 
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resolution binary mask outlining the 2015 global settlement extent derived by jointly exploiting 
multitemporal optical Landsat-8 and radar Sentinel-1 (S1) imagery (Marconcini et al., 2020). 
This will be soon followed by other three products, namely  

1) The WSF-Evolution, which outlines the global settlement growth at 30m resolution 
on a yearly basis from 1985 to 2015; 

2) the WSF2019, which outlines the 2019 global settlement extent at 10m resolution; and  
3) the WSF3D, which estimates the average height of built-up areas globally at 90m 

resolution. 

In the following, an overview is presented of these three layers, which are expected to become 
an asset for a variety of end users in the framework of several thematic applications, helping 
to support the achievement of SDG11, as well as the New Urban Agenda. 

2 The WSF-Evolution 

To effectively foster the sustainable development of human settlements, information on their 
actual extent is relevant but not sufficient. Indeed, for characterising ongoing trends, a proper 
understanding of past growth is also necessary. In this framework, a few global layers already 
exist; nevertheless, they are available for a limited number of time steps and mostly exhibit 
quite poor quality (as by simple visual comparison versus historical Google Earth imagery). To 
overcome this drawback, we have implemented a novel iterative approach that - given the lack 
of suitable archived high-resolution radar imagery - effectively outlines the past settlement 
extent based on Landsat data alone, acquired globally from late 1984 at 30m resolution. 

Initially, we extract - out of all available corresponding Landsat scenes - the minimum, 
maximum, mean and standard deviation over time per pixel of different spectral indices for 
each year in the past. These include the normalised difference vegetation index - NDVI, the 
normalised difference built-up index - NDBI and the modified normalised difference water 
index - MNDWI. Next, starting from 2015 by using the WSF2015 as reference, we iteratively 
extract settlement and non-settlement training samples for the year t by: i) adaptively 
thresholding the corresponding temporal mean NDVI, NDBI and MNDWI; and ii) employing 
morphological filtering to the settlement mask generated for the year t+1. Supervised Random 
Forest classification is finally applied over the sole pixels marked as settlement at time t+1. It 
is worth noting that, in this way, we cannot address the cases where settlement shrinking 
occurs; nevertheless, this is a considerably minor phenomenon compared to the ongoing 
global urbanisation, and it is mainly confined locally. 
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Figure 1: Samples of the 30m spatial resolution WSF-Evolution layer for Sacramento, USA (left) and 

Bangalore, India (right). 

After an extensive test phase, the implemented approach has been eventually employed for 
generating the WSF-Evolution, i.e. a dataset outlining the global settlement extent at 30m 
spatial resolution on a yearly basis from 1985 to 2015. Specifically, the entire classification 
process has been performed on the Google Earth Engine (GEE) platform (Gorelick et al., 
2017). Figure 1 shows two samples of the WSF-Evolution for Sacramento (USA) and 
Bangalore (India), covering an area of ~60x60km and ~80x80km, respectively. To 
quantitatively assess the accuracy of the dataset, similarly to the case of the WSF2015, an 
extensive campaign based on crowdsourcing photointerpretation of very high-resolution 
airborne and satellite Google Earth imagery is currently undergoing. In particular, for the years 
1990, 1995, 2000, 2005, 2010 and 2015, ~180K reference cells of 30x30m size distributed over 
100 sites worldwide are being labelled, thus summing up to overall ~1M samples. 

3 The WSF2019 

The advent of Sentinel-2 (S2) in 2015 has marked a milestone in Earth observation. Here, the 
higher number of spectral bands and higher spatial resolution (i.e., 10-20m) with respect to 
Landsat data, along with the 5-day revisit time since March 2018, have enabled unprecedented 
possibilities for monitoring urbanisation. Accordingly, to outline the current global settlement 
extent, we have implemented a new approach that jointly exploits multitemporal S1 and S2 
imagery. Under the hypothesis that settlements generally show a more stable behaviour with 
respect to all other information classes, temporal statistics are calculated for both S1- and S2-
based indices. In particular, a comprehensive analysis has been performed by exploiting a 
number of reference building outlines to identify a suitable and robust subset, which ultimately 
resulted in 31 temporal features, including 6 from S1 and 25 from S2. Among others, these 
include minimum, maximum, mean or standard deviation overtime per pixel of: i) the original 
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radar backscattering in the case of S1, and ii) different spectral indices of S2. As with the 
WSF2015 and WSF-Evolution, training points for the settlement and non-settlement class are 
then generated by thresholding specific features (i.e., overall 16 out of the 31 above). In 
particular, thresholds vary depending on the 30 climate types of the well-established Köppen 
Geiger scheme (Peel et al., 2007). These have been determined by statistically analysing the 
distribution of the chosen 16 features within the areas marked as a settlement in the WSF2015. 
Finally, binary Random Forest classification is applied and a dedicated post-processing is 
performed to mask out roads by combining the corresponding OpenStreetMap (OSM) layer 
(OpenStreetMap contributors, 2020) and the novel dataset predicting roads missing from 
OSM recently published by Facebook (Facebook development team, 2020). 

 

Figure 2: Samples of the 10m spatial resolution WSF2019 layer (in pink) superimposed to Google Earth 
reference imagery for the cities of Havana, Cuba (left) and Sana’a, Yemen (right). 

The method has been tested on a number of study sites throughout the different climate 
regions and, after assessing its effectiveness (by extensive qualitative comparison against 
reference Google Earth and Bing Maps imagery), it has been ultimately employed to generate 
the WSF2019, a novel 10m resolution mask outlining the global settlement extent for the year 

2019. Figure 2 reports two samples of the final product of Havana (Cuba) and Sana’a (Yemen), 
both covering an area of ~10x10km. Also in this case, the whole processing has been 
performed in the GEE environment, and a dedicated crowd-sourcing-based validation 
exercise is about to be completed, where ~700K reference labels are being collected based on 
2019 VHR imagery available from Google Earth. 

4 The WSF3D 

Besides a proper delineation of the extent of human settlements, precise information on the 
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building heights is of key importance for better estimating the distribution of the resident 
population, energy consumption, greenhouse gas emissions, and urban heat island effects or 
material stock allocation. In this framework, so far, no layer exists, providing a 3D map of the 
built-up areas globally. To overcome this limitation, we have designed a dedicated 
methodology, which allows estimating the built-up height by jointly exploiting: the 12m 
resolution TanDEM-X digital elevation model (TDX-DEM) generated out of TerraSAR-X 
and TanDEM-X 2012 imagery (Zink et al., 2014), the corresponding 3m resolution original 
amplitude imagery (TDX-AMP), the WSF2015, as well as S2 and OSM data. In particular, the 
corresponding workflow consists of three modules. All areas marked as non-settlement in the 
WSF2015 are excluded a priori from the analysis. 

 

Figure 3: Lagos (Nigeria) – (left) 12m spatial resolution TanDEM-X DEM (TDX-DEM); (right) Sample of the 

90m spatial resolution WSF3D average built-up height (BUH) layer. 

The first module is dedicated to identifying local vertical edges in the TDX-DEM, whose mean 
value in a defined 90x90m grid is used for estimating the average building height (BH). 
Specifically, the generalisation to 90m proved effective in compensating for the effects of 
building layover. Next, the second module generates a 12m resolution building mask by 
combining TDX-AMP, OSM and S2 data. Wherever available, building outlines from OSM 
are used; elsewhere, the TDX-AMP is employed for estimating the location and extent of 
buildings (Esch et al., 2011). Here, to exclude vertical structures like trees or high hedges 
present in the built-up environment, a vegetation mask derived from the analysis of the S2 
temporal maximum NDVI is also applied. The resulting mask is then used for computing the 
building fraction (BF) within each cell of the 90m grid above. In the last module, BH and BF 
are finally merged for estimating the average built-up height (BUH) per 90m cell. 

The method has been recently applied globally for generating the WSF3D dataset. In 
particular, this includes the final BUH, BF and the average built-up volume obtained by 
multiplying the BUH with the area of the reference 90m cell (i.e., ~8100m² at the equator). As 
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an example, Figure 3 depicts for an area of ~70x70km, including Lagos (Nigeria), both the 
available TDX-DEM and the corresponding WSF3D BUH. Two parallel exercises are 
currently aiming to assess the quality of the layer: On the one hand, detailed reference building 
height information is being gathered for 15 globally distributed regions. On the other hand, 
the height of more than 150K buildings is being labelled (in terms of the number of floors) by 
photo-interpretation of Mapillary panorama imagery. 

5 Conclusion and Outlook 

In this paper, we introduced the WSF-Evolution, WSF2019 and WSF3D layers as part of the 
WSF suite, aiming to support a comprehensive characterisation of human settlements globally. 
The three datasets demonstrated particularly accurate and reliable, as confirmed by the highly 
positive feedback from a number of champion users, who have been yet granted preliminary 
access to them, namely the World Bank, Asian Development Bank, UN-HABITAT, and 
International Committee of the Red Cross to cite some. Among others, they proved to be a 
key resource for analysing urbanisation in developing countries (where often no or poor 
information is available), supporting the assessment of different SDG 11 indicators, as well as 
estimating flood exposure or predicting COVID-19 contagion risk. Upon completion of the 
corresponding quantitative validation activities (expected by mid-2021), all of them are 
envisaged to be released open and free to the public through multiple resources, including the 
ESA Urban Thematic Exploitation Platform (U-TEP) and the Geoservice of the Earth 
Observation Center (EOC) of DLR. As next steps, we already plan: i) to update the WSF-
Evolution layer, by using the WSF2019 as a reference and targeting the period 1985-2019; ii) 
to go beyond the settlement/non-settlement categorisation by generating the WSF2019-
Imperviousness, which aims to estimate the settlement per cent soil sealing globally. 
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Abstract 

Landslide inventory data sets are required for any landslide susceptibility mapping and 

prediction approaches. However, generating accurate landslide inventory data sets 

depends on applied methods and quality of input data, for example spatial resolution for 

satellite imagery. Therefore, the accuracy and availability of inventories vary in different 

studies. This study evaluated a strategy of sudden landslide identification product (SLIP) for 

landslide detection using Bi-Temporal Sentinel 2 Imagery and ALOS Digital Elevation Model 

(DEM). The resulting landslide detection map was then compared with an improved version 

of SLIP based on a fuzzy overlay. The resulting probability map was classified into three 

classes using the natural breaks method; the third class with the highest probability was 

extracted as the final map. The accuracy assessment stage demonstrated that using the 

improved version increased the accuracy by 16% compared to the SLIP method.   

Keywords: earth observation, sudden landslide identification product (SLIP), Sentinel 2 

1 Introduction  

Landslides are the most dangerous and unpredictable natural hazards that usually result in 
severe destructions, damaging natural resources, and loss of human life and property (Hölbling 
et al., 2015). They occur in different types, frequencies, and intensities worldwide (Ngo et al, 
2020 and Ghorbanzadeh et al., 2019A). Seeking suitable solutions to prevent and mitigate its 
calamitous consequences is, therefore, a high priority for society. Recent advances in remote 
sensing, increasing availability of Earth observation data, and progress in semi-automated and 
automated techniques enable the monitoring and analysis of large areas. In this regard, many 
machine learning (ML) methods and procedures have been developed and applied for landslide 
inventory mapping from different satellite imageries (Ghorbanzadeh et al., 2019B and 
Ghorbanzadeh et al., 2020). The ML methods are categorized into two main groups of 
supervised and unsupervised techniques (Mou et al., 2017). In supervised methods and model 
selection, the training dataset plays a vital role in mapping landslides, and the performance and 
accuracy of the model have a strong correlation with the quantity and quality of training data 
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(Ghorbanzadeh et al., 2020 and Hölbling 2012). In the unsupervised methods, pixels that share 
similar spectral characteristics are grouped as a cluster, and the similarity threshold is usually 
defined by the user (Tran et al., 2019). The standard unsupervised methods are K-means 
clustering or Interactive self-organization data analysis (ISODATA) (Karami et al., 2015 and 
Abburu et al., 2015). Although they are easy to apply and do not require any labelled data for 
classification and clustering data, their resulting classification accuracy is usually lower than 
supervised approaches.  

For the case of bi-temporal images, some techniques, including image differencing, normalized 
difference vegetation index (NDVI), change vector analysis (CVA), spectral features variance, 
and image rationing has been applied for land surface change detection and landslide detection 
in particular (Vázquez-Jiménez et al., 2018, Ramos-Bernal et al., 2018 and Solano-Correa et 
al., 2018). In these techniques, mapping land surface changes or deformation caused by 
landslide phenomena is more achievable, but selecting the optimal thresholds to classify or 
separate change from no-change is still a challenge (Panuju et al., 2020).  

In this study, we followed a sudden landslide identification product (SLIP) strategy to 
overcome the thresholding issue for landslide detection using bi-temporal images. SLIP 
combines multiple related spectral channels from bi-temporal images to estimate landscape 
changes. In this regard, we examined image indices such as red change (Fayne et al., 2019) and 
modified normalized multiband drought index (mNMDI) and fuzzy overlay to automatically 
detect and classify landslides without introducing any thresholds to data.  

2 Study area   

The chosen study area for this investigation is Eastern Iburi, which is in Hokkaido, Japan (see 
figure 1). On September 6th, 2018, an earthquake struck Eastern Iburi with a magnitude of 
6.6 (Mw), resulting in the deaths of 41 people; 36 of the victims were perished by landslides 
(Yamagishi et al., 2018). Nearly 5600 landslides, primarily shallow, were caused by the 
earthquake equal to an area of 46.3 km2. However, the main reason for such a copious number 
of landslides was that the day before the earthquake, typhoon Jebi brought torrential rainfalls 
into the region, making the area highly susceptible to landslides (Osanai et al., 219). A landslide 
inventory map in this region is generated by the Geographical Survey Institute (GSI) of Japan. 
It is used as a perfect reference map to evaluate the accuracy of our method in landslide 
detection. More details on the landslide inventory map are available in Zhang et al., 2019. 
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Figure 1: The location of our case study area of Eastern Iburi in Hokkaido, Japan. Pre and post landslide 

Sentinel-2 images are presented by the band combination 8-4-3 (NIR, Red, Green). 

3 Data and methodology 

In this study, Sentinel 2A images were acquired for dates before and after the landslide event. 
Based on the SLIP method, we used a stack of five images that had cloud cover less than 10% 
for both the pre-landslide image and post-landslide image. Before using these datasets for 
landslide mapping, Sen2Cor (Main-Knorn et al., 2017) plugin, which is available for SNAP 
software, was used to apply atmospheric corrections. Besides, since the slope is an essential 
factor in detecting landslides (Ghorbanzadeh et al., 2019B), we used 12-meter ALOS Digital 
Elevation Model to generate a slope layer used with satellite images. Sentinel 2A images 
include 13 bands with a spatial resolution ranging from 10 to 60 meters. Furthermore, all 
images and slope layers were resampled to 10-meter resolution in QGIS software for further 
analysis.  

3.1  Sudden Landslide Identification Product (SLIP) 

The research methodology established based on a change detection algorithm called SLIP 

proposed by Fayne, et al. (2019) utilizes Landsat-8 multispectral images and elevation data 
from the Shuttle Radar Topography Mission to detect landslides. In SLIP there are two crucial 
indices called Red Change and Normalized Multiband Drought Index (NMDI) that directly 
impact detecting landslides. The former index calculates the ratio of changes in Red bands 
(655 nm) in pre and post landslide images, expressed as equation 1, to map soil exposure. The 



Tavakkoli Piralilou et al 

42 
 

latter index is mainly used for measuring drought and flood conditions. It is sensitive to soil 
moisture and vegetation [15], making it an ideal tool to evaluate and map soil moisture changes. 
NMDI (Equation 2) is firstly created for MODIS multispectral data, but its performance was 
reported insufficient for landslide detection tasks; the authors modified (Equation 3 to be 
applicable) on Landsat-8 data for landslide detection. For Red change index, areas with more 
than a 40% increase in red reflectance were labelled as one and areas below the threshold were 
marked as zero. Also, mNMDI was calculated for pre and post landslide images and then using 
Spectral Characteristics Viewer from the U.S. Geological Survey mNMDI maps converted to 
binary maps with soil moisture one and without soil moisture zero. By subtracting post and 
pre-binary mNMDI maps, a change detection map with values -1, 0, and 1 is created, and then 
all values less than one are labelled as zero. 

Red Change = 
(R655 𝑝𝑜𝑠𝑡 − R655 𝑝𝑟𝑒)

R655 𝑝𝑟𝑒
  * 100                                                                            (1) 

NMDI = 
(R 860𝑛𝑚−(R 1640𝑛𝑚−R 2130𝑛𝑚)

(R 860𝑛𝑚+(R 1640𝑛𝑚−R 2130𝑛𝑚)
                                                                               (2) 

mNMDI = 
(R 860𝑛𝑚−R 2200𝑛𝑚)

(R 860𝑛𝑚+R 2200𝑛𝑚)
                                                                             (3) 

Moreover, the slope is another essential factor that authors used for mapping landslides. In 
SLIP, the slope is reclassified between zero and three based on the susceptibility to landslide; 
the higher susceptivity, the higher value, and vice versa. The remaining areas with values close 
to three show a high probability of being landslide, and values less than two indicate no 
landslide. The selection of thresholds and reclassification in the SLIP case study was based on 
the study site's topographical and physical characteristics.  

3.2  Improved Sudden Landslide Identification Product (ISLIP) 

In this section, we introduce ISLIP as an enhanced version of SLIP for landslide detection. In 
SLIP, the Landsat-8 multispectral data is used, while in ISLIP, we use Sentinel-2 images bands 
that have a similar wavelength as Landsat-8 bands for indices such as Red Change and 
mNMDI. However, in SLIP, the Red Change index can have infinite values, but in our 
method, we standardized it (Equation 4) between 0 and 1. Furthermore, we calculated 
mNMDI using the similar Sentinel 2 bands, and in our case, the values ranged between -1 and 
1. The slope layer also was fuzzified between zero and one based on the vulnerability of 
landslide in our study area. To transform all layers into the same scale, we first subtracted pre-
landslide mNMDI from post-landslide mNMDI, then fuzzified simply using linear fuzzy 
membership in QGIS, values close to 1 allocated higher membership and vice versa. 

Modified Red Change = 
(R665 𝑝𝑜𝑠𝑡 − R665 𝑝𝑟𝑒)

(R665 𝑝𝑜𝑠𝑡+ R665 𝑝𝑟𝑒)
                                                        (4) 

To detect landslides without introducing any thresholds, “AND” fuzzy overlay operators were 
used to combining all three layers, and then using the natural break clustering method, overlay 
map clustered into three classes.         
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4 Results 

Represented in figure 2 are the resulting red change, pre and post landslide mNMDI indices, 
and mNMDI change map. According to the red change map (figure 2A), where landslides 
occurred, high positive values indicate changes from vegetation to bare soil due to landslide. 
For negative values, it shows the transformation from more minor moisturized areas to areas 
with high moisture like vegetation or water bodies. Moreover, in the pre-landslide mNMDI 
map (figure 2C), areas covered with dense vegetation show higher values, while low and 
negative values represent farms, bare lands, and dry soils. However, in the post-landslide 
mNMDI map (figure 2B), due to landslides and high soil exposure, the spatial distribution of 
values close to zero became frequent. Finally, in the change detection map (figure 2D), areas 
with more changes are associated with high positive values, and it is due to the subtraction of 
pre-landslide mNMDI from the post-landslide mNMDI map. Finally, the resulting map of 
applying the “AND” fuzzy operator on all three fuzzified inputs (Red Change, mNMDI 
change map, and slope) shows the probability of being a landslide ranges between zero and 
one; the higher values, the higher probability of being landslide. The output map is clustered 
into three classes, and the third class with the highest landslide probability was able to identify 
landslides with high accuracy. To compare our result with the SLIP method, we also mapped 
landslides using the SLIP method based on the procedure mentioned in [15], and pixels with 
values higher than 2.4 were selected as landslides. 

 
Figure 2: Spectral indices generated from Sentinel 2 images. Maps stand for (A) Red Change, (B) pre-

landslide mNMDI, (C) post-landslide mNMDI, (D) mNMDI change map, (E) detected landslides (using 

SLIP), (F) detected landslides (using ISLIP), and (G) inventory map. Also, Maps from A to D are non-

fuzzified layers and presented to indicate the indices change before and after landslide events. 

5 Accuracy assessment and discussion 

The resulting maps of areas detected as landslides were compared with the ground truth 
landslide inventory to calculate the precision accuracy assessment metric. The precision metric 
indicates the proportion of regions, which are correctly detected as landslide areas. 
Quantitative accuracy assessment using the landslide inventory map (figure 2, G) showed that 
ISLIP method could see landslides with an accuracy of 72%, while the SLIP method was 58% 
accurate. Therefore, the ISLIP has a better performance in landslide detection. One of the 
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factors that helped us achieve higher accuracy compared to the SLIP method is the higher 
spatial resolution of Sentinel-2A images.  

The ISLIP algorithm shows how freely available Sentinel 2A images can be used for automated 
and landslide detection. However, the applied algorithms' transferability on the other regions 
is still considered a limitation of this study. The algorithms map changes on the surface within 
areas with high slopes. Thus, the slope factor played an important role in identifying the 
landslides, and the wrong fuzzification of the slope factor can result in a systematic bias in 
detecting landslides. Also, these algorithms may not be demonstrating the same accuracy for 
the landslides that covered by vegetation after the event. 

6 Conclusions 

The applied SLIP and ISLIP could automatically detect landslides to reduce the amount of 
time needed to analyze satellite imagery manually. This algorithm examined a large area and 
could show an acceptable accuracy compared to the current supervised classification models, 
which can be considered a practical approach in landslide research. 
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Abstract 

Monitoring ice-marginal lakes is important for glaciological and geomorphological studies, 

as well as hazard and risk assessment. Sentinel-1 synthetic aperture radar (SAR) and Sentinel-

2 optical data opened a new era for multi-temporal analysis and studying 

geomorphological changes. The purpose of this study is to compare the applicability of 

Sentinel-1 and Sentinel-2 data for mapping the changes in ice-marginal lake areas at the 

southern margin of the Vatnajökull ice cap, southeast Iceland, between 2016 and 2020. We 

semi-automatically mapped the ice-marginal lakes with object-based image analysis 

(OBIA) and based on image time series using 1) the polarization products derived from 

Sentinel-1 data, and 2) the spectral information of Sentinel-2 data, and compared the 

results. Our results show that Sentinel-1 performed better regarding the detection of the 

number of ice-marginal lakes, whereas Sentinel-2 performed better regarding lake 

delineation. Moreover, we discuss the applicability of optical and SAR data for mapping 

and monitoring the evolution of ice-marginal lakes. 

Keywords: Sentinel-1, Sentinel-2, ice-marginal lake, object-based image analysis, Iceland 

1 Introduction 

Monitoring of ice-marginal (or proglacial) lakes is important for glaciological and 
geomorphological studies, as well as hazard and risk assessment. Ice-marginal lake 
development is a result of deglaciation, where changes in the lake area and appearance are 
visible consequences of climate change (Dell, Carr, Phillips, & Russell, 2019; Shugar et al., 
2020). In recent years, freely available Copernicus data, including Sentinel-1 C-band Synthetic 
Aperture Radar (SAR) data and Sentinel-2 optical data, opened a new era for multi-temporal 
monitoring and analysing, for example, changes in lake ice (Tom et al., 2020) or glacial lakes 
(Wangchuk & Bolch, 2020). SAR data has a nearly all-weather imaging capability that facilitates 
the monitoring of ice-marginal lakes, especially in areas where frequent cloud cover limits the 
availability of optical imagery. However, the potential of SAR data for mapping ice-marginal 
lakes needs to be further exploited. Usually, mapping of the glacial geomorphology is largely 
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done by manual techniques, while (semi-)automated mapping approaches are still relatively 
rare (Robb, Willis, Arnold, & Gudmundsson, 2015). Object-based image analysis (OBIA) 
provides a set of suitable tools for semi-automated delineation and classification of 
geomorphological phenomena (Hölbling et al., 2017). It has been used for mapping various 
glacial and geomorphological features, for example, glaciers (Robson, Hölbling, Nuth, Strozzi, 
& Dahl, 2016), rock glaciers (Robson et al., 2020), supraglacial lakes (Mitkari, Arora, & Tiwari, 
2017), drumlins (Eisank, Smith, & Hillier, 2014), and landslides (Hölbling et al., 2012). The 
purpose of this study is to compare the applicability of Sentinel-1 and Sentinel-2 data for multi-
temporal analysis of yearly changes in the ice-marginal lake area between 2016 and 2020 using 
OBIA.  

2 Materials and Methods 

2.1 Study Area 

We focused on ice-marginal lakes at the southern margin of the Vatnajökull ice cap in southeast 
Iceland, which have shown a constant evolution over the last years (Guðmundsson et al., 
2019), in particular the ice-marginal lakes of the outlet glaciers Breiðamerkurjökull and 
Fjallsjökull, i.e. Jökulsárlón, Breiðárlón, and Fjallsárlón (Figure 1).  

 

Figure 1: The study area located in southeastern Iceland (left), and the location of the Jökulsárlón, 

Breiðárlón, and Fjallsárlón ice-marginal lakes. Background images Ⓒ ESRI.  

2.2 Data and Data Preparation 

We used multi-temporal Sentinel-1 and Sentinel-2 data from 2016 to 2020 (Table 1) and 
considered only summer images (one for each year) to avoid snow-cover on the ground. To 
facilitate comparability of the mapping results, we selected Sentinel-1 and Sentinel-2 images 
from the same or, when not possible, from similar acquisition dates per year. We selected 
Sentinel-1 Interferometric Wide Swath Level-1 Ground Range Detected georeferenced 
imagery with 10 m spatial resolution, with Vertical-Horizontal (VH) and Vertical-Vertical (VV) 
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polarisations from the ascending orbit (track 145). The Sentinel-2 top of atmosphere 
reflectance images were selected based on the visibility of lakes, using the Google Earth Engine 
(GEE) platform.  

Table 1: Acquisition dates of Sentinel-1 and Sentinel-2 data used in this study. 

Sentinel-1 data 2016/06/06 2017/06/18 2018/06/01 2019/06/21 2020/06/15 

Sentinel-2 data 2016/06/06  2017/06/18 2018/06/01 2019/06/23 2020/06/17 

The pre-processing of the Sentinel-1 data included updating the orbit state vectors using the 
Sentinel precise orbit file provided by the European Space Agency (ESA) (Filipponi, 2019), 
and data calibration by calculating the backscatter coefficient (i.e. sigma nought) so that the 
pixel values represent the SAR backscatter of the reflecting surface. We applied the Range 
Doppler Terrain Correction operator available in the Sentinel Application Platform (SNAP) 
to correct the topographical variations of the scenes using the freely available Global Earth 
Topography And Sea Surface Elevation at 30 arc-second resolution (GETASSE30) digital 
elevation model (DEM). We converted sigma values from linear units to decibel (dB). 

2.3 Object-based Image Analysis 

The OBIA classification was performed on Sentinel-1 and Sentinel-2 data separately using 
eCognition (Trimble) software. First, we applied the multiresolution segmentation (MRS) 
algorithm to create homogenous image objects. Then the lakes were semi-automatically 
classified based on spectral and spatial information.  

Sentinel-1 Data 

First, we created three new layers: namely a mean (VH+VV/2), and two ratios (VV/VH and 
VH/VV, respectively). We then applied the MRS with a Scale Parameter (SP) set to 50, and 
the homogeneity criteria, i.e. shape and compactness were set to 0.1. The “mean” layer was 
used for the classification of the water bodies, by applying a classification threshold of < -19 
dB for the backscatter coefficient. The classified water objects were merged and then assigned 
to the class "lake", considering the size of the merged polygons. 

Sentinel-2 Data 

First, we calculated the normalised difference vegetation index (NDVI), the normalised 
difference water index (NDWI), the normalised difference snow index (NDSI), as well as a 
brightness layer based on the mean reflectance of the visible spectral bands. Next, we applied 
the MRS using the spectral bands, the NDVI, NDWI, and NDSI indices, and the brightness 
layer with an SP of 500, and the shape and compactness criteria were set to 0.3 and 0.4, 
respectively. However, after visually assessing the segmentation results, we adapted the settings 
for 2018 (SP: 800, shape and compactness criteria: 0.5 and 0.4, respectively) to better delineate 
the lakes. We used the NDWI >= 0.3 to classify water areas and the NDVI layer and size 
criteria for classification refinement.  
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2.4 Validation 

We used reference data from Guðmundsson et al. (2019), which was created by digitizing the 
ice-marginal lakes on pan-sharpened Landsat imagery (15 m) from 2018/05/28 for validation 
of the lake area delineation and the number of detected lakes (cf. section 3.2). Due to the 
absence of complete reference data, we assessed the accuracy of the OBIA classification results 
only for the year 2018. 

3 Results 

3.1 Object-based Image Analysis Classification Results 

The OBIA classification results based on Sentinel-1 and Sentinel-2 are shown in Figure 2. We 
were able to classify all three major ice-marginal lakes and several small lakes semi-
automatically. Visual inspection of the results using Sentinel-1 and Sentinel-2 data shows no 
major errors.  

 

Figure 2: The OBIA classification of the ice-marginal lakes (cyan colour) using (a) the multi-temporal 

Sentinel-1 data, and (b) the multi-temporal Sentinel-2 data. 

3.2 Validation Results 

The reference data contained fourteen ice-marginal lakes, ten of which were identified using 
Sentinel-1, and six were identified using Sentinel-2. Moreover, we used the intersection over 
union (IoU) metric to compare the semi-automatically derived lake areas of the three main ice-
marginal lakes (i.e. Jökulsárlón, Breiðárlón, and Fjallsárlón) to the reference (Table 3).  

Table 3: Accuracy assessment of the OBIA classification for Sentinel-1 and -2 (2018/06/01). 

 Jökulsárlón Breiðárlón Fjallsárlón 
Sentinel-1 IoU (%) 84 83 86 
Sentinel-2 IoU (%) 94 95 94 
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The comparison shows that the ice-marginal lakes were accurately identified. In general, the 
classification based on Sentinel-2 produced better results than the classification based on 
Sentinel-1, with the best IoU for Breiðárlón (95%). The best classification result using Sentinel-
1 data was achieved for Fjallsárlón, with an IoU of 86%. The lake outlines derived from 
Sentinel-1 and Sentinel-2 for June 2018 as well as the reference data are shown in Figure 3. 
The lower accuracy using the IoU metric of the Sentinel-1 mapping results can partly be 
explained by slight shifts in lake position in comparison to the reference layer due to the side-
looking geometry of SAR imagery and the usage of the default GETASSE30 DEM for terrain 
correction in SNAP. The use of a more accurate and higher resolution DEM would likely help 
to overcome the SAR geometric distortion, however, in this study, we aimed at a fully 
automatic and transferable SAR pre-processing workflow using SNAP.  

 

Figure 3: Illustration of the classification results using Sentinel-1 (green), Sentinel-2 (orange), and the 

reference data (red). Background image: Sentinel-2 image from 2018/06/01. 

3.3 Lake Area Change From 2016 to 2020 

We compared the change in area per lake as shown in Figure 4. The mapping results using 
Sentinel-1 show that Jökulsárlón gradually increased from 2016 to 2020, whereas, the mapping 
results derived from Sentinel-2 show a significant increase from 2016 to 2017, followed by a 
stable period until 2020. The lake areas of Breiðárlón and Fjallsárlón increased from 2016 to 
2018 for both mapping results, followed by a slight decrease revealed by the Sentinel-1 results 
from 2018 to 2020. Sentinel-2 mapping results show an abrupt decrease from 2018 to 2019 
and an increase from 2019 to 2020 for these two lakes. This can partly be explained by the 
existence of clouds on the Sentinel-2 image from 2019 which partially obscured the shore of 
the Breiðárlón lake and affected the segmentation and classification. A comparison to the 
reference data from 2018 shows that, except for the Sentinel-1 result for Breiðárlón, the semi-
automated mapping results underestimated the lake area. Potential classification errors might 
be explained by the existence of ice blocks on the lake surface and by high soil moisture at the 
lakeshores. Another reason for differences compared to the reference data might be that the 
reference data was created based on different imagery with coarser spatial resolution.  
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Figure 4: Change in area per lake from 2016 to 2020 for the Sentinel-1 and Sentinel-2 results. 

4 Discussion and Conclusions 

Sentinel-1 and Sentinel-2 show great potential for multi-temporal monitoring of ice-marginal 
lakes. These sensors offer high temporal and high spatial resolution data, while Sentinel-1 can 
be particularly useful for multi-temporal monitoring of ice-marginal lakes, regardless of 
weather and illumination conditions. We developed a semi-automated OBIA workflow and 
achieved good accuracy values for both sensors. Guðmundsson et al. (2019) describe that most 
of the large ice-marginal lakes in front of outlet glaciers at the southern margin of the 
Vatnajökull ice cap continuously grow, particularly due to recent climate change. However, 
our mapping results do not show such a trend for Breiðárlón and Fjallsárlón after 2018. 
Further investigations are needed to confirm this and to assess how classification errors 
influence these findings. Moreover, a combined analysis of both, Sentinel-1 and Sentinel-2 
data, could offer further opportunities for analysing geomorphological changes (Dabiri et al., 
2020). 
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Abstract 

Spatio-temporal analysis capabilities of big Earth observation (EO) data are possible now on 

various infrastructures, but the transferability and interoperability of analyses remain 

challenging. This contribution describes an approach for interacting with multiple semantic 

EO data cubes, where for each observation, at least one nominal (i.e., categorical) 

interpretation is available and can be queried in the same instance. Our in-house 

developed Web-based graphical user interface (GUI) provides technical access to multiple 

semantic EO data cubes, regardless of what infrastructure they are implemented on. It is 

designed to create semantic models using a graphical language, and an inference engine 

is able to evaluate these models against existing semantic EO data cubes based on a user’s 

defined area and timespan of interest. Querying on a semantic level allows the transferability 

of semantic models across EO data cubes. Our contribution shows an approach towards 

solving this open research gap and discusses relevant challenges such as transferability of 

semantic models, on-demand instantiation, and federated EO data cubes. We believe that 

this approach offers new opportunities for improved semantic and syntactic interoperability 

in EO analyses and is better positioned to allow semantically-enabled queries possible in a 

federated EO data cube context. 

Keywords: Big Earth observation data, interoperability, spatio-temporal querying, 

semantic EO data cubes 

1 Introduction  

Infrastructures for accessing and processing big Earth observation (EO) data are becoming 
increasingly mature and reliable. A prominent example is Google Earth Engine (Gorelick et 
al., 2017), but especially technologies based on the "data cube" idea, like the Earthserver 
(Baumann et al., 2016), the Euro Data Cube (https://eurodatacube.com/), or implementations 
of the Open Data Cube (Killough, 2018). Almost all of them employ some sort of spatio-
temporal analysis capabilities. There is still no community-agreed definition for EO data cubes, 
but several works exist to better understand. The data cube manifesto (Baumann, 2017) defines 
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a data cube as “a massive multi-dimensional array; ‘massive’ entails that we talk about sizes 
significantly beyond the main memory resources of the server hardware. Data values of the 
same data type sit at grid points as defined by the d axes of the d-dimensional data cube. 
Coordinates along these axes allow addressing data values unambiguously.”. These new 
technological advances offer users access to EO data via spatio-temporal coordinates rather 
than archive-specific file-based access. New challenges surround how best to allow flexible 
and transferable analyses, potentially across multiple data cubes and technical infrastructures. 

One of the most notable concepts for improving the transferability of analyses and algorithms 
is to populate EO data cubes with analysis-ready-data (ARD) (Lewis et al., 2018, Dwyer et al., 
2018, Giuliani et al., 2017). Imagery calibrated to bottom-of-atmosphere (surface reflectance) 
together with a set of mandatory and optional quality information (e.g. cloud contamination) 
is one example of ARD for optical EO data. CEOS defines ARD as “satellite data that have 
been processed to a minimum set of requirements and organised into a form that allows 
immediate analysis with a minimum of additional user effort and interoperability both through 
time and with other datasets” (Lewis et al., 2018). In theory, this allows an algorithm to be 
executed in different EO data cubes as long as they provide ARD. An example is the Water 
Observation from Space (WOFS) algorithm (Mueller et al., 2016), which has been successfully 
applied in the Digital Earth Australia and Digital Earth Africa data cubes. 

Challenges in interoperability can be broken down into syntactic and semantic aspects of 
communication, while transferability is used in the context of robustness to changes of inputs. 
Syntactic interoperability can be achieved by technical standards for communication between 
a software client and a server (Schaeffer et al., 2012). Semantic interoperability refers to “the 
ability of services and systems to exchange data in a meaningful/useful way” (Research Data 
Alliance 2015). Transferability can refer to many things, but here we refer to the ability of an 
algorithm or analytical workflow to be used with different sets of input variables, ideally with 
minimal to no customisation required. These differences include but are not limited to 
different spatio-temporal areas of interest (e.g. geographic locations, time-spans, spatial extent 
or shape), different imagery from the same sensor, different sensor data (e.g. resolution, revisit 
time, spectral and radiometric characteristics), and even different application scenarios. 

An approach beyond providing ARD is the semantic EO data cube, which provides additional 
semantic enrichment and data (Augustin et al., 2019). A semantic EO data cube is defined as 
“a data cube, where for each observation at least one nominal (i.e., categorical) interpretation 
is available and can be queried in the same instance”. This allows executing analyses and data 
combination on a semantic level towards improved semantic interoperability; as long as the 
interpretation (semantic enrichment) of the data is the same, an algorithm is semantically 
interoperable and can be transferred across multiple data cubes and multiple sensors. 
However, such an implementation requires image understanding routines within an expert 
system (e.g. a factbase storing the facts (data and information), knowledgebase storing rules, 
inference engine applying the rules to the facts) in which semantic EO data cubes take over 
the role as factbases (Tiede et. al, 2017, Laurini & Thompson, 1992, p. 641). 

The semantic EO data cube is a method mainly developed at the Department of 
Geoinformatics – Z_GIS; the infrastructure was built around the Sen2Cube.at semantic EO 
data cube for Austria. The semantically-enabled approach allows semantic querying, facilitated 
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by our in-house developed Web-based Graphical User Interface (GUI) designed to allow users 
to switch between semantic EO data cubes of very different locations worldwide. The main 
purpose of the GUI is to develop, share and execute models based on the same semantic 
querying language, establishing a growing, common knowledge base. 

2 Semantic EO data cubes and GUI-based access 

A semantic EO data cube is typically embedded in a larger infrastructure that allows regular 
updates and semantic enrichment (and potentially automated instantiation of new EO data 
cubes) and convenient Web-based access directly in the browser with a graphical query 
language. Semantic models defined in the graphical querying language are translated into data 
cube queries and evaluated by an inference engine. Additional functionality includes a quick 
preview of query results, processing metadata (e.g. model, time frame, processing time) and 
access to query results either as a download or direct integration in other applications as a 
standardised WMS. 

Semantic enrichment refers to interpreted content of EO imagery, i.e., mapping data to an 
interpretation that represents stable concepts. It is a necessary pre-processing step to create a 
semantic EO data cube. These interpreted concepts are generally non-ordinal, categorical 
variables; however, subsets of these variables may be ordinal (e.g., vegetation categorised by 
increasing greenness or intensity). The relative level of semantic enrichment can vary in terms 
of complexity and the “symbolic” level of the concepts/variables. The concept of semantic 
enrichment itself is independent of the technology and can be potentially achieved with other 
approaches, including any artificial-intelligence-based approach.  

The definition of a semantic EO data cube as having at least one interpretation together with 
every observation requires not only a spatio-temporal data model that considers thematic 
information layers but also a metadata model. The metadata model must: (1) define the type 
of semantic enrichment; (2) allow displaying the type of the content in the GUI; and (3) allow 
automated evaluation of semantic models in the inference engine. To achieve this, we invented 
a ‘layout’ of a semantic EO data cube to describe the thematic information layers of the 
semantic EO data cubes. All of the three components are developed generically and consider 
the layout, thus allowing the creation of different ‘flavors’ of semantic EO data cubes. 

Multiple semantic EO data cubes and the knowledgebase containing semantic models are 
accessible via the same GUI. This means that the GUI serves as a unified access point for 
multiple semantic EO data cubes (See Figure 1). Users do not need to use different access 
points for different semantic EO data cubes, while the semantic EO data cubes can even be 
hosted on different infrastructures. 
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Figure 1: The GUI is designed to provide direct access to different semantic EO data cubes as factbases 

of the expert system (here: Sen2Cube.at covering Austria and a semantic EO data cube covering the 

north-western part of Syria). Since the factbases are defined using the same layout, the same semantic 

models are directly transferable and applicable between the different cubes. 

Achieving semantic and syntactic interoperability between two or more semantic EO data 
cubes requires considering the transferability and re-usability of the semantic models and its 
dependency on the type of semantic enrichment and additional information (Sudmanns et al., 
2018). The formulation of the semantic models is tied to the semantic EO data cube content, 
and we have identified three cases for achieving interoperability. First, if the layout of the 
semantic EO data cubes is defined differently, the models are directly transferable without any 
further adjustments. This is the easiest case in which users can switch between the semantic 
EO data cubes in the GUI and apply their semantic models. Second, if the layouts are different, 
it depends on which thematic information layers the models use. Usually, not all interpretation 
categories are used by a model. Therefore, the first sub-case is that the subset of categories 
used in a model is available in the layout, even if the rest is different. The second sub-case is 
that a model uses categories that are not available in the layout of another data cube, resulting 
in a situation in which the model cannot be evaluated. An example would be that one semantic 
EO data cube uses a different semantic enrichment or a digital information model, which is 
not available within an EO data cube at a different geographic location. 

In our current setup, two semantic EO data cubes are instantiated and accessible within the 
Web-based GUI. Although the semantic EO data cube covering Austria is deployed on the 
EODC GmbH infrastructure and the one covering the north-western part of Syria is deployed 
on the University of Salzburg infrastructure. The GUI is designed to allow users to switch 
between them in the selection menu. Users create a model and can apply it to both of them, 
which is possible since both semantic EO data cubes are instantiated based on the same layout 
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(Figure 2). Therefore, the first case to achieve semantic and syntactic interoperability is already 
covered, while the second case with the two sub-cases remains a research gap. 

 

Figure 2: A semantic model can be transferred to multiple semantic EO data cubes and create 

comparable results. Here: Surface water extraction in Austria (left) and Syria (right) using the same 

semantic model, bright colours indicate a higher number of water observations in the selected time 

span.  

3 Discussion 

The in-house inference engine is programmed not to make any assumptions about the content, 
i.e., data and information layers of the semantic EO data cube. Every semantic model is 
evaluated based on the layout that defines the loading and processing of the required datasets. 

Compared to accessing an EO data cube containing ARD using a Jupyter-Notebook, our 
approach creates an additional overhead in the development phase but removes several 
burdens from the users to create transferable analyses. It is easier to transfer semantic models 
instead of Jupyter Notebooks because the semantic enrichment and the inference engine 
abstract loading correct products and datasets from the users. The semantic model definition 
is separated from the selected AOI or time interval. Since the model creation and application 
are separated, and the model development approach is free of coding, it can contribute to 
increasing user uptake and allows the inclusion of new users, e.g., in an educational context, 
or allows different clients (mobile, desktop,...) to access the same knowledgebase and factbase. 
Once several semantic EO data cubes are available and accessible in the GUI, users do not 
need multiple access points or even have to learn different interfaces to conduct analyses on 
different parts of the world or using different sensors. 

The main challenges with this approach are how to exchange models between semantic EO 
data cubes that have different layouts and how to deal with spatio-temporally dependent 
models. The key is to identify whether a model uses semantic categories that are a proper 
subset of the semantic EO data cube against which it will be queried. Further, some semantic 
models may not be fully independent of the geographic areas that are covered by the semantic 
EO data cube. This includes the formalisation of temporal sequences of agricultural practices 
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that may be shifted due to different altitudinal belts or completely different due to the location 
(e.g. different latitude or hemisphere). Different climate zones or atmospheric conditions may 
also limit the transferability of some semantic models. A possible solution could be to calculate 
advanced measurements of fitness-for-use of available imagery and associated semantic EO 
data cubes or evaluate the spatio-temporal applicability of semantic models. 

4 Conclusion and path forward 

The concept and implementation of semantic EO data cubes are relatively new, yet they show 
promising performance and are suitable to be investigated further. They implement an image 
interpretation strategy such as computer vision to perform semantic enrichment, thus 
containing EO data together with at least one (categorical) interpretation. This approach allows 
querying using semantic models that are evaluated by an inference engine. Querying on the 
semantic level is the next level of abstraction that allows for semantic and syntactic 
interoperability. However, defining and instantiating semantic EO data cubes and evaluating 
the transferability of semantic models still requires extensive human expert intervention, 
similar to other EO based algorithms developed in a specific context. 

In this contribution, we show our approach of making multiple semantic EO data cubes 
technically accessible to users within a single GUI, which is designed to allow users to choose 
between the single data cubes in a selection menu. A knowledgebase stores semantic models 
that can be used to query any of the semantic EO data cubes. We also show the challenges 
that may arise when semantic EO data cubes have different layouts and, therefore, may require 
different models. 

Next investigations and outlook will be aligned along four lines of research with research gaps 
that have not yet been solved or tackled: (1) extending the layout to describe semantic EO data 
cubes, thus allowing machine-readable requests about the content and capabilities to allow 
automated evaluation whether a model is able to be evaluated or not; (2) automating the 
instantiation of multiple semantic EO data cubes based on a selected layout, their deployment 
in state-of-the-art cloud infrastructures and accessibility within one GUI; thus, users should 
not necessarily be concerned with the hosting provider of the semantic EO data cube; (3) 
enabling a single semantic query to be conducted across multiple semantic EO data cubes, e.g., 
in a federated context; (4) conducting user studies for testing and evaluating the efficiency of 
our approach compared to other approaches. These are pre-requisites for the successful 
implementation of (on-demand) semantic EO data cubes. Once they are operational, 
additional questions will concern application- and domain-related suitability of semantic 
models as well as the maintenance of the semantic EO data cubes, e.g. specifying user roles 
(admin, user, maintainer, ...) to define which user is allowed to submit a semantic query and 
how much resources will be available and allocated.  



Sudmanns et al 

59 
 

References 

Augustin, H., Sudmanns, M., Tiede, D., Lang, S., & Baraldi, A. (2019). Semantic Earth observation 
data cubes. Data, 4(3), 102. https://www.mdpi.com/2306-5729/4/3/102 

Baumann, P., Mazzetti, P., Ungar, J., Barbera, R., Barboni, D., Beccati, A., ... & Wagner, S. (2016). Big 
data analytics for earth sciences: The EarthServer approach. International Journal of Digital Earth, 
9(1), 3-29. https://doi.org/10.1080/17538947.2014.1003106 

Baumann, P (2017). Data Cube manifesto. https://earthserver.eu/tech/datacube-manifesto/The-
Datacube-Manifesto.pdf 

Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., & Lymburner, L. (2018). Analysis 
ready data: enabling analysis of the Landsat archive. Remote Sensing, 10(9), 1363. 
https://doi.org/10.3390/rs10091363 

Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J. P., Allenbach, K., ... & Peduzzi, P. 
(2017). Building an earth observations data cube: lessons learned from the swiss data cube (sdc) on 
generating analysis ready data (ard). Big Earth Data, 1(1-2), 100-117. 
https://doi.org/10.1080/20964471.2017.1398903 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth 
Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27. 
https://doi.org/10.1016/j.rse.2017.06.031 

Killough, B. (2018). Overview of the open data cube initiative. In: IGARSS 2018 IEEE International 
Geoscience and Remote Sensing Symposium (pp. 8629-8632). 
https://doi.org/10.1109/IGARSS.2018.8517694  

Laurini, R., & Thompson, D. (1992). Fundamentals of spatial information systems (Vol. 37). 
Academic press. San Diego. 

Lewis, A., Lacey, J., Mecklenburg, S., Ross, J., Siqueira, A., Killough, B., ... & Hosford, S. (2018,). 
CEOS analysis ready data for Land (CARD4L) overview. In IGARSS 2018 IEEE International 
Geoscience and Remote Sensing Symposium (pp. 7407-7410). 
https://doi.org/10.1109/IGARSS.2018.8519255 

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., ... & Ip, A. (2016). Water 
observations from space: Mapping surface water from 25 years of Landsat imagery across 
Australia. Remote Sensing of Environment, 174, 341-352. https://doi.org/10.1016/j.rse.2015.11.003 

Research Data Alliance. (2016). Agrisemantics Working Group. https://www.rd-
alliance.org/group/agrisemantics-wg/case-statement/agrisemantics-working-group. Accessed 
March 2021. 

Schaeffer, B., Baranski, B., Foerster, T., & Brauner, J. (2012). A Service-oriented Framework for Real-
time and Distributed Geoprocessing. In E. Bocher and M. Neteler (Eds.), Geospatial Free and Open 
Source Software in the 21st Century, Springer Heidelberg. doi:10.1007/978-3-642-10595-1_1 

Sudmanns, M., Tiede, D., Lang, S., & Baraldi, A. (2018). Semantic and syntactic interoperability in 
online processing of big Earth observation data. International Journal of Digital Earth, 11(1), 95-112. 
https://doi.org/10.1080/17538947.2017.1332112 

Tiede, D., Baraldi, A., Sudmanns, M., Belgiu, M., & Lang, S. (2017). Architecture and prototypical 
implementation of a semantic querying system for big Earth observation image bases. European 
journal of remote sensing, 50(1), 452-463. https://doi.org/10.1080/22797254.2017.1357432 

 
 



Kugler et al 

60 
 

Evaluation of Digital Elevation 

Models Derived from Multi-Date 

Satellite Stereo Imagery for Urban 

Areas 

 GI_Forum 2021, Issue 1  

Page: 60 - 67 

Research Paper/Best Practice Paper 

Corresponding Author: 

tobias.kugler@stud.sbg.ac.at 

DOI: 10.1553/giscience2021_01_s60 
 

Tobias Kugler1 and Lorenz Wendt1 

1Paris-Lodron-University of Salzburg, Austria 

Abstract 

High-resolution digital elevation models of urban areas can support humanitarian 

organisations in their work; especially the 3D reconstruction of buildings is desirable because 

it can be used for population estimation and damage analysis after crises and disaster 

events. In this paper, we test the quality of multi-date DEMs with 15 Pléiades images from 

Port-au-Prince, Haiti using the automatic stereo pipeline s2p. We focus on triplet 

combinations with images taken from different dates. This study investigates the meta-

parameters satellite azimuth and incident angle to understand which recording geometry 

yields a good result in terms of completeness and accuracy. It is assumed that the closer the 

multi-date constellation gets to an in-orbit triplet, the better the quality of the DEM. 

Keywords: satellite photogrammetry, digital elevation model, multi-date, matching 

quality indicator 

1 Introduction  

With the increasing availability of very high-resolution satellite imagery, such as from the Earth 
observation satellites Pléiades-1A&1B or the WorldView series, it has now become possible 
to create digital elevation models directly and fully automatically from stereo image pairs (de 
Franchis, Meinhardt-Llopis, Michel, Morel, & Facciolo, 2014; Gong & Fritsch, 2019; Krishna, 
Srinivasan, & Srivastava, 2008; Rupnik, Pierrot-Deseilligny, & Delorme, 2018). Thanks to this 
development, these data and their applications are also becoming interesting for actors outside 
the classical spectrum. Especially in the humanitarian field, automated derived elevation 
models yield a wide range of benefits. In this context, elevation models of urban areas are of 
particular interest, as they can be used for damage analyses of buildings or population 
estimates. To be able to act appropriately in crisis situations, quickly available data plays a 
decisive role. Often, however, high-quality in-orbit stereo image pairs are either not available 
in the archives, or have to be acquired in a time-consuming process (Krauß, D’Angelo, & 
Wendt, 2019). To address this shortcoming and reduce the reliance on in-orbit stereo pairs, 
several works have attempted to create DSMs from images with different acquisition times 
(multi-date), or combining images from different satellites (cross-sensor) (Facciolo, De 
Franchis, & Meinhardt-Llopis, 2017; Krauß et al., 2019; Ozcanli et al., 2015; Qin, 2019). While 
these works had access to a tremendous stock of images (up to 200 images per site), 
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humanitarian organizations do not have the budget to acquire this number of images. For this 
reason, this study examines a Cost-effective approach by using only three images for the 
generation of a DEM. It addresses the question of which recording geometry yields the best 
results given that every chosen image in a triplet was taken at a different date. While other 
work has shown which parameter constitutes a good stereo pair, this study investigates the 
constellation of the satellite azimuth and the incident angles within a triplet. It can be assumed 
that the smaller the deviation of the three recording points from an optimal in-orbit tristereo 
recording, the better the quality of the calculated DEM. From a set of 15 images, all possible 
combinations are computed and the satellite azimuth and the incident angle are plotted. To 
generate the DEM, a multiview stereo method is used, which means that the images are first 
processed pairwise and then the resulting DEM are merged. Afterwards, the completeness and 
the accuracy of every fused DEM is computed by comparing it against a fusion of two in-orbit 
tristereo DEMs. This groundtruth data represents the best possible outcome obtained with 
optical data. Completeness is defined as a percentage of the valid cells. A cell is counted a valid 
if the vertical error is less than 1 meter with respect to the ground truth data. Accuracy is the 
root mean square error of all the calculated cells. 

2 Related Works 

The quality of the generated DEMs can vary significantly and depends on the respective 
recording parameters. Various works have shown which parameters result in a good stereo 
pair. On one hand, the convergence angle plays a decisive role. While Krauß et al. (2019) 
indicate an optimal angle between 5 and 15 degrees for Pléiades images, Facciolo et al. (2017) 
report an optimal angle of about 20 degrees for Worldview 3 images. On the other hand, it is 
obvious that the time difference between the two images is an important factor. The closer the 
images are to each other, the greater the likelihood that the images will be similar, and therefore 
more suitable for matching. As the time difference between the images increases, the urban 
structures on the ground will also have changed due to construction activity, making it difficult 
for the images to match. The same is true for seasonal influences such as vegetation periods 
or snow. Nevertheless, Facciolo et al. (2017) report that good results could also be achieved 
for images with the same DOY. Furthermore, Qin (2019) and Krauß et al. (2019) report that 
the angle difference also influences the quality. The larger this difference is, the worse is the 
completeness of the generated DEMs. In addition, sun elevation must be sufficiently large, so 
that no long shadows are formed, which are difficult to match (Krauß et al. 2019). 

3 Data 

The data used for this study consists of 15 panchromatic Pléiades acquisitions of Port-au-
Prince, Haiti (Figure 1). The images cover an area of roughly 120 km2 and were acquired 
between July 2013 and April 2015 with a ground sample distance (GSD) of 0.7 m. There are 3 
triplets and 3 tuplets that were taken from the same orbit, respectively. To reduce computing 
power and save time, one test site has been chosen (Figure 2). The test site has a extent of 400 
x 400 meters and is located in a flat terrain with relatively large and rectangular urban 
structures.  
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Figure 1: Data coverage in Google Earth 

 

Figure 2: Footprint of the test site (07.2013) 

Table1: Overview of available Pléiades images. 

short name acqu. date satellite azimuth [°] global incident angle [°] 
sun elevation 

[°] 

20130705_001 05.07.2013 234.66 8.43 70.8 

20130705_002 05.07.2013 280.17 5.68 70.8 

20130705_003 05.07.2013 328.24 8.11 70.8 

20130706_001 06.07.2013 128.75 13.55 69.0 

20130706_002 06.07.2013 73.34 13.78 68.7 

20130706_003 06.07.2013 100.85 12.13 68.8 

20141117_001 17.11.2014 243 18.96 50.1 

20141117_002 17.11.2014 318.11 17.90 50.0 

20141117_003 17.11.2014 274.26 14.90 50.0 

20150429_00A 29.04.2015 238.1 6.43 71.9 

20150429_00B 29.04.2015 300.62 6.13 71.9 

As groundtruth, a composite of two tristereo Pléiades DEMs were taken. It was processed by 
the CATENA multi-stereo processing chain (Krauß et al., 2019) and consists of the same 
optical input data this study is using. This groundtruth DEM represents the best possible 
output of the existing data. By comparing the multi-date tristereo DEMs with the optimum, 
the deviation of the recording geometry from the optimal recording geometry can be 
measured. 

4 Method 

In the first step, the images and their RPC files were cropped to the extent of the test site using 
the opensource tool "RPC Cropper". The repository can be found on github 
(https://github.com/carlodef/rpc_cropper). However, the images cannot be cropped 
directly. Since this tool only accepts image coordinates as input, the geographical coordinates 
of the test site had to be converted into the image coordinates for each image. Afterwards, all 

https://github.com/carlodef/rpc_cropper
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possible combinations of three images are calculated. Since not all images overlap the test site, 
only 11 images are available for the area of interest. Combinations with images of the same 
date or only one day difference are not used when conducting the study. Only those 
combinations where the images were taken on different days are tested. This results 36 valid 
image combinations.  

After these preparation steps, the DEMs can be generated with the fully automatic pipeline 
software s2p. It allows the processing of three-view stereo datasets by handling the stereo pairs 
independently and merging the resulting elevation models automatically. No further prior 
processing of the images is necessary. The only input required is the cropped images and their 
RPC file. A refinement of the semi-global matching (SGM) algorithm is used to match the 
images (Facciolo, Franchis, & Meinhardt, 2015). To solve the stereo image rectification 
problem of pushbroom cameras, s2p cuts the images into small tiles. For detailed information 
about how the s2p pipeline works, see (de Franchis et al., 2014). The resolution of the 
generated DEMs is 1 meter. Of the 36 image combinations, 26 resulted in an output. The 
remaining combinations yield an error, meaning no elevation model can be calculated.   

Finally, the elevation models are aligned to the ground truth data. The co-registration is done 
with the Open-source tool "demcoreg" (https://github.com/dshean/demcoreg) which uses 
the algorithm outlined by Nuth & Kääb (2011). Since both heights are calculated using the 
ellipsoid WGS84 and have the same resolution, no prior vertical datum shift or resampling is 
necessary. Subsequently, a benchmark test of the generated DEMs takes place, carrying out a 
grid-based comparison of the DEM and the groundtruth dataset regarding completeness and 
accuracy.  

5 Results 

Figure 3 shows three generated multi-date DEMs. The images of the triplets span a period of 
21 months. The quality of the DEMs varies quite strongly: while DEM A has a completeness 
of 29.8% and an RMSE of 2.95 meters, DEM C reaches only 14% and an RMSE of 81.53 
meters. However, the visual observation as well as the RMSE value of DEM A indicate that 
significantly more pixels are useful to estimate houses and their heights for humanitarian 
operations. Figure 4 shows that with a threshold of 2 meters, already more than 40% 
completeness is achieved. In addition, it can be assumed that with a simple filling hole function 
this could be increased. 

 

https://github.com/dshean/demcoreg
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Figure 3: Comparison of three generated multi-date DEM's with ground truth data. Height values are in 

meter. Image combinations are: A) 20130705_003 - 2141117_003 – 20150429_00A, B) 20130705_002 – 

20141117_002 – 20150429_00A, C) 20130705_001 – 20141117_001 – 20150429_00A 

 
Figure 4: Completeness of DEM A with 

increasing threshold for valid pixels 
 

 

Figure 5: Error Image of DEM A with a zoom in on the 

right side. Stretched visualization (0.5% Clip) 

 

Groundtruth DEM 

Completeness: 29.8% 

RMSE: 2.95 meter 

Completeness: 22.5% 

RMSE: 3.43 meter 

Completeness: 14.1% 

RMSE: 81.53 meter 

A 

B C 
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The error image of DEM A (Figure 5) shows that smaller error values occur mainly within the 
roof surfaces. High error values, on the other hand, occur along building edges. Streets and 
spaces in between are hardly matched. Also single buildings are missing completely. 

  

  
Figure 4: skyplot of the satellite constellation of the 3 DEMs and the ground trouth data. The satellite 

azimuth angle ranges from 0° to 360 ° and the incident angle from 0 ° to 20°. Note how the two triplets 

at ground truth are arranged on a line and look at the scene from two opposite sides, getting optimal 

coverage. 

The different multi-date triplets on the skyplot illustrate that the images of an in-orbit triplet 
are on one line. To replicate this optimal constellation, one image from 29.04.2015 could be 
substituted in DEM A and DEM B, while the third image (14-11-17) does not fit. These two 
DEMs also show better completeness values than DEM C. In contrast, all images of DEM C 
have a very similar azimuth value, and thus, cannot represent the scene from different angles, 
leading to poor results. 

For the best-achieved result, DEM A, the individual images have an incident angle of 
8.1°(20130705_003), 14.9° (20141117_003) and 6.4° (20150429_00A). The time difference is 
21 months. The recording positions are arranged so that the target was captured from the 
front, the centre, and the back. The convergence angle between each pair is within the ideal 
range of values recommended by Facciolo et al. (2017) and Krauß et al. (2019). 

 

 

A           

B C 

Groundtruth 
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stereo pairs for DEM A convergence angle 

20130705_003-20141117_003 12.0° 

20130705_003-20150429_00A 10.3° 

20141117_003-20150429_00A 10.4° 

6 Discussion and next steps 

The achieved completeness values with a selection of only three images are low. Nevertheless, 
the best results are achieved when the recording geometry of the images simulate an in-orbit 
recording and capture the target from the front, the centre, and back. A drawback of the 
method is that the influence of the time difference cannot be determined, since all 
combinations have the same time span. 

Due to the low completeness values, the next step is to check whether single stereo pairs 
provide better results than triplets. If this is the case, the question arises of how to merge the 
stereo pairs outside of s2p. One possibility is to take the median for each pixel. Another 
possibility would be to weight the DEMs using the Convergence Angle, the Coverage, or the 
Sun Elevation Difference and fill the NoData places of the best DEM with the information 
of the others.   

Finally, it would be interesting to test the quality of the generated DEMs at sites with different 
urban characteristics to see if an industrial area with large rectangular buildings (harbour area) 
differs from small-structured cottage settlements on steep slopes (south of Port-au-Prince). 
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Abstract 

In this paper, we show a framework for partial bot rejection based on spatially supervised 

text mining from social media messages. We show qualitative results towards the reduction 

of known bots and give hints on how this cleaning technique can help us in filling gaps of 

current signals related to human life on Earth based on social media. The bot rejection 

framework is based on using a spatial signal for supervising a machine learning model with 

extreme label noise still being able to reject some of the unwanted components of the social 

media stream. Furthermore, we comment that such models show significant biases and can, 

therefore, not be used responsibly without bias analysis and mitigation per application. 

Keywords: social media analysis, text mining, data cleaning 

1 Introduction  

Urbanization is one of the most pressing and challenging megatrends for human life on Earth. 
As depicted in Figure 1, the rural population has constantly been increasing up to today, but 
with a slowing effect, it is expected to start decreasing by the mid of the current century. In 
contrast, the urban population is expected to have at least linear growth in the time such that 
by 2050 urban areas give a home to more than double as many people as the rural areas (United 
Nations Department of Economic Affairs, 2018). Moreover, the local dynamics of this 
development are surprising, if not daunting. For example, it is expected that Delhi, India, will 
become the largest city by 2030, overtaking Tokyo. In 2018, however, the United Nations 
report 37.4 million inhabitants for Tokyo and only 28.5 million for Delhi. The expectation 
formulated for 2030 is that Tokyo will shrink to 36.5 million inhabitants while Delhi will grow 
to nearly 39 million inhabitants. This is a growth of 11 million inhabitants in 12 years or about 
one million inhabitants per year. This extreme local variability of the dynamics implies heavy 
challenges, for example, for the transport system (food, mobility, waste disposal etc.), for the 
infrastructure (electricity, water, healthcare, police, etc.), and for the environment (e.g., air and 
water pollution). 
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Figure 1: Global Urban Population Compared to Rural Population - 1950 - 2050 as Expected by the United 

Nations. 

The United Nations have established 17 Sustainable Development Goals (SDGs), many of 
which have strong interaction with the process of urbanization (United Nations, 2019). For 
example, urbanization is related to zero hunger and no poverty, as the hope for jobs and fleeing 
from rural poverty is one reason people move into the city. Good health and wellbeing, as well 
as quality education, are challenged as well because these rely on infrastructures that might be 
difficult to grow at the needed pace and at the same time  motivate people to relocate to the 
urban areas. Furthermore, clean water and affordable and clean energy is similarly challenging 
as the energy density needed in megacities is difficult to provide with renewable energies today 
The consequences of quick urbanization processes directly challenge sustainable cities and 
communities, climate action, life on land, and life below water in terms of pollution.  

In order to cope with this situation on a global scale, innovative methods of data acquisition 
and data analysis are needed, which go beyond the current observational capabilities mainly 
based on remote sensing from space. Because these overhead observation systems do not 
observe the process of urbanization, but rather the impact of urbanization on morphological 
structures, while it is comparably easy to see cities grow from a spaceborne platform, it might 
be difficult to get a reliable signal on the expected minor shrinkage of Tokyo. It is unlikely that 
this will result in a major change in the morphology. Therefore, we propose and follow a 
different path of using additional signals with strong anthropogenic components to better 
understand these dynamics. 

One such signal is represented by night light observations as, for example, provided by NASA 
and NOAA. These images represent the amount of light emitted at night, which correlates 
with human settlements quite strongly. In addition, the amount of light has been used to 
estimate census parameters in the United States.The more light is being observed, the higher 
the population density and the average income (Chen & Nordhaus, 2019). Figure 2a depicts 
an example of such night light observations. The limitation of these observations is twofold: 
long integration times are used in order to come up with clear signals, and the resolution 
remains limited. That is, light gives us kind-of an upper bound to the urban extent as light is 
among the first persistent signals in settled areas.  



Werner 

70 
 

 

Figure 2: NASA Night Light Imagery and Twitter Occurrence over Europe. 

Another promising signal can be extracted from social media depicted in Figure 2b. Social 
media message frequency also correlates to population density in areas of social network 
adoption (Li et al., 2013). However, social media is full of special noise patterns induced by a 
high number of bots sending messages and frequent trends that have a varying spatial 
resonance ranging from global (#metoo) to very local resonance (e.g., hashtags related to local 
events). Therefore, long integration times are needed as well, such that the social media data 
represents a reasonable average behaviour. However, when looking closely at densities, it 
seems that social media is more focused on city centres and, therefore, a more selective signal 
compared to night light emission None of these signals can truthfully represent the 
sociodemographic indicators of interest, including population density, wealth, and income, but 
all of them show a slightly different pattern of correlation with these signals of interest. 
Therefore, we expect a joint observation of all of these signals towards unexpected diverging 
patterns is a suitable monitoring aid for systematic urbanization analytics. 

This paper shows how a spatial knowledge injection method applied to text mining can be 
used to reduce some unwanted signals from social media, making social media a more reliable 
signal. In order to clean up the Twitter signal, the aim is to remove components that are just 
due to bots or automated messaging. In order to detect a component of such bot messages, 
we apply text mining to the social media messages in order to detect a very spurious pattern 
of bots, namely, that many bots are not using sensible location information. We learn a bot 
rejection model based on training it with all precisely geolocated tweets based on whether the 
location is over land or ocean. While some of these messages over the ocean might originate 
from shipping, many of these messages are expected to be blurring the patterns of urbanization 
we want to observe.  
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2 Methodology 

2.1 Datasets 

In this study, we use three datasets. The first dataset is the NASA/NOAA Night Light Imagery 
for 2018. It represents the average light emission in 2018 across the globe in a medium 
resolution of about 500m per pixel (of course varying across the globe due to the WGS84 
projection). This data has been acquired by the Suomi NPP satellite and processed by NASA 
to account for the moon phase dynamics trying to normalize towards a moon-phase 
independent representation of the light emission. This dataset comprises 3.73 billion pixels. 
The second dataset is a sample of all observed social media messages throughout 2018 acquired 
from the public Twitter stream, representing about one per cent of the total social media 
messages on this platform. We sampled a set of 220 million precisely geolocated tweets (note 
that these include bots and retweets due to the specification of the stream API endpoint) and 
process both the geospatial location and the raw text, including hashtags and punctuation in 
all observed languages. The third dataset is the dataset representing country boundaries across 
the world. For this purpose, we take the LSIB 2017 Large Scale International Boundary 
Polygons Dataset as published by the United States Department of State at the Office of 
Geographer. It presents 284 countries in 312 features modelled with 2,342,905 points. 

2.2 Labeling 

In a first step, we label Twitter data from the first three months based on the country dataset 
in two categories: land and water . As we already expect very high label noise in this dataset as 
some tweets might be from very good bots or human beings around the ocean, we do not 
create geospatial buffers around the countries to take care of coastal areas into account. 
Instead, we rely on the fact that most tweets in the ocean are observed far enough from the 
nearest country In order to do this efficiently, we need to rely on a dedicated implementation 
based on well-performing bulk loaded in-memory R*-trees to speed up point in polygon 
queries. We rely on HDF5 and boost::geometry for the core operations and modern C++, 
including OpenMP for parallel processing. We follow a strict property map interface, that is, 
records that are implicitly linked by their primary key, which is just the row number in the 
memory block allowing for constant-time access to individual records. With an average 
Gaming PC (Intel i7, 32 GB RAM), we process the point in polygon join in this way in 8 hours 
without simplifying geometry. The resulting dataset is heavily imbalanced, with only 5.7 million 
tweets observed over water. Hence, we then create a class-balanced dataset by sampling 
alternating between land and water classes such that we gain a temporally ordered sub-dataset 
with the same numbers of water and land classes and a total of 11 million1.  

  

                                                           
1 Source codes and details of this project and are available at https://www.bgd.lrg.tum.de/code/2021-

landwatersplit. 
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2.3 Text Mining 

The data mining problem induced by the labelling process is to develop a text mining model 
that can be applied across many languages, including non-human languages like hex-codes 
observed for some bots. As explained, we have now a labelled dataset of tweets based on 
whether it was observed over the ocean or a country. In a second step, we train a skip-gram 
model with subword information on the tweet text towards detecting the class “water” or 
“land” (Bojanowski et al., 2016). This model is based on cutting text into small pieces of n 
consecutive characters, so-called n-grams, and assigning a randomly initialized vector of 
chosen dimension with each n-gram. Then, we minimize an objective function using a variant 
of gradient descent which balances two aspects: one loss term pulls vectors associated with 
textually nearby n-grams (those that appear not farther away than a chosen parameter “context 
window” in the text) towards each other minimizing their Euclidean distance in the embedding 
space while a second loss term compares with random non-neighbouring word vectors and 
pushes the representing vectors away from each other. Word embeddings obtained in this 
unsupervised way are then used to numerically represent words or sentences (by taking the 
mean of the words or n-gram tokens). We apply a deep neural network with one softmax layer 
to directly transform these learnt word embeddings into a classification result for tweets. As 
expected, the model’s performance is not excellent, as calling for a land/water split from 
textual data is not plausible. Nevertheless, it gives us an interesting signal regarding the 
trustworthiness of tweet messages, as we explain in the sequel. More concretely, we train a 
model with an embedding dimension of 10 and tune parameters for an optimal overall F1-
score. Therefore, we train on the first million entries in the balanced sample, use the second 
million entries to validate hyperparameters, and evaluate over time in slices of one million 
tweets. Results are depicted in Figure 3. The model reaches a performance of about 0.8 F1-
score, keeping in a window of less than 5 per cent around. It is interesting to see that numbers 
degrade only a neglectable amount over time and stabilize around 0.80 overall F1 quickly. This 
is a hint that only a small fraction of the model does not generalize over time.  

Furthermore, it is nice to see that the precision of the water class is higher instead of  the land 
class. The surprising characteristics of this model are visualized as well in Figure 3 as a ROC 
curve which shows the behaviour of the false-positive rate as opposed to the true positive rate 

when changing the threshold parameter  at which the devision between land and water is 

made. Depending on the actual application and its demands, a suitable can be chosen to 
trade-off precision and recall. 
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Figure 3: Performance of the classifier over time and in relation to choosing a classification threshold  

3 Results 

We apply this model over land and reject tweets that are similar to those observed 
throughout the oceans. Figure 4 depicts an application of this framework to a one-month 
data sample taken from the Twitter social network. That is, we trained in the past and take 
fresh data and classify it into the two classes “ocean” and “land”. This figure is representative 
of all the one-million slices. 

 

Figure 4: Illustration of Bot Rejection Result on a One-Month Data Sample. 
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Without knowing exactly, what the model rejects over land, Figure 4 shows the behaviour of 
the trained model. As one can see, the model predicts low values over the ocean and higher 
values over land while it predicts surprisingly low values, for example, for the rectangle over 
Finland, which represents a known bot using fake locations from this rectangle. This illustrates 
that a spatially semisupervised bot rejection scheme is able to correctly reject some of the fake 
messages that we observe in social media datasets. At the same time, however, it is easy to see 
some unwanted results. For example, in Japan and more generally around Asia, we are rejecting 
many more tweets as in countries with western languages. This is a severe bias, which is easy 
to explain. Most of the Twitter social network data is communicated in the English language, 
and non-western languages take only a small fraction of the data. Therefore, the model is 
overfitted to English (or more generally Western) languages and has problems learning Asian 
languages from the given sample or because of the pictographic script. Still, with a thorough 
case by case evaluation, it seems to be viable to apply this model at least in Europe and the 
United States and it can, for example, enable the detection and analysis of urban structures 
below the very noisy Finland bot which is difficult without such a scheme. 

Further research is needed to assess for each possible social media mining application 
independently whether such a bot rejection scheme is helpful (increasing correlation) or not 
(e.g., ethically unsound due to biases) and where to put the threshold on the bot scores. This 
is a difficult question that needs to be answered in the light of individual applications as it 
depends on the spatial integration area (how much data is left for further analysis in each 
analysis unit), the spatial focus (are we interested in the city centres, where social media 
presents a strong signal or more in the extended urban space and the borders of cities, where 
social media messages become rare). Furthermore, the rejection scheme puts a tradeoff 
between preprocessing and data mining in the sense that even if the model was correctly able 
to reject tweets originating from bots, it would as well reject some messages (false positives) 
that weaken the spatial signal. Therefore, a selective threshold leads to less data in the following 
data-mining stag;, a weak threshold reduces the impact of the current approach. Finally, one 
might want to probabilistically calibrate the classifier and use the calibrated scores for upstream 
processing instead of simple thresholding. This might mitigate some difficulties of setting a 
threshold but implies a more complex input of weighted messages to the upstream data mining 
stages. 

4 Conclusion 

This paper explored how the injection of spatial knowledge into a text mining problem through 
labelling can help filter streams of location-based social network messages sensibly. We were 
able to reject the most obvious bot over Finland. We were able to reject the most obvious bot 
over Finland. This qualitative result is not enough to understand the behaviour of this model. 
We will emphasise possible applications in future work, especially towards propaganda 
awareness, social media trend analysis, outlier and event detection, and land cover 
classification. This is, to the best of our knowledge, the first time that a spatially semisupervised 
bot detection and rejection model was designed and showed to perform well with an area 
under curve measure (ROC_AUC) of 0.85. For clarity, we do not claim that this model rejects 
bots. Any claim towards this direction would ignore that language models like GPT-3 (Brown 
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et al., 2020) and BERT (Devlin et al., 2018) can generate text in a quality that is nearly 
indistinguishable from human text and that human beings are often steering bot networks to, 
for example, disseminate fake news or bots just pick up valid messages for retweets. We claim 
to be helpful to filter a very specific component of communication samples that overlaps with 
bots. We envision using this framework of spatial supervision as well beyond social media 
classification.  

We expect that models that allow us to observe and compare anthropogenic signals from a 
multitude of decoupled sensing systems (social media, light, activity, prosperity, …) help to 
put in place global indicators for many of the United Nations Sustainable Development Goals, 
most importantly, “sustained communities” and “life on land”. However, more research in 
bias estimation, de-biasing, and more generally in the ethical implications of using social media 
signals is needed before a wide adoption is encouraged. 
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Abstract 

Database systems capable of efficiently storing geospatial data are widespread. However, 

recent developments in earth observation systems, remote sensing, mobile mapping, and 

crowd sourcing lead to large amounts of geospatial mass data that can hardly be handled 

efficiently with the existing solutions. Especially large geospatial raster data require novel 

concepts for well-organized data storage. 

A concept for storage of large geospatially and temporally referenced image data using 

the NoSQL graph database system Neo4j as a research subject of the project “RiverView®” 

is introduced. New strategies and access structures have been developed to ensure the 

persistence and performant access to image data in Neo4j. These strategies are compared 

with the up-and download performance of the widespread Rasdaman array database 

system.  

Keywords: geospatial raster database, graph database, big geo data, image database, 

Neo4j 

1 Introduction  

Database systems storing spatial-related data (spatial or geodatabase systems) have become 
standard in the geospatial domain, e.g. as a core component of modern geoinformation 
systems or distributed spatial data infrastructures. Due to the emergence of novel or further 
developed geospatial data acquisition methods like mobile mapping systems or multi-sensor 
earth observation systems, the storage of big geospatial raster data is becoming increasingly 
important. 

This study is part of the research project “RiverView®” and presents an approach for storing 
of big geospatial raster data within a NoSQL database as well as a benchmark with an existing 
database system. 
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2 State of the art and related work 

Geodatabase systems are very common in the field of geospatial data management (Bill 2016). 
Consequently, there are several commercial and free geodatabase systems available like Oracle 
Spatial and Graph (Oracle Corporation 2021), PostgreSQL/PostGIS (PostgreSQL Global 
Development Group 2021, PostGIS Project Steering Committee 2021) and MySQL (Oracle 
Corperations and/or affiliates 2021). Often these storage systems are further developed object-
relational databases that have been expanded by specific spatial data types, spatial access 
structures, and analyses (Yeung & Hall 2007). While in the past, geodatabase systems were 
mainly applied for storing spatial features as vector data (vector features), more recently, the 
demand for the efficient storage of spatial raster data has risen. The reason for this 
development is, in particular, the advent of further developed geospatial data acquisition 
methods like modern laser-scanning devices, high-resolution digital cameras and novel remote 
sensing sensors producing large volume raster data sets that require efficient storage (Nebiker 
1997). Raster data is represented by (often equidistant) raster cells, which, in the case of raster 
images, are picture elements and can be stored in implicit structures like matrices or arrays 
(Nebiker 1997). Brisaboa et al. (2017) described the efficient querying of raster and vector data 
via k2- respectively R-Tree data structures. Database systems for storing image data and its 
classifications have been developed since the late 1970s, e. g. REDI and GRAIN (Chang et al. 
1980), (Tamura et al. 1984). In the 1990s, Peter Baumann developed the first prototype of 
Rasdaman (Rasta Data Manager) to store multidimensional arrays in a database system, 
especially for geospatial or space sciences (Baumann 1993), (Baumann et al. 1997). Rasdaman 
is a middleware working with PostgreSQL and SQLite on a storage basis (Baumann 2018). 
Since the term Big Data arose (Chalmers et al. 2013) with its different types and particular 
challenges (Lansley et al. 2019) arises, NoSQL database systems are becoming increasingly 
popular. In (DeZyre 2019) several reasons are identfied for using NoSQL database systems in 
terms of Big Data because relational database systems are not suitable for the complexity and 
heterogeneity of upcoming data. Additionally, NoSQL database systems are easily expandable. 
Since Big Data is complex and contains highly interconnected information, it is represented 
well as a graph (Miller 2013).  

3 Background 

The research project RiverView® (FiW 2020) aims at developing a novel approach for the 
holistic monitoring of medium and small watercourses. The core component of RiverView® 
is an unmanned surface vehicle (RiverBoat, Fig. 1) equipped with multiple sensors, which 
allows for autonomous digital water data acquisition with high spatial and temporal resolution. 
In addition to chemical-physical sensors, an above-water mapping system is installed , 
containing an omnidirectional multi-camera system consisting of 6 individual cameras, with 
which georeferenced images (5 MP each) of the water environment can be recorded 
continuously at high temporal frequency (max. 10 Hz). 
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  Figure 1: RiverBoat         Figure 2: Water body information system 

For managing all collected data, a GIS-based water body information system (Fig. 2) was 
developed. Therefore, efficient and powerful storage capacities due to the heterogeneous and 
large volume datasets are required. Whilst the scalar and vectorial data (e.g. O2 level, water 
temperature) can be inputted directly in a relational geodatabase, image data storage in 
particular is a major challenge because it has to fulfil the following characteristics: 

1) (Near) real-time data export 
2) Scalability / Big Data ability 
3) Handling heterogenous data 

Pre-existing solutions (e.g. PostgreSQL/PostGIS, Oracle) have been tested for geospatial 
image storage (Hein & Blankenbach 2017). However, after concluding evaluations, several 
problems (e. g. no real-time ability, no Big Data ability) were identified.  

Hence, a novel concept was developed for storing geospatial raster data based on the NoSQL 
database system Neo4j. Neo4j (Neo Technology 2018) is a graph database that includes the 
topological components “node”, “relationship”, “property” and “label” as well as data 
indexing features to find nodes as basic information item faster in the graph. For geospatial 
data handling Neo4j provides a spatial library including e. g. spatial search trees (R-Trees) to 
accelerate read operations on spatial data (Taverner 2019). 

4 Raster Data Storage and Indexing  

A geospatial raster image is a matrix of picture elements (pixels) consisting of colour and 
possibly transparency information. In practice, two approaches are commonly pursued for the 
database-driven storage of geospatial raster images. Either the raster images are stored directly 
in the database (e. g. by using Binary Large Object (BLOB)) or using an image file format on 
the hard disk. In both cases, the metadata (e.g. spatial reference, image dimensions and 
resolution) are stored in the database that enables the deployment of useful access structures 
to the data.  
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Database indices are utilised as efficient access structures that have to be optimised, in this 
case for raster data in different resolutions. For the latter image, pyramids are used to provide 
the original image in different resolutions (Fig. 3, left). 

                  

Figure 3: Image pyramid and adapted tiling (Source: Esri 2021) 

Another crucial database access structure for raster data is tessellation (Fig. 3, right). For real-
time applications, the ability to load only parts of images is necessary, hence, images must be 
split into delimited parts. Therefore, rectangular blocks are normally applied, which is why this 
process is also commonly known as tiling. However, in general, different tiling strategies can 
be used, e.g.: 

1) Aligned Tiling: The Aligned Tiling Strategy (ATS) divides the image data into 
rectangular tiles with equal height and width (Fig. 4, left top). 

2) Random Tiling: The Random Tiling Strategy (RTS) calculates for each rectangular tile 
an individual height and width randomly (Fig. 4, left bottom). 

3) Region-of-Interest Tiling Strategy (RoITS): This tiling strategy was explicitly 
developed for the RiverView application because large parts of the images contain 
water or sky, which are less relevant to users. Thus, the general idea was to tile only 
the interesting areas in the image in a more granular way. The RoITS, therefore, 
identifies points of interest (POI), e.g. by calculating the image feature points using 
the SIFT (Lowe 2004) algorithm (Fig. 4, right). The more feature points found in an 
area, the more granular the area of the image is tiled: If a certain amount of points are 
found in a rectangle, a tile is defined. 
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Figure 4: ATS (left top), RTS (left bottom) and RoITS (right)  

Both, image pyramids and tiling, is then used to create a spatial index, speeding up spatial 
queries (e.g. query boxes) on the data. In geodatabases, search trees usually represented by 
graphs are applied and are stored separated from the data itself. A very widespread spatial 
search tree is an R-Tree (Fig. 5) (Guttman 1984).  

 
Figure 5: R-Tree on image (right) and R-Tree as graph (left)  

5 Implementation 

For the implementation of the raster data storage in Neo4j, it had to be decided whether only 
the metadata and the access structures or also the image data itself should be stored in the 
database (see section 4). Out of preliminary tests, the storage of binary (raster) data directly in 
the database is not efficient, which is also confirmed by (Armbruster 2016). Hence, the raster 
data is stored on hard disk while Neo4j holds the metadata. 

Thus, for each image, the following steps were conducted:  
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1) An image pyramid (Gaussian pyramid) is created. 
2) Each level of the pyramid is tiled using the respective variants ATS, RTS and RoITS. 
3) A search tree (R-Tree) is created for each pyramid level. 
4) The tilesets are stored on a hard disk while the metadata, a link of each tile, and the 

R-Tree is stored into Neo4j. 

For the implementation of these four consecutive steps, OpenCV and NumPy were used. 
Uploading images in Neo4j is done via Python with the extension Neo4j Spatial. In the 
database, only the extends of the image tiles are stored as polygons and the spatial reference 
as point positions. 

For the subsequent benchmark of our new raster data management concept, the images were 
imported additionally into Rasdaman, a powerful image database storing multidimensional 
array data. 

6 Evaluation 

Whilst data access structures lead to a performance gain at read access, they cause a decrease 
in performance for write access. Hence, for benchmarking an evaluation between the two 
databases, Rasdaman and Neo4j, regarding up- and download performance was conducted. 
Both databases (Neo4j v3.4.9; Rasdaman v9.6) were installed on the same computer with 
Linux Debian 8 (6GB RAM). 

Fig. 6 shows the upload results of the different tiling strategies with varying tiling sizes (480 x 
480, 500 x 500, 1000 x 1000) on the abscissa axis and the time in seconds on the ordinate axis. 
For RoITS at 50 POI, the tiles are 481 x 633 pixels on average. At 100, POI the tiles have an 
average size of 554 x 805 pixels. RoITS needs the longest time for uploading data – no matter 
which size of POI is considered. ATS and Rasdaman show a fast upload time. 

 

Figure 6: Upload benchmark with comparison to Rasdaman 
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The download test is triggered by specifying spatial coordinates of a section of the image which 
is required. Hence, a bounding box (range) query with the geometric function “intersects” is 
executed in the database. Furthermore, the corresponding tiles within the bounding box are 
loaded from the database. Fig. 7 depicts the average download time for the resolutions of the 
pyramid levels 0 to 3 when the entire image (8000 x 4000 pixels) is loaded. It is noteable that 
Rasdaman (both tiling sizes) and ATS (500 x 500 pixels) take the longest time, taking 
approximately 3 seconds for the download. All strategies vary between 1.15 and 1.62 seconds. 
Fig. 8 shows the download times in the resolution levels 0 to 3 of the pyramid level with a 
bounding box of (x1, y1, x2, y2) = (3526, 512, 7654, 3709). Considering the number of nodes, 
it can be concluded that the higher the number of generated nodes there is, the more time the 
download takes (see Table 1, Fig. 7 and Fig. 8). 

A similar result to the upload emerges: Rasdaman (both strategies) and ATS with 500 x 500 
tiling require the most time. All other strategies require between 0.66 and 0.92 seconds. 

Table 1: Number of nodes for strategies 

Strategy Size 
Number 
of nodes 

ATS 500 x 500 pixels 13,086 

ATS 1000 x 1000 pixels 3,349 

RTS 480 x 480 pixels 5,317 

RTS 1000 x 1000 pixels 2,520 

RoITS 50 POI 6,601 

RoITS 100 POI 4,573 

  

Figure 7: Download benchmark, 8000 x 4000                 Figure 8: Download benchmark, 4126 x 3197 
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7 Summary and Conclusion 

The collection of large amounts of geospatial image data in the project RiverView® requires 
efficient data storage. Since existing solutions do not offer an optimal solution, a raster data 
storage concept based on the NoSQL database system Neo4j was developed and implemented. 
A crucial aspect is the implementation of data access structures such as image pyramids and 
tiling. Hence, different tiling strategies were evaluated and benchmarked for up- and download. 
Based on these benchmarks it evident that the RTS and RoITS tiling strategies perform best 
in download. Generally, the strategy  implemented depends on the application type. In 
summary, efficient geospatial rasta data management with Neo4j is possible based on the 
developed strategies and can even be used for real-time applications. It is also conceivable to 
extend the approach to remote sensing and satellite data sets for write-once-read-many use-
cases. In future work, the approach will be further developed to point clouds and also 
additional evaluations considering other solutions (e.g. Open Data Cube) are planned. 
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Abstract 

Spatial data on Low-and-Middle-Income-Country (LMIC) cities, and deprived areas within 

cities, are often not readily available in support of local and global information needs. To 

address this information gap, we propose the systematic semi-automated SLUMAP 

framework that provides policy-relevant information on deprived urban areas in Sub-

Saharan Africa (SSA), based on free open-source software (FOSS). First, we assess user needs 

for spatial information on deprivation (ranging from local communities to global research 

and policy support). Second, we show how free or low-cost image datasets can be used for 

mapping the location of deprived areas at the city scale and providing an overall 

assessment of their spatial patterns. This is implemented as a grid-based approach using 

machine learning and assessing the contribution of a large number of spectral and spatial 

features derived from open or low-cost imagery. Third, we show how higher (spatial and 

spectral) resolution data can provide a detailed characterization of such areas, with a 

GEOBIA/machine-learning workflow and deep learning techniques. We illustrate the 

experiments and results on the city of Nairobi (Kenya)and discuss transferability to SSA cities. 

Keywords: slum, earth observation, sustainability, spatial inequalities, machine learning 

1 Introduction 

Urbanization rates are rising in most Low-and-Middle-Income Countries (LMICs) (UN, 2019). 
Most of this increase is happening in areas commonly known as slums, informal settlements 
and areas of inadequate housing, hereafter “deprived urban areas”. In particular, African cities 
are rapidly growing, while there is an insufficient provision of low-income serviced housing. 
The urban Sustainable Development Goal 11 (SDG 11) has the “proportion of urban 
population living in slums, informal settlements or inadequate housing” as its first indicator to 
measure progress towards sustainability. Unfortunately, data for this indicator is commonly 
not readily available for supporting local or global monitoring. Existing datasets supporting 
the SDG 11.1.1 indicator are country-level estimates without a reference to individual cities. 
Thus, existing data failed to provide insights into the spatial patterns of deprived urban areas 
and their dynamics within cities. Earth Observation (EO) data has, in principle, the capability 
to map deprived urban areas (e.g., Wang, Kuffer, Roy, & Pfeffer, 2019), as data archives are 
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growing and computational power is increasing. However, EO methods fall short in providing 
scalable, transferable, and low-cost solutions that respond to user needs (Kuffer et al., 2020). 
Therefore, to date, EO has not been used as an effective tool to provide relevant information 
to various users on urban development issues, specifically for monitoring deprived urban areas 
and accounting for the local SDG 11.1.1 indicator. To make appropriate use of the growing 
amount of EO data and advancements in methods, it is essential first to understand user needs. 
However, there is a general communication gap between the EO experts and potential users 
of EO data, hereafter “users”. We observe that the EO community is developing methods 
that are mostly based on very high resolution (VHR) commercial EO data, often for a small 
subsection of a city. At the same time, urban development questions typically require an 
understanding of patterns at the city or regional scale. In addition, resource constraints and 
understanding of advanced methods is hindering the knowledge transfer from research to 
users. The paper aims to provide an overview of spatial information needs in deprived urban 
areas and develop solutions for meeting these needs. Examples from Nairobi (Fig. 1) illustrate 
recent developments in machine learning and FOSS solutions for developing a systematic 
semi-automated SLUMAP framework that provides policy-relevant information on deprived 
urban areas.  

 

Figure 1: 

A deprived area in Nairobi 

(Photo: Ángela Abascal Imízcoz). 

2 Methodology 

2.1  Mapping user needs and requirements  

The first step towards shortening the gap between existing inconsistent/unavailable datasets 
and essential geospatial resources in deprived urban areas is to develop an adequate 
understanding of user needs and requirements at (inter)national and local levels. This was done 
through the assessment of data requirements by way of an online survey, fortified by additional 
discussions and workshops that covered diverse users: 

▪ An online survey of users utilizing deprived urban area-related spatial data (N = 112). 
The survey included different professions and sectors working with ‘slum’ related 
data, including civil society, government, international and research organizations. 
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The backgrounds of respondents were GIS, EO and data science (40%), urban 
planning (28%), social (20%), environmental (9%) and health (4%) professions.  

▪ Interactions with community-based organizations in Nairobi and Lagos, in form of 
online meetings due to COVID restrictions.  

▪ Workshops (at the World Urban Forum and hybrid local/online workshops in Lagos 
and Accra), expert discussions with local and national authorities (Kenya and Lagos).  

The questions and discussion points included spatial, temporal, contextual information 
requirements of users as well as requirements about data access, aggregation, uncertainties and 
ethics/privacy. Two major aspects discussed in the user interactions that are key for routine 
and accurate production of maps of deprived urban areas at continental scale are highlighted 
(Fig. 2), namely (i) the need for a low-cost mapping system and (ii) the local data requirements 
(characterization) for the city and community-level data on deprived urban areas. To show 
how data can be produced that respond to the user needs, we use the case of Nairobi to explore 
the potential of several HR and VHR sensors (i.e., Sentinel-1/2, SPOT6/7, WorldView-3 and 
Google Earth (GE) images) for mapping and characterizing deprived urban areas. The city-
scale mapping using Sentinel-1/2 data is responding to the user needs for a low-cost mapping 
system. This allows for developing  a standardized and scalable mapping system and drastically 
increases scalability and repeatability (routine mapping). The local characterization explores 
the potential of VHR images to respond to the user needs on urban morphology, 
environmental/ health aspects (e.g., garbage piles) and automatizing building mapping (in 
support of local planning needs). 

 

Figure 2: A semi-automated SLUMAP framework. 

2.2  Using open vs. low-cost imagery at the city scale  

To assess the potential of free-cost Sentinel-1/2 for mapping the morphological deprivation 
probability at the city scale, we develop a machine learning workflow using FOSS software 
GRASS GIS  in a Jupyter Notebook and R. A grid-based approach is implemented. Gridded 
mapping has proved successful for mapping slums with VHR GE images (Duque et al., 2017). 
Besides, it tends to have a high transferability potential, as reflected by the increasing number 
of available global gridded layers (e.g., WorldPop, GHSL, GUF, etc.), and it responds to 
privacy concerns (e.g., ‘blurs’ the boundaries). We apply our workflow to an area of interest 
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covering the city of Nairobi (652 km²). We use Sentinel-1/2 and SPOT7, which is considered 
low-cost commercial imagery (Fig. 3) and compare the results. Ancillary open global datasets 
(i.e., SRTM, OSM and a preliminary version of the World Settlement Footprint 2019 – 
unpublished to date - which is an improvement of the World Settlement Footprint 2015 
(Marconcini et al., 2020)) are also included in the experiments. First, a wide set of over 2000 
spectral, spatial and ancillary features are extracted. For optical imagery, these features are 
mainly based on vegetation indices, water or moisture indices, built-up indices, image 
transforms, texture metrics (e.g., GLCM, Structural Feature Set) and a few metrics calculated 
on an unsupervised classification (such as the Mean Patch Size). For SAR they are mostly 
based on intensity, coherence, textures and filtered bands. Ancillary features include 
geomorphometric features, built-up and street density. Statistics are calculated in 50m x 50m 
grid cells, and feature selection (using the VSURF - Variable Selection Using Random Forest 
- algorithm (Genuer, Poggi, & Tuleau-Malot, 2015)) is implemented prior to random forest 
(RF) classification, for parsimony. The classification scheme includes 
8 land-use/land-cover classes: (1) High to mid-density built area, (2) 
Low density built area, (3) Industry/large structures, (4) Paved 
ground/Bare ground, (5) Vegetation, (6) Water, (7) Deprived urban 
areas (typical), and (8) Deprived urban areas (atypical). For our focus 
classes (7 and 8), a detailed class description is provided in the 
textbox. For training and testing, 3962 manually labelled samples (i.e., 
grid cells) representing the dominant class are used. Several feature 
combinations are assessed, and their respective performances are 
compared based on accuracy metrics (i.e., precision, recall and F1 
score). 

 

Figure 3: 

Interface between deprived and non-

deprived urban areas. Top left: GE imagery. 

Top right: SPOT7 (RGB). Bottom left: S2 (RGB). 

Bottom right: S1intensity (VV, VH, VV/VH). 

2.3 Local characterization of deprived areas 

Next, we investigate the characterization of intra-deprived areas environments (i.e., garbage 
piles, built-up morphology). First, we make use of VHR superspectral data collected by the 
WorldView-3 satellite (8 multispectral and 8 SWIR bands) to map the urban environment in 

Textbox: Definition of 
deprived classes:  
(7) Very compact arrangement 
of low-rise buildings, generally 
forming ‘organic’ patterns. No 
structured street layout, except 
for a few main streets. Little or 
no vegetation. 
(8) Arrangement of buildings 
with a density that varies from 
compact to mid-dense, and a 
pattern that is more regular than 
in class 7.  
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deprived urban areas. State-of-the-art machine learning classifiers and processing methods 
such as Geographic Object-Based Image Analysis are deployed (Georganos, Grippa, Lennert, 
et al., 2018; Georganos, Grippa, Vanhuysse, Lennert, Shimoni, & Wolff, 2018). Moreover, we 
assess the created land cover/ land use (LULC) models for deprived areas. The assessment 
focuses on maximizing their interpretability and transferability and alleviate the data 
management and processing burden (Georganos, Grippa, Vanhuysse, Lennert, Shimoni, 
Kalogirou, et al., 2018). For example, this included defining a suitable grid size that reflects the 
urban patterns of deprived areas but still allows data aggregation to ease processing. We extract 
various indicators at a grid level (i.e., 25 meters) derived from the modelled LULC of these 
regions. For instance, these indicators may be pertinent to open space, building density, or the 
proportion of garbage piles. The training data on garbage piles were collected in collaboration 
with local community-based groups in Mathare (a deprived area in Nairobi), a key 
environmental issue that emerged in interaction with communities. A similar effort is presently 
ongoing in other communities. Second, we exact building footprints and map the 
morphological patterns using GE imagery. These morphological patterns allow differentiating 
deprived urban areas from better-off areas at the city scale. To achieve this, we largely rely on 
open tools and free data. There are two major steps in this approach: (1) extracting building 
footprints from GE imagery by using deep learning techniques (modified U-Net architecture) 
using a global training dataset provided by Wuhan University that containing labelled building 
footprint (gpcv.whu.edu.cn/data/building_dataset.html), and (2) measuring the 
morphological configuration of buildings with the open-source tool MOMEPY 
(http://docs.momepy.org/en/stable/).  

3 Results 

3.1  User requirements for evidence-based policy-making  

The results of the user need assessment (Fig. 4) shows that data on deprived urban areas are 
not available or accessible for users. In workshops, it was stressed that data, if at all available, 
are often not usable (e.g., not covering the area of interest) or are too dated. Most data needs 
relate to routine and up-to-date information about the location of deprived urban areas, 
building information and more detailed characterisation of their environment. 

        

Figure 4: Existing data gaps and data needs on deprived urban areas: assessment of problems 

encountered by users (left) and user’s data needs on deprived areas (right).  

http://gpcv.whu.edu.cn/data/building_dataset.html
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3.2  City-scale results 

For each of the assessed feature combinations, the original set can be drastically reduced to a 
small number of important predictors with VSURF. The results of the random forest 
classifications are validated with an independent test set, focusing on the two deprived urban 
area classes. The best combination of SPOT7 and ancillary predictors achieves higher accuracy 
than the best combination of Sentinel1/2 and ancillary predictors (Tab. 1). However, the 
difference is not as marked as could be expected given the spatial resolution gap. The 
morphological deprivation probability is computed by summing the class probability of classes 
7 and 8 (Fig. 5). Considering that Sentinel images are free datasets with wide temporal 
availability, they constitute a valuable option for mapping the morphological deprivation 
probability at the city scale, allowing for frequent updates, as required by users. 

Table 1: Accuracy assessment of the best feature combinations involving Sentinel-1 (S1), Sentinel-2 (S2), 

SPOT7, and ancillary global datasets. 

 

 

Figure 5: Morphological deprivation probability classes in 50x50m grid cells (Nairobi). Left: S1-S2-

Ancillary (with S2 RGB subset). Right: SPOT7-Ancillary (with SPOT7 RGB subset). 

3.3 Local characterization based on LULC 

Taking as an example Mathare, Nairobi, Fig. 6 illustrates the potential of our modelled LULC 
for characterizing the local environment in a deprived area. Notably, garbage  pile density (Fig. 
6.a) is a very important socio-economic and health indicator as it can be associated with disease 
exposure, water/sanitation and act as a socio-economic proxy for the surrounding 
neighbourhoods (Engstrom, Hersh, & Newhouse, 2017). The lack of openness (Fig. 6.c) can 
also be detected. The detection of vehicles (Fig. 6.e) reflects socio-economic activity to a 

g) 
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degree. The RF Out of Bag Overall Accuracy of the map product for Mathare using all valuable 
WV-3 resources (multispectral + shortwave infrared) surpassed 87%. Finally, these indicators 
can be extracted in a gridded format (25 m), as illustrated in Fig. 6.g, which maps the spatial 
distribution of garbage piles across Mathare. 

  

Figure 6: Subsets of mapped LULC in deprived areas in Mathare, Nairobi: a) garbage piles; c) lack of 

openness; e) detection of vehicles (b,d,f RGB); g) garbage piles density (%) at a 25 meter spatial 

resolution. 

3.4  Local characterization based on building footprints extraction and urban 
morphology 

Fig. 7 shows buildings extracted from different places within the city of Nairobi. Visually, the 
building configuration exhibits a significant difference especially comparing the building 
patterns in Fig. 7(b), where building patterns in deprived areas can be quite different from the 
other places shown in Fig. 7.a, c, d.  

  

Figure 7: (a-d) Building footprints extracted from different neighbourhoods; (e) manually delineated 

deprived areas (dated); (f) building clusters based on building morphological metrics (Nairobi). 

(e) 

(f) 



Kuffer et al 

92 
 

Once the morphological building patterns are explicitly measured, similar building patterns are 
classified within the same morphological clusters. The morphological cluster highlighted in red 
(Fig. 7.f) reflects the distribution of deprivation areas delineated in Fig. 7.e.  

4 Conclusions 

Deprived areas emerge with the rapid urbanization occurring in LMICs and the insufficient 
provision of low-cost urban housing. An increasing number of people migrate to cities, with 
complex drivers such as climate change. Global datasets do not account for these areas, and 
local data often ignore them. Our results show the capability of the SLUMAP framework that 
builds upon a FOSS solution to respond to user needs for routine and accurate mapping of 
deprived urban areas. To protect privacy, exact settlement boundaries are not shown, which 
could be used against communities (e.g., land tenure conflicts). A fine-scale local 
characterization makes use of commercial (WV-3) and freely available (GE) VHR data to meet 
the local needs for detailed environmental characterization, such as garbage piles mapping and 
morphological characterization of built-up density patterns at local and city scale. The 
SLUMAP framework is transferable to other SSA cities to provide data allowing for inter-city 
comparisons.  
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Abstract 

This paper evaluates indicators to analyse mixed activities, representing a combination of 

various facilities and services, in urban areas.  Although mixed activities play an important 

role in urban planning projects, measuring themhas been problematic due to the lack of 

appropriate data and measurement approaches. In ecology, there are dozens of potential 

diversity indices, which have been deployed in recent land use studies to measure mixed 

activities. However, ecologists have highlighted that these indices are not always expressed 

inintuitive units. Recognizing the limitation of commonly used diversity indices, Hill numbers, 

which represent a mathematically unified family of diversity indices, are used. Taking 

advantage of new data sources such as Points of Interest (POIs) from OpenStreetMap, this 

study applied Hill numbers on POIs to measure mixed activities at a quarter level in Frankfurt. 

Results showed that Hill1 (exponential of Shannon) is an appropriate quantitative measure to 

describe the diversity of facilities and services by a single numerical value. However, it is 

difficult to explain which factor, namely evenness or richness,has a stronger impact on the 

index. To gain a more comprehensive picture of mixed activities we suggest to considering 

further indicators such as evenness and richness.  

Keywords: Diversity Indices, mixed activities, OpenStreetMap, Hill numbers, POIs 

1 Introduction  

The development of pedestrian-friendly city with a variety of services such as eating, education, 
healthcare, shopping ,and personal services has become an important goal for urban planning, 
local authorities, families, and economic groups (Manaugh & Kreider, 2013). There is an 
increasing demand from different parties to estimate the heterogeneity of facilities and services, 
also known as mixed activities, using an overall diversity indicator (Grant, 2002). Such an 
indicator could then be used to compare different city quarters, cities, or even different regions.  

The measurement and assessment of biological diversity has a long history in ecology (Hill, 
1973; Whitaker, 1965). Urban land-use studies have taken advantage of these biological 
indicators to analyse mixed activities. Two commonly used biodiversity indices that have been 
used in the context of land-use diversity is the Shannon index which quantifies the degree of 
mixture among different species (Frank, 1994; Manaugh & Kreider, 2013) and the Simpson’s 



Ullah et al 

95 
 

Index (Ritsema van Eck & Koomen, 2008; Berger et al., 2004). Another promising indicator 
are Hill numbers,which integrate species richness, Shannon, and Simpson Index into a further 
class of diversity measures. 

In this study, we explore the suitability of Hill numbers to assess the diversity of mixed 
activities based on Points of Interest (POIs) from OpenStreetMap (OSM). We will examine, 
how accurately mixed activities at a city quarter level can be measured, using the northern 
quarters of Frankfurt in Germany as a case study.  

2 Study area: Data Source and Data Type 

To measure mixed activities in urban areas we use Points of Interest (POI) from 
OpenStreetMap. OpenStreetMap (OSM) has the objective to create an open, free, digital map 
of the world through the efforts of volunteers (Goodchild, 2007). In OSM,POIs characterize 
important locations on a map represented by nodes, ways, or relations.  

We obtained POI data for five city quarters in Frankfurt am Main via the Openpoiservice, 
which is a Web Service within the Openrouteservice infrastructure (Neis & Zipf, 2008). In 
total 55 categories of facilities were selected including eating, education, healthcare, shopping, 
and personal services. Indicators were calculated based on the POIs for each of the five city 
quarters separately.  

For the study area, we selected the northern part of Frankfurt am Main due to its heterogeneity 
regarding mixed activities between the city quarters. Frankfurt am Main is the fifth biggest city 
in Germany with a population of 747.000 inhabitants (Stadt Frankfurt am Main, 2017).  The 
quarters Eschersheim and Heddernheim comprise of various facilities and services due to their 
relative proximity to the city Center, whereas Praunheim and Niederursel are quieter quarters. 
Niederursel contains some of the scientific institutes of the Goethe-University Frankfurt. In 
Kalbach-Riedberg, one of the largest town-planning projects “Am Riedberg” was build, 
including residential areas, parks, green spaces, schools, healthcare services, and sports areas 
(Stadtplanungsamt Frankfurt am Main, 2021). 

3 Methodology 

Figure 1 provides an overview of the overall methodology. Facilities belong to different 
categories, which defines the level at which diversity indices are calculated. Since we had to 
assume that POIs from OSM are not complete and the proposed indices are sample size 
dependent, standardization was necessary to compare unequally large samples. We used the 
coverage estimator introduced by Good (1953). It is a measure of sample completeness, giving, 
in our context, the proportion of the total number of POIs in a quarter that belong to the 
categories represented in the sample (Chao & Jost, 2006). It describes the sum of the 
frequencies of the categories sampled, which is 100%  when all categories are known (Chao, 
2014). To estimate uncertainties, we used a bootstrap method, in which we calculated the Hill 
number and the coverage for each of the 100 bootstrap samples. Table 1 provides the average 
coverage of each city quarter and the respective reference sample size. 
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Table 1: Average coverage of quarters for reference sample n 

City quarter coverage sample size n 

Eschersheim 0.94 69 

Heddernheim 0.96 125 

Kalbach-Riedberg 0.94 70 

Niederursel 0.98 89 

Praunheim 0.95 51 

 

Figure 1: Workflow to calculate POI category diversity. For each city quarter Hill number and coverage 

were calculated. Uncertainty was estimated by a bootstrap approach. 

While ecologists commonly refer to the terms species and individuals (Chao, 2014), in an urban 
context, we can consider categories as species and POIs as individuals. A city quarter is equal 
to an assemblage consisting of N total POIs, where each POI belongs to one of the C 
categories. Since we assume that the completeness of POIs in OSM vary from region to region, 
we consider a reference sample of n POIs from each city quarter from an underlying true 
assemblage that is unknown. The total number of categories observed in the reference sample 
is Cobs. Xi is the number of POIs of the ith category that is observed in the sample, i = 1, 2, 
…, C. Thus pi = Xi/n is the relative abundance of each observed category in the sample. 
Furthermore, fk is the number of categories represented by exactly k POIs, k = 0, 1, …, n. 
From the definitions above it follows: 
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𝑛 =∑𝑋𝑖

𝐶

𝑖=1

=∑𝑘𝑓𝑘
𝑘≥1

𝐶𝑜𝑏𝑠 =∑𝑓𝑘
𝑘≥1

 

             (1b) 

 

                                        (1a) 

Species richness represents(in our case POI category richness)the simplest and yet most 
popular measure of diversity, describing the number of categories in a given area. However, 
one main limitation is that the observed categories are highly sensitive to the sample size. 
Furthermore, species or POI category richness does not take does not consider  any 
information about the relative abundance of categories (Chao et al., 2014). Addressing the 
abundance problem, the Shannon and Simpson indices combine species richness and the 
relative abundance of each category into a single metrics. While the Shannon Index weighs 
each category exactly by their frequency, the Simpson Index is a dominance index that gives 
more weight to common or dominant categories (Ricotta, 2002; Jiang et al., 2017). However, 
the diversity indices are based on percentage composition, thus, they approach a constant value 
if sample size increases (Loya, 1972). Jost (2006) emphasises that the Shannon and Simpson 
are not necessarily themselves “diversity” indices; the Shannon index in particular represents 
an entropy reflecting the uncertainty in the outcome (Jost, 2006). 

Hill numbers (Hill 1973) integrate species richness, Shannon, and Simpson index into a class 
of diversity measures. Thus, all measures include the following single expression for diversity:  

 𝐷𝑞 = (∑ 𝑝𝑖
𝑞𝐶

𝑖=1 )
1 (1−𝑞)⁄

                                                        (2) 

in which C is the number of categories in the assemblages, and the ith category has relative 
abundance pi.The exponent q is also called the order of the diversity,thus,q determines the 
sensitivity to common or rare categories. The diversity of order 0 is completely insensitive to 
the relative frequencies of the categories,and is known as species richness (H0) in ecology. If q 
is less than unity diversities favour rare categories, while all values of q greater than unity favour 
the most common categories (see Table 2). Order 1 is the exponential of Shannon entropy, 
while order 2 describes the inverse of the Simpson concentration (Chao et al, 2012). 
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Table 2: Conversion of common indices to Hill numbers 

Index x: Diversity in 
terms of x: 

Hill numbers in terms 
of pi: 

Order: 

Species  
richness 
  

x =∑pi
0

C

i=1

 
 

x 

        ∑ pi
0C

i=1        

Hill0 

Shannon entropy  
x = −∑pi

C

i=1

⋅ ln(pi) 
 

exp(x) 
exp(−∑pi

C

i=1

⋅ ln(pi)) 

 

Hill1 

Simpson 
concentration  x =∑pi

2

C

i=1

 
 

1/x 

       1 ∑ pi
2C

i=1⁄   

Hill2 

Hill numbers offer the advantagethat they fulfil a doubling property.  Therefore,  if a city 
quarter is twice as diverse as another city quarter, the ratios of Hill numbers are always 2.00. 
Furthermore, traditional diversity indices can be converted to Hill numbers by simple algebraic 
transformation (see Table 2). Hill numbers are all expressed in units of effective number of 
categories, which are the number of equally abundant categories required to give the same 
value of diversity measure. Since Hill numbers have the same units, it is possible to graph them 
as a function of order q (see Fig. 2). The steepness of the curve reflects the evenness of a city 
quarter. Regarding Figure 2, if a city quarter has equally abundant categories,the curve is a 
constant at the level of Hill0 (species richness). The ratios of Hill numbers can be used to 
obtain the evenness value as a single measure.  

 𝐸𝑎:𝑏 = 𝐻𝑎 𝐻𝑏⁄  (3) 

Ha and Hb are diversity numbers of order a and b based on q. Since Hill0 (species richness) is 
highly dependent on sample size (see Fig. 3), we will use the ratio Hill2 and Hill1, which 
stabilizes with increasing sample size. The resulting value ranges between 0 and 1, if the quarter 
comprises of completely even distributed categories the evenness value is 1. In contrast, 0 
means one category is dominating the whole quarter.  
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Figure 2: Hill numbers as a function of q. Steepness of the curve indicates, how even/uneven the 

distribution of the categories is. The red curve represents the most even city quarter, followed by the 

green curve. The blue curve indicates the most uneven distribution. 

 

Figure 3: Hill numbers and sample size dependence. Hill0 (blue dots) is sensitive to sample size. 

Contrary, Hill1 (orange dots) and Hill2 (green dots) stabilize with increasing sample size. 

As shown in Figure 3 Hill numbers, in particularly Hill0, is sample size dependent. Rarefaction 
describes an approach used in ecology to correct for this effect (Gotelli & Colwell, 2001). 
Rarefaction uses rarefaction curves to calculate category richness for a given number of 
individual samples. These curves plot the number of species as a function of the number of 
samples. They are based on a multiple resampling of the samples, and then plot the average 
number of species found in each sample (Gotelli & Colwell, 2001). However, if samples 
standardized by size are compared with each other, they will usually have a different degree of 
completeness. Chao & Jost (2012) suggest using a  coverage-based standardization approach 
ensuring a comparison of samples of equal coverage. Based on these functional relationships 
the estimated Hill numbers are estimated. 
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4 Results 

The estimated sample coverage values for the respective quarters were almost complete (see 
Table 1). To make the diversity of the five- quarter comparable, the respective quarters were 
rarefied down to the lowest base coverage of 94% (see dotted vertical line in Fig. 4). All three 
Hill numbers are evidently different for most city quarters. However, at 94% coverage the 95% 
confidence intervals of Hill0 and Hill2 for Eschersheim and Kalbach-Riedberg overlap, 
indicating that the POI diversity of these two city quarters is not significantly different.   

 
Figure 4: Sample completeness curves  and Hill numbers (q=0, 1, 2) for the five city quarters. The grey 

areas indicate the 95% confidence bands derived from the bootstrap. 

Table 3: diversity values(q=0,1,2) based on 0.94 basecoverage  

City quarter Hill0 Hill1 Hill2 evenness Sample size 

Eschersheim 16.9 13.5 11.0 81% 69 

Heddernheim 22.5 16.5 12.9 78% 125 

Kalbach-Riedberg 17.3 11.8 8.0 68% 70 

Niederursel 8.8 4.8 3.1 66% 89 

Praunheim 11.4 9.6 8.0 83% 51 

Jost (2006) points out that Hill1 is a fair choice as a single diversity indexbecause it weighs 
categories exactly by their frequencies. Table 3 shows that Heddernheim has the highest 
diversity, followed by Eschersheim and Kalbach-Riedberg, while Niederursel has the lowest 
Hill1 value. However, since Hill1 focusses on both the richness and evenness, it is difficult to 
tell which factor contributed more simply by looking at the index. The richness (Hill0) and 
evenness indicator provide additional information. Although Praunheim consists of few 
categories (11.4), the high evenness (83%) indicates an even distribution . Niederursel showed 
the lowest richness (8.8) and the lowest evenness (66%). Heddernheim consisted of the highest 
number of categories, hence showed the highest Hill1 value.  Eschersheim and Kalbach-
Riedberg showed almost the same number of categories, but due to its lower evenness, 
Kalbach-Riedberg had a lower Hill1 value.  
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5 Discussion 

Biodiversity measures such as Species richness, Shannon’s, and Simpson’s index are 
quantitative measures reflecting the number of categories and their relative frequencies. While 
these widely used indices are non-linear and not sufficient to compare multiple areas, Hill 
numbers are more intuitive and meet a doubling property (Jost, 2006). 

To compare the diversities of multiple quarters by a single numerical value, we suggest Hill1. 
However, Hill1 and Hill2 incorporates both  richness and evenness, hence it is difficult to tell 
which factor contributed more simply by looking at the index. We recommend  calculating a 
separate evenness measure in combination with species richness (Hill0), to derive further 
characteristics of the respective quarter.  

Ecologists consider a site as diversewhen it consists of a high number of species,and if the 
species are well balanced in terms of abundance. When applying this terminology in an urban 
context, the following question arises: Are high richness and  evenness sufficient for a diverse 
area in an urban context? Thus, the degree of diversity should always be considered with other 
factors, such as the population density and the resulting demand for specific services. 

Moreover, diversity indices measure diversity quantitatively, they do not pay attention to 
qualitative aspects. For instance, a perfect mix of schools, grocery stores, and healthcare 
services scores identical to the same proportions of banks, estate agents, and companies.  

In this study, we considered OSM POIs as a reference sample of an underlying true 
assemblage. However, if POI data is complete, standardization methods are 
unnecessarybecause the absolute number of POIs are also an indicator for the diversity of an 
area. Standardization methods are only useful when an area has not reached high completeness. 
Even though OSM-based POIs for urban areas in Germany seem almost complete, this work 
provided standardization methods so that the introduced methods are also applicable to areas 
with lower coverage. Overviews on methods for estimating completeness and other data 
quality indicators in OSM are given in . Degrossi et al. (2018), Ludwig et al. (2019), Barron et 
al. (2003) and related analysis frameworks like ohsome.org (Raifer et al 2019). For how those 
methods have been adapted for biodiversity see Jacobs & Zipf (2017). 

6 Conclusion  

In conclusion, this paper has discussed the application of biodiversity indices in an urban 
context. Evidently, a high diversity of services and facilities can support economic groups, 
families, urban planners, as well as local authorities to identify attractive areas or areas that lack 
a high diversity. The proposed diversity indicator can be used in regression analyses as a proxy 
to explain socioeconomic variations. Regarding the effectiveness of the introduced 
indices,further studies might focus on revealing associations between  diversity and other 
relevant social factors. 
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Abstract 

Soils are complex ecosystems. They play a key role in providing sustainable life on Earth, 

meeting the needs of humans and regulating several environmental processes. The United 

Nation’s 2030 Agenda for Sustainable Development and the related 17 Goals include a 

commitment to the preservation of soil quality. However, the adopted indicators lack the 

measurement of a key nutrient: nitrogen. The aim of this paper is to call for the integration of 

two nitrogen indexes to measure soil quality and to present a worked example of geospatial 

technologies applied to nitrogen monitoring, aiding in farmland management and decision-

making. Due to their inherent time/location precision, remote sensing data can provide 

insight in predicting the impact of agricultural practices and optimise their application. 

Keywords: land degradation, soil quality, nitrogen 

1 Introduction 

Soil quality is “The capacity of a soil to function within ecosystem and land-use boundaries to sustain biological 
productivity, maintain environmental quality, and promote plant and animal health” (Doran & Parkin, 
1996). This definition reflects the complexity of soil ecosystems and destinations of use. The 
latter aspect is especially complex, as changes in land use may be slow, making it difficult to 
detect changes in soil quality before non-reversible damage occurs (Nortcliff, 2002). Hence, it 
is crucial to identify a comprehensive and practical set of indicators to support quality 
assessment. 

An attempt to measure soil quality is represented by SDG-15 Life on Land, namely by 
Indicator 15.3.1, which introduces three key indexes to quantify the loss of biological or 
economic productivity, and complexity of land: Land Cover Meta Language (LCML); Net 
Primary Production (NPP), to measure land productivity; and Soil Organic Carbon (SOC), to 
measure carbon stock (Global Mechanism of the UNCCD, 2016). However, this framework 
overlooks another key indicator: nitrogen. Nitrogen is a crucial nutrient for plants, contributes 
to keeping water bodies and air clean, and relates to severe soil threats, such as: contamination, 
erosion, soil organic matter decline, and biodiversity loss (Else K., Bünemann et al., 2016). 
Moreover, nitrogen is positively correlated to carbon stock. 
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If duly integrated into the analysis, an explicit reference to nitrogen will lead to a more 
complete understanding of the factors that contribute to healthy soil, and therefore to 
appropriate actions and interventions (see Table 1). 

Table 1: EU Soil Framework Directive (European Commission, 2006) soil functions and threats, SDG targets 

and indicators where nitrogen should be integrated. 

 

The aim of this paper is twofold: 

- to underline that, in order to evaluate soil quality, it is advisable to include Soil Total 
Nitrogen concentration (STN) and Nitrogen Nutrition Index (NNI); 

- to present a worked example of remote sensing and geospatial technologies applied 
to nitrogen monitoring, to aid farmland management and decision-making. 

STN is a pivotal indicator of fertility and is closely related to agricultural productivity. 
Therefore, reliable prediction of STN is critical for supporting sustainable agricultural 
development (Lausch et al., 2019). Up to date STN maps are of great interest to identify spatial 
variation and control factors, which can help maintain soil safety and provide a reference for 
climate change management. NNI is a plant-based diagnostic method used to determine the 
crop nitrogen distribution and status, to optimize its management in farming systems. 
Remote sensing allows for open, precise, real-time, and localised data to be obtained, about 
how nitrogen is organized in soils or used by plants. Unlike traditional in-situ methodologies, 
it can show the impact of agricultural practices on large areas. Furthermore, when merged with 
other pieces of information, remote sensing supports the identification of the most suitable 
practices for each given soil. A seemingly passive monitoring tool subsequently turns into a 
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proactive planning methodology, supporting farmers to implement good practices strictly 
connected with the achievement of SDGs. For example, geospatial data concerning the loss 
of nitrogen in the atmosphere due to tillage interventions may suggest that crop rotation stores 
more nitrogen in the soil and increases its quality. 

The outcome of our work is a dynamic, real-time nitrogen map conceived to help farmers to 
understand where and when to use fertilizers, usually containing nitrogen, and to promote 
sustainable soil management practices, such as crop rotation. 

2 Materials and Methods 

We considered the Sentinel-1 (S1) VH (vertical transmitted, horizontal received) and VV 
(vertical transmitted, vertical received) polarization modes, and computed the ratio VV/VH, 
which is less sensitive to vegetation cover (Vreugdenhil et al., 2021). SAR images are 
instrumental for mapping soil properties: Yang et al. (2019) demonstrated their correlation 
with in-situ data and possible errors in the sensitivity of backscatter intensity, changes in soil 
moisture, and soil surface conditions. They found a significant correlation between SAR 
backscatters and various soil properties (including SOC and STN) during the growing season 
and demonstrated that multi-temporal SAR data are useful for predicting soil chemical 
properties because they can capture soil properties. Also factoring in Maynard et al. (2017), we 
replicated their methodologies and tested them in our case study. Firstly, we examined the 
temporal variation of the canopy of Sentinel-2 (S2) vegetation and the soil-to-vegetation ratio 
using level-1 Single Look Complex (SLC) data from S1, we then built correlation models with 
in-situ data to predict soil properties. A total of 28 S1 and 22 S2 images were acquired during 
the soils’ growing season. 

Two sections of land were studied in an agricultural area of Po Valley (Northern Italy). Both 
study sites had crops in rotation (wheat/protein pea), undergoing minimal processing for five 
years: one section subject to Conservation Agriculture (CA), the other an Ecological Focus 
Area (EFA). Each area spanned three hectares. A comparison was therefore enabled for the 
two areas in the same environmental and cultural conditions but with different processing 
approaches. 

Within the study area, we sampled thirty-six surveys of SOC and STN data over three years, 
including land use data and various soil texture data (0-10 cm - 10-30 cm). We then integrated 
the ground data with the SoilGrid-250 maps and LUCAS datasets, obtaining six additional 
samples useful for SOC (note that LUCAS does not contain information to validate NNI). 

We pre-processed the SAR data utilising the ESA open-source Sentinel Application Platform 
(SNAP) toolbox, as depicted in the workflow in Figure-1 (Zhou et al., 2020). Finally, the S1 
data were converted to dB scale with a backscatter coefficient with a resolution of 10 m. As 
for optical data, we downloaded L2 images, masking clouds and shadows and homologating 
the grid to the S1-data using a Digital Elevation Model at 10 m as a trace. We then calculated 
the backscatter coefficients of the VH and VV polarizations from the S1-images. 

From the S2 MultiSpectral Instrument (MSI), we extracted the B2, B3, B4, B8A, B11, and B12 
bands and computed the Normalized Difference Vegetation Index (NDVI), the Modified 
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Chlorophyll Absorption in Reflectance Index (MCARI), the Enhanced Vegetation Index 
(EVI), and the Soil Adjusted Total Vegetation Index (SATVI); to be used as SOC’s predictors 
(Gholizadeh et al., 2018). 

Following Zhou (2020), we processed the S1/S2 data using machine learning models to predict 
and model nitrogen maps. We built three models using S1, S2, S1/S2 images across Boosted 
Regression Trees (BRT) and Support Vector Machine (SVM) with three validation criteria: 
Root Mean Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error 
(MAE). 

 

Figure 1: Summary of input data and related pre-processing workflow 

The results in Table 2 confirmed the in-situ sampling data: crop rotation, applied on both 
areas, increases the SOC and STN levels, as foreseen by the literature. Both the EFA and the 
CA areas increased their nitrogen and carbon stocks over the three years. However, due to 
higher temporal sampling and a shorter review time, the satellite data highlight an additional 
dynamic, undetected by in-situ samples. Between one crop rotation and the next, the satellite 
can show the actual nitrogen loss, mainly due to processing, washout, and wind. For example, 
even if the EFA area did not undergo tillage in 2018, it suffered a substantial loss of nitrogen, 
unobserved by in-situ samplings, only highlighting the overall nitrogen and carbon balance, 
but not helping farmers to understand where to improve or identify any cause. Instead, the 
satellite shows what happens in a specific time frame and allows, using machine learning, to 
correct errors based on data and problems faced in the past. For example, in the EFA case, 
we could report to the farmer that the sowing process on sod was inaccurate in 2018; in 
addition, we could signal to postpone sowing for a week, due to very wet soil, resulting in 
abrupt losses due to ground runoff and wind. In the CA area, we could warn against the use 
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of compost in 2018, postponing it to 2019, when it was needed, resulting in a positive balance 
of nitrogen in 2020. 

Maximum prediction accuracy was achieved for S1/S2 models, suggesting that multi-source 
approaches may be preferable for monitoring soil properties. Notably, SVM gave better results 
for CA, whereas BRT did for EFA. 

Table 2: Model outputs for three years on the two case study areas, rotating wheat (grey) and protein 

pea (white) culture. The best correlations of satellite data with in-situ data are in green. The validation 

data in the two rightmost columns were obtained from the LUCAS database and in-situ data. 

 

 
Figure 2: Annual graphical representation of STN-SOC data. The complete charts are available by 

[name deleted to maintain the integrity of the review process]. 
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To produce NNI maps, we first pre-processed the satellite data to obtain biophysical variables 
such as: Leaf Area Index (LAI), Fraction of Vegetation Cover (FVC), and Chlorophyll Content 
of the Canopy (CCC). We used the biophysical processor inside SNAP to retrieve the variables: 
LAI_S2, CAB_S2, CCC_S2, which include all the green parts of the Green Area Index (GAI) 
plant. We assumed a linear relationship from the biophysical indices with the Actual quantity 
of Vegetable Nitrogen (PNUa) and the specific BioMass above ground (BM) to derive the 
Critical absorption of Vegetable Nitrogen (PNUc), according to a specific dilution curve of 
the crop. The methodology consists of calculating PNUa directly from CCC using linear 
relationships and then obtaining PNUc by estimating BM from the GAI data. NNI can then 
be calculated from the PNUa and PNUc estimations. We finally calculated the soil quality at 
the end of each phenological cycle as the sum of the total nitrogen in the crop (NNI) and in 
the soil (STN). 

 

Figure 3: The graphs show an estimated “nitrogen cycle” for the CA (left) and EFA (right) areas over the 

three years of satellite monitoring. The cycle takes into account the nitrogen fixed by the crops, the 

nitrogen volatilization and the nitrogen in the soil. 

In general, both fields were composed of very fertile clayey soil (67%), indicated in Table 1 by 
the high content of SOC (6-8%). Figure 3 highlights the importance of crop rotation, which 
helped to strengthen the biological, physical, and chemical components in both soils. Figures 
2 and 3 suggest that no-tillage (EFA) may ensure better soil conservation than reduced tillage 
(CA), but the yield, vigour, and nitrogen supply of both practices are similar. The biological 
components are responsible for various processes such as: atmospheric nitrogen fixation, 
disintegration and degradation of the soil and its organic components, increase of organic 
substance, and simultaneously greater vigour to the crops. In conclusion, with soils richer in 
SOC and nitrogen, the quality of “fertile” soil improved by 6% and 4% respectively for the 
EFA and CA areas over the three-years period. 

3 Conclusion 

Although limited to the presented worked example, the nitrogen map promotes a more 
accurate definition of soil quality, demonstrating the relevance of nitrogen, proved to increase 
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the soil capacity to stock carbon. The study shows that high levels of SOC and nitrogen 
increase the fertility of soils, improve the production, and reduce the need for fertilizers. 
Moreover, by measuring the most relevant physical, chemical, and biological soil indicators, 
including nitrogen, the map offers an effective management tool for farmers, supporting them 
in implementing more sustainable practices. 
Remote sensing proved to be a valuable ally in monitoring the entire phenological year for 
different farmlands. Satellite datasets allow access to historical data on a global scale every 6-
days, and with a resolution precise enough (10 m) for monitoring the state of the soil. These 
datasets not only complement or enhance national and regional official data sources, especially 
when the latter are missing or incomplete, but also validate them due to satellites’ time/location 
accuracy. The great advantage is having access to precise, historical, and locally calibrated data 
on a frequent schedule, which enables predicting the soil attitude to a specific treatment, 
supporting decision-making and management tools for farmers, such as the nitrogen map. In 
the future, we plan to present this tool to governments, to support countries in meeting their 
commitments in monitoring and reporting key soil quality indicators. 
As shown in Table 1, several SDGs’ targets and indicators are heavily interlinked with nitrogen 
functions, therefore should be integrated with its indicators to obtain a comprehensive 
overview of SOC stocks processes. By including one or more nitrogen indicators, the 
framework for the implementation of soil-related SDGs would better address the complexity 
of the soil ecosystem and its dynamics, facilitating the achievement and consolidation of 
Agenda 2030 both for farmers and policy makers. The former would be supported in applying 
sustainable practices; the latter would create more localised policies based on calibrated 
thresholds and indicators of soil quality. 
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Abstract 

The development of big remote sensing data related technologies and applications poses 

a big challenge that massive computing capability is needed to support big data 

processing. In order to solve this challenge, this paper proposes an architecture of 

heterogeneous platform of high performance computing, which employs the computer 

hardware resources to improve the efficiency of big remote sensing data processing by 

optimizing scheduling strategies and designing high-performance algorithms. Furthermore, 

the proposed platform can dynamically incorporated with a workflow engine regarding big 

remote sensing data processing. These algorithms are modular to meet the flexible 

combination of different processes. 

Keywords: high performance computing (HPC), heterogeneous computing platform, 

workflow engine, atmospheric big remote sensing data 

1 Introduction  

Currently, the ability to generate remote sensing data has achieved an unprecedented level. We 
have entered an era of big remote sensing data. Big remote sensing data are attracting more 
and more attentions from government officers, commercial investment planers, academic 
researchers, et at.( Liu et al., 2018). 

Based on the requirements of big data technology and application, the methodological 
framework for multi-scale, long-term, and multi-source atmospheric remote sensing data 
processing is pressing needed. These framework generally include data preprocessing, spatial 
processing, denoising, fusion, inversion, classification, interpretation and so on (Ma et al., 
2014). These complex, heterogeneous and massive computing tasks could generate a huge cost 
of time consuming and computing load. The traditional systems for remote sensing data 
processing can’t meet the needs of efficient processing on atmospheric big remote sensing 
data (Xu et al., 2020). 

With the development of parallel computing, distributed computing, grid computing, cluster 
computing and cloud computing technology, a number of high performance computing 
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(HPC) for remote sensing data big have emerged, which can significantly improve the 
efficiency of remote sensing data processing. However, there are still some challenges, 
including how to make rational using of heterogeneous computing resources, and how to 
access data and optimize task scheduling to reach the full utilization of computing power (Chi 
et al., 2016). 

In this paper, the distributed computing resources and storage resources in atmospheric big 
remote sensing data computing are optimized by our proposed dynamic workflow engine, 
which can improve the logic dependent relation of data in different processing processes. In 
addition, for the specific needs of atmospheric big remote sensing data processing, we 
developed a parallel processing algorithm suitable for different GPU hardware. Thirdly, we 
build an extensible model library for atmospheric big remote sensing data processing.  

2 Related Works 

For big remote sensing data processing, many researchers proposed high-performance 
computing method based on GPU, and improved resource scheduling strategy based on 
workflow. 

Jia Liu et al. (2015) proposed two high-performance computing architectures for aerosol 
optical depth (AOD) retrieval: one is multi-core processor architecture, and the other is GPU 
architecture, they are all based on OpenMP and CUDA Programming environment. 
According to the characteristics of orthorectification algorithm of remote sensing image, DAI. 
Chenguang et al. (2011) proposed a fast GPU-CPU collaborative processing algorithm based 
on CUDA, which realized the parallel processing of image resampling based on single GPU 
and multi-GPU. Ma Yan et al. (2015) proposed a parallel processing model for remote sensing 
image based on GPU, and established a set of parallel programming template which provides 
a simpler and more effective method for programmers to write parallel remote sensing image 
processing algorithm. Yang Xue et al. (2018) proposed a general, fast and effective denoising 
method, which combines Huber function and GPU adaptive partition technology, after 
analyzing the Markov random field prior model method. This method significantly improves 
the computational efficiency of processing massive remote sensing images. Wang Z et al. 
(2011) proposed a method to manage MODIS sensor data processing based on workflow 
engine, which can configure high-performance computing resources. It reduces the execution 
cost by using the existing program modules and distributed resources, and finally helps users 
manage and process a large number of remote sensing data through workflow. Based on Web 
services and Activiti 5.0 workflow engine, Fang Huang et al. (2020) built a high-performance 
computing service platform, which reduced the platform discrepancy between different high-
performance exchange systems. This platform simplifies the operation of complex geospatial 
information processing applications in the field of high-performance geographic computing 
and realizes the efficient processing of massive data. 

Overall, big remote sensing data computing and processing has accumulated some research 
results. However, in these achievements, the high-performance computing for atmospheric 
big remote sensing data processing is mainly to solve a specific problem, and there are still 



Zhang et al 

114 
 

deficiencies in modularization, integration ability, distributed scheduling, process optimization, 
etc., which cannot make full use of high-performance computing resources. 

3 System Framework Design 

The dynamic workflow customization technology proposed in this paper is based on a big data 
platform with 5-layer architecture (Fig. 1), which is composed of scheduling layer, hardware 
layer, data layer, algorithm layer, application layer. 

Based on the workflow engine, the scheduling layer can realizes the dynamic customization of 
remote sensing data processing process, the allocation of data resources, computing resources 
and storage resources, and solves the problem of dependence between different process data 
through the communication mechanism between different processing processes, so as to 
optimize the scheduling strategy. Therefore, the whole gas big remote sensing data processing 
is driven by the scheduling layer. The scheduling layer includes two key modules: task launcher 
and task scheduler. According to the workflow in terms of data processing designed by users, 
we design the task launcher to process each sub-task in parallel or serial order. In additional, 
we design the task scheduler for deciding the partition scheme of the whole task, to allocate 
every sub-task to a distributed computing node, and receive processing results. 

The hardware layer provides storage and computing resources for the platform, and can 
dynamically add new computing nodes and new storage devices. Conversely, new storage and 
computing hardware resources need to be registered through the platform which dynamically 
monitors the computing resources and storage resources. 

The data layer includes two kinds of data resources: remote sensing data and thematic data. 
Remote sensing data includes original data, process data and result data. Thematic data is used 
to assist remote sensing data processing, such as administrative boundaries, coordinate 
transformation parameters, digital high-range model data needed for orthorectification, etc. 
The data layer can be updated dynamically, and the first addition of data needs to be registered 
by providing metadata information of scope, type and time. 

The algorithm layer is the program library related to atmospheric remote sensing data 
processing, including reading and writing, format conversion, projection, fusion, correction, 
splicing, cutting, inversion and other programs. The flexible customization of processing flow 
is realized through modular program, and other program tools are added dynamically through 
registration to expand the platform functions. According to the characteristics of data 
processing, algorithm layer tools support different GPU hardware. 
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Figure 1: Architecture of the system framework 

The application layer is oriented to professional users, customizes the remote sensing data 
processing flow through the visual window, configures the required data resources, computing 
resources and storage resources, makes full use of the distributed computing and storage 
resources, and optimizes the operation strategy by designing the processing flow and setting 
the interdependence between the processing flows. 

The layers in the system mutually transfers information and exchanges data through nine 
databases. Users can customize and submit their data processing flow through the process 
designer. Then, the task scheduler automatically completes the task partition strategy according 
to the computing and storage resources, and distributes the partitined sub-task to each 
computing node. For each computing node, we design the task initiator to process its assigned 
task based on users’ cunstermized processing flow, and transform the result to the master 
node. Finally, the task scheduler combines the results from each distributed computing nodes 
into the final one. Specifically, if the processing breaks unexpectedly due to an abnormal 
calculation node or unreasonable process design, we create the breakpoint continuation 
module to ensure the processing would still continue to reaching the completed point. 
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Figure 2: Task workflow procedure 

4 Experiments 

The experimental environment is shown in Figure 3, which is developed by six personal 
including one master node (management node) and five general computing nodes.  
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Figure 3: Supporting environment 
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Moreover, the hardware details of these six nodes are shown in Table 1. 

Table 1: Configuration of the testing machines 

Hardware category Master node Compute node 

CPU Processor Intel Core i7-
10700F(2.90GHz ,16 CPUs) 

Intel Core i7-
10700F(2.90GHz ,16 CPUs) 

RAM 16GB 8GB 

GPU Processor NVIDIA GeForce GTX 1660 
SUPER(6GB) 

NVIDIA GeForce GTX 1660 
SUPER(6GB) 

Hard disk 4TB(HDD)+1TB(SSD) 1TB(SSD) 

The experiment regarding data processing is desgined for the retrieval of satellite-based aerosol 
optical depth (AOD) data product. The data range is: 35°E -150°E (longitude) and 0°N -60°N 
(latitude). The satellite data is MODIS, and the data phase is April 9, 2017. We select the SRAP 
algorithm proposed by Yong Xue et al. (2014) as the AOD retrieval algorithm. The spatial 
resolution of the AOD retrieval result is 1KM. 

Figure 4 shows the workflow designed for AOD retrieval with SRAP algorithm. The input 
data includes M*D02, M*D03 and M*D04_L2 (* stands for O or Y, which respectively refers 
to the Terra and Aqua satellite sensor). 

 

Figure 4: Workflow design of AOD retrieval 
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Table 2 shows the statistics of processing efficiency, hich compares the method by a single 
machine processing and the proposed method. 

Table 2: Statistics of processing efficiency 

 

Compared with the traditional atmospheric remote sensing big data computing method, the 
previous test work proves that the platform proposed in this paper has advantages in the 
following aspects: Firstly, in the aspect of data processing systematicness, different processing 
tasks can be customized through this platform, which makes the integration of functions more 
convenient, systematic and processing content more flexible; Secondly, in terms of task 
computing efficiency, the overall efficiency is improved about 5 times. 

5 Conclusions 

In this paper, the computational efficiency of atmospheric big remote sensing data processing 
was improved by optimizing the scheduling strategy by the dynamic workflow and the parallel 
algorithm based on GPU. A variety of data processing modules were integrated into a platform 
to decrease the workload of big data platform, and facilitate the collaboration and 
communication among researchers in different disciplines. We focused on designing the 
workflow-driven modular processing and dynamic scaling to allow researchers for customizing 
their own developed program in the high performance computing.  

In the future, the platform could be improved in terms of quality control, fault tolerance and 
so on. Due to the heterogeneous resources and poor quality of atmospheric remote sensing 
data, some data processing links might have an issue, resulting in reducing the operating effects 
of the overall data processing. Therefore, we believe that the improvement of fault tolerance 
and robustness, and the building of the front-end and process quality monitoring function are 
significance of developing the platform. We hope our work can facilitate the research regarding 
heterogeneous computing such as resource expansion, functional expansion, process 
expansion, etc. 
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Abstract 

Sustainable Development Goal (SDG) target 7.2 requests a substantial increase in the share 

of renewable energy in the global energy mix by 2030. Renewable energy production in all 

sectors has to be evaluated for its contribution to reach this target. Biomass for energy 

production has gained a bad reputation over the past years due to the “food versus fuel” 

debate or reported unsustainable practices. The BIOPLAT-EU project is employing 

geoinformation technologies combined with sustainability and economic expertise to more 

accurately evaluate the sustainability of bioenergy value chains. The project has three main 

parts: first, the generation of a pan-European map of marginal, underutilized, and 

contaminated (MUC) lands potentially usable for bioenergy production. This is realized by 

employing remote sensing time series, existing Copernicus, and other spatial data sets. 

Second, the generation of a web-based geographical information system (GIS) connecting 

the MUC lands with other important information sources necessary to assess sustainability. 

Thisrd, the sustainability assessment includes not only typical social and environmental 

sustainability indicators like soil, water, or greenhouse gas emissions, but also economic 

sustainability indicators like employment. Current financial barriers are addressed by 

integrating innovative financing solutions considering SDG target 12.A. 

Keywords: energy, sustainable production, biomass supply, time series, webGIS 

1 Background and Introduction 

Target 7.2 of the Sustainable Development Goals (SDGs) requests a substantial increase in the 
share of renewable energy in the global energy mix by 2030. Nevertheless, energy demand is 
growing in virtually all industrialized and even more so, in emerging economies worldwide 
(Capuano, 2020). Renewable energy production in all sectors has to be evaluated for its 
contribution to reach target 7.2. Sustainable feedstock supply is expected to play a central and 
crucial role not only for the production of biofuels (EC 2018/2001), but also for the 
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production of green hydrogen through innovative pre-treatment processes or pyrolysis oil 
production. However, the use of agricultural crops for energy production has gained a bad 
reputation over the past years due to the “food versus fuel” debate, and also due to reported 
unsustainable practices (Humpenöder et al, 2018; Robledo et al. 2017). This led to the adoption 
of the European Union (EU) Directive EC 2015/1513 to reduce indirect land use change for 
biofuels and bioliquids (EC 2015/1513).  

In the last decade, many scientific studies have demonstrated how bioenergy crops have the 
potential to be grown profitably on surfaces of land which are currently marginal, 
underutilized, and/or contaminated (MUC). Additionally, studies also showed that MUC lands 
can be found in several EU and neighbouring countries (Alcantara et al. 2013, Estel et al. 2015, 
Lieskovský et al. 2015, Szatmári et al. 2018). Using these areas for bioenergy purposes could 
offer a source of income to local populations (Traverso et al, 2020) while contributing to 
achieving the targets of the new Renewable Energy Directive (RED II). Using MUC lands for 
bioenergy production contributes to SDG target 7.2 and, through the calculation of 
greenhouse gas (GHG) emissions within the sustainability assessment, also supports SDG 
13.2. Intending to promote the market uptake of sustainable bioenergy in Europe using MUC 
lands, the BIOPLAT-EU project is employing geoinformation technologies combined with 
sustainability and economic expertise to more accurately evaluate the sustainability of 
bioenergy value chains. A database of MUC lands is compiled, which integrates different 
existing data sets, as well as results of a remote sensing mapping exercise based on satellite 
image time series. In parallel, a concept is developed, which permits the sustainability 
assessment of a selected bioenergy value chain from an economic, environmental, and social 
perspective. Both, the MUC land database and the sustainability assessment concept are 
integrated and implemented within a webGIS system.  

2 Data and Workflow 

A number of different data sets are used in this study in the various steps and for various 
purposes. Table 1 lists these data sets together with the source and usage in BIOPLAT-EU. 
The overall workflow is shown in Figure 1. It depicts how the individual data sets from Table 
1 are being combined.  
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Table 1: Input data, source and usage in the study 

Input data Source  Usage 

Sentinel-2 time series data Copernicus/European Space 
Agency, GEE 

Classification of 
underutilized lands 

Landsat 8 time series data NASA, GEE 

Copernicus High resolution 
layers (HRL) 

Copernicus: land.copernicus.eu  Generation of training 
data for utilized land 
categories;  

Partly used for 
elimination of used 
land; 

Input for scenario 
projection 

Corine land cover data (CLC) 

Ukrainian Landuse data (= 
national LCLU data) 

Myroniuk (2020) 

Land Use/Cover Area frame 
statistical Survey (LUCAS) 
point data 

LUCAS (2015) Generation of training 
& validation data for 
underutilized land 
categories 

Google Earth very high 
resolution (VHR) image data 

Google Earth 

OpenStreetMap (OSM) https://download.geofabrik.de/ Elimination 
settlements 

Shuttle Radar Topography 
Mission digital elevation 
model (SRTM DTM) from NASA 

www2.jpl.nasa.gov/srtm/ Elimination of steep 
slopes for identified 
MUC lands 

Natura2000 layer of the 
European Envirnmental Agency 

natura2000.eea.europa.eu/ Elimination of 
protected areas 

Heavy metal concentrations in 
top soils 

JRC, Toth et al. 2016 Input for the 
identification of 
contaminated lands 

National contaminated land 
data sets 

National sources 

Global Agricultural Ecological 
Zone (GAEZ) layers  

Food and Agricultural 
Organization (FAO) 

Sustainability 
assessment 

Precipitation data Copernicus: 
climate.copernicus.eu 

Sustainability 
assessment 

Local administrative units 
(LAU) 

EUROSTAT, Ukrainian cadastre Geometric extent of 
LAUs for scenario 
projections 

Social and economic 
statistical data per 
administrative unit 

EUROSTAT, Ukrainian 
statistical office 

Input for scenario 
projections 
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Figure 1: Overall workflow  
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3 The Spatial Solution 

3.1 Generation of a pan-European data base of MUC lands 

Marginal lands are difficult to define, as marginality can be understood in different ways: 
spatially, economically, or in terms of soil quality for example. Due to the “food versus fuel” 
debate, the project’s precondition was set to consider only land which is currently not used or 
not usable (due to contamination) for food production. Analyses of existing databases of 
marginal lands (e.g. results from other projects such as SEEMLA or MAGIC) revealed that 
marginal lands are often being used for food production despite their marginality. Examples 
include traditional agricultural practices, of which areas of olive cultivation in Southern Italy 
are a significant example in terms of expanse. To avoid controversial discussions, it was 
decided to include only marginal lands, which are not cultivated. This characteristic of “no 
utility” would then make those lands fall in the underutilized lands category which are 
considered as lands that had no signs of human activity (including grazing) in the last five years.  

For the identification of underutilized land, the envisaged wall-to-wall, continental-wide 
detection can only be achieved at reasonable effort by remote sensing approaches. Landsat 8 
data for 2014 – 2019 was used to fulfil the five-year requirement and was  complemented by 
Sentinel-2 data from 2018 and 2019. The analysis was carried out in a stratified manner by 
biogeographical region and country using Google Earth Engine (GEE). GEE is an online 
cloud-based processing engine for geospatial analyses, available free of charge for research 
projects (Gorelick et al, 2017). Separate assessments for each biogeographical region are 
needed, as underutilized lands show significantly different properties depending on their 
climatic, elevation, and soil properties. The employed random forest classifier requires training 
data of underutilized and utilized lands in each region. The utilized training data was generated 
from sampling within the Copernicus High-resolution layers (HRL) and Corine Land Cover 
data (CLC). The underutilized training data was generated based on a multitemporal 
assessment of areas within Google Earth using the LUCAS points to pinpoint possible 
locations. All details on the processing can be found in Hirschmugl et al (2021). The 
classification suggests that a total of 5.3 million ha of underutilized land in Europe are 
potentially available for agricultural bioenergy production. The results show an overall accuracy 
of more than 85 %, with a confidence interval of 1.55 % at the 95% confidence level.  

For the identification of contaminated land, the initial attempt was to collect national data 
and aggregate them into a pan-European map. Although most member states report statistics 
on contaminated lands (shares of total land), many countries either do not have or do not 
share the underlying spatial data sets due to legal restrictions. In many cases (e.g. Hungary), 
only point-wise data is available. In other countries, such as Romania, the official contaminated 
land layer is still under evaluation and thus, not yet released. These limitations led us to the 
second option: a top-down approach using an EU-wide map of contaminations, which we 
derived from the Joint Research Centre (JRC) in the “Heavy metals in soils” product based on 
LUCAS 2009 heavy metal (HM) data (Toth et al., 2016). This map (available at 
https://esdac.jrc.ec.europa.eu/content/maps-heavy-metals-soils-eu-based-lucas-2009-hm-
data-0) has a spatial resolution of 1x1 km and covers 27 EU member states (not including 
Croatia). Maps of nine different heavy metals are provided: Arsenic, Cadmium, Chromium, 
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Cobalt, Copper, Mercury, Nickel, Lead, Manganese, and Antimony. For each of the heavy 
metals, thresholds had to be defined to separate contaminated from non-contaminated soils. 
If a threshold is exceeded, the use of this soil for food and fodder are not allowed/advisable. 
The relevant EU directive (Council of the European Union, 2002) gives only ranges of values 
rather than a specific threshold value. Previous studies (Toth et al., 2016) used Finnish 
thresholds for the whole of Europe, as these thresholds are well in line with the EU-directive. 
In our study, we collected national thresholds and applied them to the relevant country’s 
territory completing with the above mentioned Finnish thresholds for countries without 
national thresholds. It is clear, that the resulting data set is not as accurate, nor as detailed as 
potential national maps, however, it was the only feasible option to produce a pan-European 
layer. In addition, for countries with available national maps, such as Italy, we included both 
layers. Figure 2 shows the resulting map of underutilized and contaminated lands for Europe. 
Please note, that no contaminated land information is available for Ukraine, as the above 
mentioned JRC data is not available for Ukraine. Further, contamination due to any other 
agents than the heavy metals mentioned above, like for example Cobalt-60 in Ukraine caused 
by the Chernobyl accident, was not included. 

 

Figure 2: Pan-European map of underutilized and contaminated lands (country boundaries may be 

disputed)  



Hirschmugl et al 

126 
 

3.2 Development of a webGIS platform for highly automated sustainability 
analysis 

Sustainability assessment tools provide a better understanding of the three pillars of 
sustainability (economic, environmental and social) by conceptualizing and explaining the 
relationships and dependencies among them, aiming to help decision-makers to provide along 
more sustainable solutions. The methodology is described in detail in Traverso et al (2020). In 
these contexts, a suite of effective indicators and institutional frameworks were developed for 
assessing and measuring the sustainable production of bioenergy. They are intended to provide 
stakeholders with a set of analytical tools for policy decision making, management strategies’ 
design, and alternative value chains comparative analyses. The most widely known and 
recognized tools for supporting the decision-making process include indicators proposed by 
the Global Bioenergy Partnership (GBEP, 2018), the Roundtable on Sustainable Biomaterials 
(2021), and others (Pulighe et al, 2019). The sustainability assessment is structured as the 
analysis of the difference in impacts caused by two (or more) projections: baseline vs target 
scenarios projections. A baseline scenario is projected into the future to present the foreseeable 
development of each selected sustainability indicator given the current circumstances and 
conditions, thus without the existence of the bioenergy value chain studied. This first 
projection, called “baseline”, will consist of offsetting the current environmental, social and 
techno-economic features into the future for a reference period defined as relevant. For 
instance, the baseline scenario of the soil quality indicator is described as the trajectory that 
the specific soil quality parameter will have if no action is taken. The timeframe has to be 
explicitly set at the beginning of each analysis and it must be consistent for all scenario 
projections. The second projection, called “target”, consists of the same indicators and their 
(different) behaviour and developmentif a new bioenergy value chain would be in place. More 
details can be found in Traverso et al (2020). These assessments are usually based on a lot of 
location-specific data, which is difficult to access. In order to move from such case-by-case 
assessment to an automated process, a webGIS system has been built including basic data 
available for the whole area of interest (i.e. Europe and Ukraine) either as fixed tables (such as 
the greenhouse gas emissions from the use of petrol versus other biomass sources), or as 
geospatial data sets. The latter included a layer of local administrative units including attributes 
on population, gross domestic product (GDP), different employment figures, etc. collected 
from various sources, mainly EUROSTAT and national statistics (see Table 1). Furthermore, 
several layers are needed to provide information on suitability for all feedstock types 
considered in the system. For this purpose, the Global Agricultural Ecological Zone (GAEZ) 
layers were employed (IIASA/FAO, 2012). This part is needed to assess the potential yield of 
different crops in a specific area. 

Figure 3 shows the overall scheme of the sustainability assessment in the webGIS solution 
with the backend covering the MUC maps and all other geospatial and tabular data mentioned 
above, and the frontend with the user interaction. The user interaction includes inputs for 
location and scenarios selection and output of the final results, which are the assessments of 
the sustainability indicators for the selected scenarios. There are two levels of users: the 
standard user, and the advanced user. For advanced users (upon registration), the tool will 
even allow an in-depth analysis by adjusting pre-defined settings and integrating own values 
and results in the sustainability assessment. The webGIS tool is currently under finalization 



Hirschmugl et al 

127 
 

and will be made available through the BIOPLAT-EU website (www.bioplat.eu)  in July 2021 
with fine-tuning until the end of the project in October 2021.  

 

Figure 3: Set-up of the webGIS tool for automated sustainability assessment (STEN stands for the 

sustainability assessment tool used) 

4 Conclusion & Outlook 

This study employed geoinformation technologies combined with sustainability and economic 
expertise to more accurately evaluate the sustainability of bioenergy value chains. The 
proposed solution facilitates access to sustainability assessment tools by providing necessary 
input data and algorithms. The presented webGIS tool, which assesses the sustainability of 
different bioenergy value chains on selected MUC lands in an automated manner, represents 
a major step forward towards supporting data-based decisions. It also improves the overall 
understanding of existing dependencies among different indicators in an easily accessible way. 
Further, it will clearly help to improve indicator 7.2.1: “share of renewable energy in the total 
final energy consumption” by providing this tool for sustainability assessment together with 
measures to remove existing barriers in bioenergy production. By providing free access to this 
webGIS tool BIOPLAT-EU also fosters SDG target 12.2: “By 2030, achieve the sustainable 
management and efficient use of natural resources”. In order to potentially roll out the solution 
to areas outside Europe in future, existing barriers, such as lack of appropriate financing 
options, must be addressed. Based on the webGIS solution described above, innovative 
financing solutions can be developed supporting SDG indicator 12.a.2: “International financial 
flows to developing countries in support of clean energy research and development and 
renewable energy production, including in hybrid systems”. Sustainable energy, including 
research and development, challenges in many aspects of finance theory following capital asset 
pricing models (Sharpe, 1964) and the role development finance institutions play in including 
the private sector in the energy transition in developing countries. New business models will 
emerge with a more balanced approach between public and private sectors with often the 

http://www.bioplat.eu/
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public sector as initial mover in making grants available in breakthrough innovations in the 
biofuels and biorefineries sector as witnessed in the launch of the Innovation Fund, and 
through recent calls for proposals for sustainable energy projects at early technology readiness 
levels between EU and Africa (26th Jan 2021), and between EU and India (Dec 2020).  
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Abstract 

Europe has acknowledged the need to develop a very high precision digital model of the 

Earth, a Digital Twin Earth, running on cloud infrastructure to bring data and end-users closer 

together.  We present results of an investigation of a proposed submodel of the digital twin, 

simulating the worlds’ forests. We focus on the architecture of the system and the key user 

needs on data content and access. The results are based on a user survey showing that the 

forest-related communities in Europe require information on contrasting forest variables and 

processes, with common interest in the status and forecast of forest carbon stock. We discuss 

the required spatial resolution, accuracies, and modelling tools required to match the needs 

of the different communities in data availability and simulation of the forest ecosystem. This, 

together with the knowledge on existing and projected future capabilities, allows us to 

specify a data architecture to implement the proposed system regionally, with the outlook 

to expand to continental and global scales. Ultimately, a system simulating the behaviour of 

forests, a digital twin, would connect the bottom-up and top-down approaches of 

computing the forest carbon balance: from tree-based accounting of forest growth to 

atmospheric measurements, respectively.  

Keywords: Digital Twin Earth, forest, carbon, modelling 

1 Introduction  

Forests make up approx. 1/3 of the Earth’s land surface (FAO, 2020). They influence climate 
through physical, chemical, and biological processes that affect planetary energetics, the 
hydrologic cycle, and atmospheric composition (Bonan, 2008). Forest biomass is a central 
component in the terrestrial carbon balance: together with agriculture, it contributes close to 
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10% of the total greenhouse gases (Tubiello et al., 2015). European countries have agreed to 
take carbon emissions under meticulous political attention with the Paris agreement. 
Furthermore, forests are an important economic resource and provide ecosystem services to 
communities.  The global forest sector had a direct contribution of more than US$539 billion 
and a total contribution of more than US$1298 billion to the world GDP (Li et al., 2019).  

The value of Earth Observation (EO) for forestry is widely accepted: if certain baseline 
requirements on data availability and technology are fulfilled, the technology can provide forest 
area and deforestation rate, and also on more in-depth information, e.g., biodiversity 
(Anderson et al., 2017). Currently, information on forests is available, for example, as a part of 
Copernicus Core Services; the EU has also launched a new Forest Information System for 
Europe, based heavily on remote sensing. Recently, high-level EU documents, the Green Deal 
and EU Data Strategy called for bringing together European scientific and industrial excellence 
to develop a very high precision digital model of the Earth. The Digital Twin Earth (DTE) 
will provide a leading-edge capability to “visualize, monitor and forecast natural and human 
activity on the planet in support of sustainable development thus supporting Europe’s efforts 
for a better environment”. The Destination Earth (DestinE) policy document (European 
Commission, 2021) specifically foresees the creation of a Digital Twin on Climate Change 
Adaptation, which will also include specialised DTE’s of Earth system components. 

Here, we present a methodology for a spatially explicit EO data analysis and modelling tool  
supporting the top-level policy goals to create a specialized DTE of Earth’s forests. We start 
with describing user needs based on a Europe-wide user survey. We consider the spatial and 
temporal resolutions needed by the users, and the resulting requirements of the DTE. Finally, 
we present a layout of the DTE, fitting the structure of DT on Climate Change Adaptation. 

2 Methods 

We performed 30 one-hour interviews with leading data users in forestry and forest science. 
As the DestinE policy targets European entities, the addressed entities were chosen from 
Europe, many with an international scope. They were, somewhat subjectively, divided into 
categories such as forest enterprises, scientific and institutional users, etc. (Table 1). We also 
assigned home countries to the entities, which represented their main location or home market. 
Many of the users are international and work with global data (e.g., most science users) or treat 
Europe, or even the entire globe, as their home market, but only European and international 
intergovernmental institutions are classified as international in Table 1.  

We asked all users eleven questions, including both open-ended and multiple-choice ones 
(Table 2). The answers to the questions were used to determine the key estimation and 
prediction needs, as well as spatial and temporal resolutions and ranges for the DTE. Finally, 
we analysed the requirements on the available forest models and computing infrastructure to 
address the needs determined in the survey. The analyses were constrained by the requirements 
of openness and interoperability set out in the policy documents, and the key European 
infrastructures foreseen to be used for the tasks. 
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Table 1: User categeries involved in the user needs study. Country codes: DE – Germany, ES – Spain, FI – 

Finland, GB – United Kingdom, PL – Poland, RO – Romania, SE – Sweden, INT – international (acting at 

European or global scales only). 

User category number countries 

Forest enterprises 5 DE,FI,RO 

Governmental bodies & international organizations 9 DE,FI,PL,RO,INT 

Forest and Wood Industry 3 FI,SE 

Service Companies 1 DE 

Scientific users 7 DE,FI,GB, RO 

Public research institutes 5 DE,ES,FI,RO 

total 30  

Table 2: The questions guiding the interview. The column “Open” indicates whether the question was 

open-ended. 

no. Question text Open 

1 What is the key question to be answered by a forest modeling system? yes 

2 What are further priorities to be simulated? no 

3 How should the results be presented? no 

4 What is the spatial unit of the analysis you would like to carry out? yes 

5 What is the temporal scope of the analysis you would like to carry out? yes 

6 In what region on Earth do you typically carry out analyses? yes 

7 What is the size of the study area you are focusing? yes 

8 What kind of data could you contribute? yes 

9 When using the platform, would you contribute your data to the digital twin? no 

10 
What systems do you have in place for analyzing the status of forests and the 
future development of the forests? 

yes 

11 At which spatial dimension could you provide data? yes 

3 Results and Discussion 

The question most commonly asked to be addressed by the digital twin was forest carbon 
stocks and their changes (Figure 1). Due to the role of forests in the carbon cycle, its relevance 
to institutional and scientific users is not a surprise. However, this topic was also relevant for 
commercial entities, as indicated by the high importance of “organizational carbon balance”, 
which quantifies the carbon footprint of the activities of an entity, including its forest-related 
products. Next in line were topics related to hazards and risks, including shifts in the 
geographic area of the climatic conditions suitable for specific overstory species. “Sustainable 
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timber productivity” was not very high on the list, but considering the small share of 
commercial users in the survey, it cannot be ignored by the digital twin. 

Open-ended questions included those related to carbon and climate (What does climate change 
mean for the entire forest carbon cycle? How can we mitigate the effects of the wood industry to global warming?); 
species and risk mitigation (Which tree species will still occur in 100 years and where will they occur? 
What will be the natural borders of tree species in 2050 or 2100? What does climate change mean for individual 
tree species? What species to plant now in order to guarantee a continuous forest cover?), and forestry (Which 
forest type will retain its forest function in the long run? Where can forests be secured in the future, and where 
can timber still be produced? Where will trees still grow old enough in order to harvest timber?). 

 

Figure 1: The number of times a need was mentioned by users. Each user was asked for three priorities. 

On average, the time to be simulated was 54 years. National research centres interviewed by 
us are legally obliged to provide long-term simulations between 10 and 40 years. 45% of the 
interviewed stakeholders mentioned the need for seasonal or yearly forecasts, with one request 
for near real-time operations. The required time step varied from weekly and bi-weekly to 
monthly. Shorter steps were mentioned regarding hazards such as bark beetle disturbances or 
drought and fire threats. The required modelling scale varied largely between the interviewed 
users, ranging from a single tree to 16×16 km2, with possible aggregation to regional/country 
level. A specific requirement stated by commercial users is the need to enforce access rights to 
data: to achieve their requirements for accuracy and reliability, commercial users need to use 
their privately-owned forestry data for simulations, which should not be accessible to other 
users of the digital twin. The visualisation and data output requirements for almost all users 
included geographically tagged rasters (e.g., geotiffs; NetCDF was explicitly mentioned once). 
More enhanced  visualisations, including a fully realistic 3D and interactive representation of 
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the forest, was not a high priority but mentioned as a tool for outreach (non-commercial users) 
or attracting customers (commercial users). 

To answer the different tasks raised by the potential users and to match the definition of the 
DTE as expressed in the DestinE policy (“digital replicas of various aspects of the Earth 
system”; European Commission, 2021), the following modelling components need to be used: 
(1) forest structure retrieval,  (2) forest growth model, (3) forest disturbance risk prediction, 
(4) forest management and scenario model, (5) wood product life cycle model, and (6) 
estimation of direct climate forcing of forest. As dictated by the policy documents, the digital 
twin will need to interact with the foreseen Digital Twin on Climate Change Adaptation, which 
will provide the forest twin with the scenarios to simulate, weather and climate data, parts of 
a user interface, etc. (Figure 2). Visualization will form a natural part of the DTE, implemented 
on the landscape scale, displaying the spatial variation in predicted key forest properties. 

 

Figure 2: Positioning of the digital twin of forests (represented as a set of numbered blocks) inside the 

Digital Twin on Climate Change Adaptation to be implemented according to the DestinE policy. 

To start the simulations, existing forests need to be mapped in the simulation area. Next, the 
forest productivity model needs to predict the productivity (e.g., net ecosystem exchange and 
the distribution of assimilated carbon in the different pools in the forest) and translate this into 
forest growth. In interaction with forest management and disturbance models, the forest 
structure should be altered in time steps required by users, quantify the side flows of carbon 
(e.g., into wood products), and determine the status of the forest for the next iteration. A single 
forest productivity and growth model can be adopted, calibrated for different biomes (e.g., 
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Tian et al., 2020) or several biome-specific models could be combined. Great attention must 
be paid to model validation: model prediction errors consist of inherent model errors and 
model calibration (parameterization) errors, with the former contributing up to 50% of model 
performance (Dietze et al., 2014). Forest management models need to be up-to-date regarding 
national forest policies and regulations, while forest damage assessment still requires expert 
knowledge (e.g., Jactel et al., 2012).  

Due to the nature of the models, optical multispectral data is recommended (Sirro et al., 2018) 
for estimating the forest variables and initializing the modelling process. For global coverage 
and unlimited accessibility, Sentinel-2 and Landsat are the preferred sources. Auxiliary data 
(field plot measurements, airborne laser scanning, very high resolution imagery, future 
hyperspectral and chlorophyll fluorescence imagery, etc.) should be included where and when 
available. In addition to providing the required EO data, the computing environment should 
support the implementation of the forest models mentioned above and provision of 
environmental and weather data required by the forest growth model. Such infrastructure in 
Europe is provided by the Copernicus Data and Information Access Services (DIAS), initially 
funded by the European Commission.  

The key components and competences for a successful implementation of a digital twin of the 
Earth’s forests exist in Europe. The biggest challenge is to implement the system at the very 
high resolution required by the forestry sector, while still achieving compatibility with the 
global estimates of carbon fluxes from the variations in the CO2 concentration in the 
atmosphere (i.e., merging bottom-up and top-down approaches of carbon flux estimations). 
Based on the work presented here, the policy-driven enthusiasm in Europe is supported by 
real user-side interest and technological readiness.  
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Abstract 

Forest Flux https://www.forestflux.eu/ will renew forestry value-added services in Earth 

Observation (EO) by creating and piloting cloud-based services for committed users on 

forest carbon assimilation and structural variable prediction. Forest Flux exploits the explosive 

increase of high-resolution EO data from the Copernicus program and developments of 

cloud computing technology. It implements a world-first service platform for high-resolution 

maps of traditional forestry variables together with forest carbon fluxes. Forest Flux will allow 

the users to improve the profitability of forest management while taking care of ecological 

sustainability. The Forest Flux services are implemented on the Forestry Thematic Exploitation 

cloud platform https://f-tep.com/. In 2020, nearly 700 thematic maps on forest stand and 

carbon flux variables were delivered to nine specific users in a form that was applicable to 

their operational forest management systems. The last project year 2021 focuses on map 

product refinement and improving user services, which eventually lead to operational 

service concepts. Forest Flux is an Innovation Action project of the European Union, Grant 

Agreement No. 821860. 

Keywords: forestry, carbon, satellite, earth observation, biomass, cloud platforms 

1 Introduction  

Until recently, detailed information on the forest carbon cycle has not been available due to a 
lack of scientific understanding, spatial data availability, limited processing capacity, and the 
complexity of implementing this information in business processes. 

https://www.forestflux.eu/
https://f-tep.com/
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Figure 1: Carbon flux variables computed in Forest Flux project. 

Forest Flux will renew forestry value-added services in Earth Observation (EO) by creating 
and piloting cloud-based services for committed users on forest carbon assimilation and 
structural variable prediction (Figure 1). The services utilize Copernicus satellite data. The 
services are driven by sustainable forest management, EU forest strategy, the Bioeconomy 
Action Plan, and the demands of environmentally aware end-users of wood industry products. 

Forest Flux exploits the explosive increase of high-resolution Earth observation data with 10-
to-20 metre resolution, particularly from the Sentinel 2 satellite of the Copernicus program. 
The recent developments of cloud computing technology are utilized in data value-adding. It 
implements a world-first service platform for high-resolution maps of traditional forestry and 
carbon flux variables. Forest Flux will allow the users to improve the profitability of forest 
management while taking care of ecological sustainability. Forest Flux is an Innovation Action 
project of the European Union’s Horizon 2020 program, Grant Agreement 821860. The 
project started in 2019 and will be completed at the end of 2021. 

Forest Flux uses a holistic approach in a single processing chain. Already during the project, 
forestry and carbon data are integrated into the decision-making processes of selected core 
users. The Forest Flux services are implemented on the Forestry Thematic Exploitation cloud 
platform https://f-tep.com/. It uses the CreoDIAS infrastructure as the satellite data supply 
and processing infrastructure.  

Forest Flux will establish the leadership of European industry in the sustainable utilization of 
forest resources. The computing infrastructure is specifically targeted for EO data and forestry 
users, and it will be fully functional by the end of the project. The web-based human and 
machine interfaces will enable market access unrestricted by country boundaries, and facilitate 
easy commercial interactions of players of different sizes and backgrounds. 

https://f-tep.com/
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2 Concept 

 

Figure 2: The three service groups of Forest Flux.  

The services of Forest Flux are composed of three main blocks: 1) Forest structural variable 
services, 2) Carbon flux services, and 3) Organizational carbon balance services (Figure 2).  

Forest structural variable services comprise of forest cover mapping and estimation of 
forest variables that have been traditionally measured in the field. The provided information 
includes tree height, basal area, stem diameter, stem volume, density, and tree species. The 
forest inventory service can be implemented for several years, or at defined intervals. 

Forest change services are also part of the service block of structural variables. These services 
offer mapping of changes in forest cover between given target years. Possible change types 
include changes between land cover classes due to forest harvests, or forest damage.  

Forest ecology inventory services include two types of products: fragmentation and structural 
diversity products. The products of this service are computed from outputs of forest inventory 
service. The Forest ecology inventory indicators indicate the proportion of wooded area within 
a selected grid cell area (e.g. 1 km2), number of wooded patches with a unit area, wooded area 
perforation density, number of tree species, and tree height variability within the selected grid 
cells.  

Forest ecology change computes changes between two ecology products that represent 
different points of time. 

The forest structural variable services provide information on forest area, forest status, and 
their changes. The inventory considers one target year, whereas the change services provide 
information about forest changes between the years.  

Carbon flux services provide information on the biomass and carbon balance of the 
forests. Forest structural variables derived from EO are used to initialize the forest model 
PREBAS (Minunno et al., 2019; Tian et al., 2020). Carbon (C) stocks and fluxes are computed 
for the year of the structural variable mapping and for the future, providing forest growth and 
C balance forecasts. 

The outputs of the biomass and carbon balance service are: maps of above and below-ground 
tree biomass, soil C stocks, vegetation carbon, yearly averaged Evapotranspiration, Gross 
Primary Production (GPP), Net Primary Production (NPP), Net Ecosystem Exchange (NEE) 
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(Figure 1). Mapping using the PREBAS model allows spatial identification of carbon sinks and 
sources and monitoring particular vegetation stresses, such as water stress.  

Biomass and carbon fluxes can be monitored for years for which ground reference, satellite, 
and weather data are available. Several structural forest variable estimations over years help to 
improve the carbon flux and growth models. Forecasts for future fluxes and forest growth can 
be computed by applying different climatic and forest management scenarios.  

The organizational carbon balance builds on the previous service layers: forest structural 
variable estimation and carbon storage and fluxes while adding one additional layer: the wood 
harvested from the forest and manufactured into wood-based products. 

The carbon storages and fluxes from the previous step, carbon in trees and soil, the fluxes 
between these storages and atmosphere, are in other words augmented with third carbon 
storage, wood-based products, and the associated carbon fluxes. Part of these fluxes are carbon 
emissions from the execution of wood harvesting, transport, and manufacturing processes, 
including recycling. Another aspect considered for the wood-based carbon product storage is 
the substitution of non-renewable materials with renewable ones. 

Dedicated user involvement, strong commercial interests, rapidly developing online markets, 
and demonstrated excellence of the consortium make the Forest Flux service platform 
sustainable beyond the end of the project. 

3 Pilot services 

Pilot services were conducted for nine users in five countries in Europe and South America. 
In total, approximately 700 thematic maps were delivered for the forest management systems 
of the users. For each user, a Service Agreement was prepared. This agreement defined the 
site and desired contents of the services. The users assessed the delivered maps and associated 
information of uncertainties. The assessment results were used to improve the services for the 
second pilot that has been conducted in 2021.  

The main high-resolution (HR) satellite data were Copernicus Sentinel-2 Multispectral 
Instrument (MSI) images with a ten-metre spatial resolution that was also the resolution of the 
output maps except for the ecology products where the resolution was one square kilometre. 
Supplementary satellite data for before the year 2015 were obtained from Landsat 8 
Operational Land Imager (OLI). The wall-to-wall satellite data were augmented by a sample 
of Very High Resolution (VHR) satellite imagery with sub-meter resolution. Images from 
several VHR satellites including Worldview-2, Geoeye-1, Pleiades, Deimos, and Kompsat 3, 
available on the Data Warehouse of Copernicus, were analysed. These data were used to 
augment incomplete ground reference data on some pilot sites.  

The ground reference data were mostly provided by the users. Openly available ground sample 
plot data of high quality were available for the whole country in Finland. These data were used 
for the training of the models for satellite image interpretation and for uncertainty analyses. 
The principal method for the estimation of forest structural variables was the Probability 
method of VTT (Häme et al., 2013, 2001).  
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For changes, VTT’s Autochange method was applied (Häme et al., 2020). Probability and 
Autochange software were run on the Forestry cloud TEP platform. A significant amount of 
new software for the improvement of the image analysis process was developed in Forest Flux. 
Figure 3 and Figure 4 give examples of the Forest Flux maps. 

 

Figure 3: Stem volume maps computed in the first pilot services Forest Flux on 7 km x 7 km areas in Finland 

and Romania. The relative RMSE was in Finland 52% and bias 0.1 m3/ha and in Romania 59% and 2.3 

m³/ha, respectively. The uncertainties were computed at the level of ground sample plots using an 

independent plot sample. The uncertainties are smaller for larger areas.  

 

Figure 4: Net ecosystem exchange for in the Finnish study site. Negative values mean carbon assimilation 

and positive carbon emission. The emission sites represent recent regeneration areas.  
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Conclusions 

Relatively complex production chains were developed during the two first years of the Forest 
Flux project. The second pilot services for the same users means approaching an operational 
status of the service provision. All the users were willing to continue receiving Forest Flux 
services in pilot stage two. The feedback showed requirements for increasing the accuracy of 
estimations. A positive assessment was received from sites where the ground reference data 
were poor because also the earlier information on forest resources was inaccurate. In Finland, 
where the quality of the reference data was good, the existing information of forest resources 
is also accurate. The satellite data will be augmented with Airborne Laser Scanner (ALS) 
observations when demand for accuracy is high and these data are available.  

During the last project year, a business plan for the operational services will be developed 
together with the provision of the second pilot services. 
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Abstract 

Unsustainable practices and increasing pressure on soil jeopardise the achievement of land 

degradation neutrality, targeted by 2030. Land degradation is costing billions in terms of land 

restoration and is heavily impacting human health and climate change. Sustainable 

Development Goals’ (SDGs) target 15.3 focuses on the issue, and several methodologies are 

proposed to address land degradation. However, all present some limitations in terms of 

accuracy. This paper aims to present a more comprehensive approach based on the 

application of remote sensing technology. We show that the Copernicus Sentinel-1 and 

Sentinel-2 satellite imagery archives can be used on the one hand to detect the current soil 

conditions, on the other hand to predict the future balance of Soil Organic Carbon (SOC). 

A case study illustrates that SOC, tillage and bare soil are key quality indexes that can 

facilitate quantifying and achieving a land degradation-neutral world. 

Keywords: land degradation, soil quality, soil organic carbon 

1 Introduction 

Soil is a complex ecosystem that hosts several organisms and influences several services and 
mechanisms, such as water quality, food production, and climate regulation. Moreover, soil is 
a crucial non-renewable resource for humankind and its economic system (European 
Commission, 2020). 

The Sustainable Development Goals (SDGs) try to establish a transnational commitment to 
promoting more sustainable management of Earth resources (Mancebo, 2015). Sustainability, 
intended as the “dynamic and unstable equilibrium between the natural and social systems capability to soak 
in shocks, keeping their functions, without collapsing (resilience), and loosing that capability (vulnerability)” 
(IAEG-SDGs, 2016), represents the common theme of the whole framework. Whereas the 
previous Millennium Development Goals presented an independent list of objectives, the 2030 
Agenda establishes a systematic foundation for sustainability, where the single SDGs are not 
17 separate purposes but interlinked goals requiring systemic planning and intervention. 

This close interconnection is clear with regards to soil: food security (SDGs 2 and 6) and safety 
(SDG 3), mitigation and adaptation to climate change (SDG 13) and sustainability of terrestrial 
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ecosystem services (SDG 15), for instance, all directly depend on soil conditions, while indirect 
correlations with other SDGs (e.g., 7, 12) can be easily identified. Moreover, a specific target 
(15.3) has been established to combat land degradation (Tóth et al., 2018). 

Land degradation represents one of the main threats for the Earth and its inhabitants: it affects 
at least 3.2 billion people and costs about €5.5-10.5 trillion per year and 10% of the annual 
global gross product in terms of biodiversity and ecosystem services. In addition, land 
degradation and climate change feed mutually (Keesstra et al., 2018; IPBES, 2018). According 
to Keesstra (2018), it is possible to identify three types of land degradation: physical, chemical, 
and biological. Physical degradation refers to phenomena like erosion and compaction, which 
imply the dislocation and relocation of soil particles without modifying their chemical 
composition. In contrast, chemical degradation also involves such alteration, for example, in 
case of overuse of fertilisers, insecticides, and herbicides, or inadequate water management, 
leading to salinisation of (semi)arid regions. Biological degradation refers to loss of Soil 
Organic Matter (SOM) connected to change in land destination (e.g., the conversion of forests 
in arable lands). This overview underlines, even more, the interconnection between land 
degradation and the entire sustainable development framework and poses an urgent challenge: 
on the one hand, water management (SDG 6), responsible production (SDG 11), and 
sustainable economic growth (SDG 8) are negatively impacted by land degradation; yet, on the 
other hand, the targets of other SDGs related to food, health, water, and climate, pose a high 
pressure on land and soil. 

Looking at SDGs, target 15.3 calls for “land degradation neutrality - LDN” as “a state whereby 
the amount and quality of land resources necessary to support ecosystem functions and 
services and enhance food security remain stable or increase within specified temporal and 
spatial scales and ecosystem”. LDN is measured (in hectares or km2) by indicator 15.3.1 as the 
“proportion of land that is degraded over total land area” (IAEG-SDGs, 2016) and by three 
sub-indicators referring to land cover (measured as Land Cover Meta Language - LCML), land 
productivity (indicated as Net Primary Production - NPP) and carbon stock (expressed as Soil 
Organic Carbon - SOC) (UNSD, 2018). 

In practical terms, the United Nations Convention to Combat Desertification (UNCCD) called 
for the application of remote sensing to monitor land degradation, and several satellite-based 
methods already provide an algorithm for calculating 15.3.1. This paper aims to promote a 
more comprehensive analysis for the design of supporting tools to help especially farmers turn 
SDGs’ commitments into agricultural practices. 

2 Materials and Methods 

In order to improve the understanding of the primary soil degradation dynamics, it is necessary 
to ensure the interconnection of a broad network of data and monitor them at a global scale. 
The methodology we propose differs from traditional and other satellite-based studies. It 
defines soil texture, weather conditions, agronomic intervention (tillage, fertilisation, etc.) and 
anthropic elements directly from satellites instead of using land cover maps to precisely predict 
carbon balance. Both historical and real-time data about carbon balances allow to forecast the 
impact of agricultural practices and to support the farmer in optimising their application.  
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In particular, data from Sentinel-1 (S1) and Sentinel-2 (S2) on agricultural areas are used, with 
the aim of creating binary maps of the variations in surface roughness related to tillage practices 
and the related loss or storage of carbon in the soil. The adopted strategy includes a pre-
processing phase for both sensors and final modelling of data consolidation and correlation. 
The multispectral data underwent a classification and a pre-processing of some indices such 
as the selection of values <0.36 NDVI (normalised difference between band 8 and 4) and 
Normalized Burn Ratio 2 (NBR2) index thresholds from 0,05 to 0,1, which helped to identify 
the bare or sparsely vegetated soils where tillage practices are usually performed. 

 

Figure 1: The image masking process 

The SAR data, on the other hand, were used for detecting the processing change. The pre-
processing of the S1-SLC images was accomplished using SNAP Toolbox S1. In the second 
phase, the adjacent meteorological stations within a radius of three km were added to the study 
and sorted for the hourly frequency close to the satellite pass. This allowed us to mask pixels 
that received more than 1 mm of rain within the five hours before image capture. 

The pre-processing chain for SLC images consists of applying precise S1A orbits, calibrating, 
removing thermal noise, de-bursting and ground correction with SRTM 1 sec. The values of 
the digital numbers have been converted to dB scale with a backscatter coefficient with a 
resolution of 25 m. Analysing the temporal changes of S1 on the VH polarisation allowed us 
to identify the variations due solely to tillage practices since the roughness of the surface on 
agricultural land varies unevenly in space. In contrast the soil humidity usually varies uniformly 
(Mercier et al., 2020). The analysis of S2 data concentrated on two spectral wavelength ranges: 
700-865 nm and 1375-2190 nm. These spectral ranges were selected since the Near Infra-Red 
(NIR), and the Short Wave Infra-Red (SWIR) regions have spectral characteristics associated 
with SOC (Sorenson et al., 2017). The algorithm was validated by observing various types of 
tillage practices collected at different sites. Among the study areas, we selected three 
homogeneous cereal crops farms: two practice conservation agriculture and the third 
traditional agriculture. In addition, 16 samples (8 before and 8 after tillage) were collected at 
0-30 cm depth and used for validating the satellite data. 

The temporal changes of S1 on the VH polarisation are shown in Figure 2 and allow us to 
identify the processing mechanisms that took place on the different soils. It is clear that 
traditional processing affects more the VH polarisation. On the other hand, in Figure 2, it can 
be seen that the unploughed soil does not go under any variation of VH polarization between 
one crop and another. 
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The presented methodology allows to create soil tillage change maps from S1 data. The 
methodology based on multiscale time change detection on S-1 VH-backscatter on bare soil 
areas or poorly vegetated areas has an overall accuracy of tillage/no-tillage land identification 
of 90%. Based on the observations collected for the three agricultural lands, errors were found 
on the perimeter areas of the land due to delimitation trees or anthropogenic objects. 

 

Figure 2: Monitoring of agricultural operations with the S1 VH polarisation in the pre-sowing period. 

Once tillage was identified from the satellite, two models were developed based on Random 
Forest (RF) and Support Vector Machine (SVM) neural networks that use S2 images on the 
VNIR and NIR-SWIR bands. Each spectrum was pre-processed using Continuous Wavelet 
Transform (CWT) within the WMTSA package in R (Percival et al., 2016). Spectral data were 
calibrated against a pre-and post-processing SOC calibration dataset (Table-1). 

Table 1: Summary of S2 elaboration and related validation of in-situ data. 
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Figure 3: Annual graphical representation of S2 SOC data.  The complete charts are available by 

[name deleted to maintain the integrity of the review process]. Study area A: No-Tillage; Study area B: 

Reduced Tillage; Study area C: Ploughing 

Although the study analyses the variants that represent a different soil tillage system, it can be 
concluded that the no-tillage system is characterised by less impact on the soil and therefore 
favours a higher presence of organic carbon. Taking tillage into account, the use of reduced 
tillage compared to a no-tillage soil resulted in a 22% decrease in SOC. On the other hand, the 
land that has undergone conventional ploughing resulted in a 36% reduction in SOC, which 
means nearly twice the emissions of no-tillage. While in the case of a comparison between 
reduced tillage and conventional tillage, the latter is responsible for increasing 14% of soil 
organic carbon. 

We believe that time series are fundamental to determine causes of carbon loss that are not 
visible with annual coring: SOC/soil ratio and soil tillage must be monitored over a 
medium/long period of time, and the satellite guarantees constant monitoring over the soil. 
In conclusion, as shown in Figure 4, the entire research is based on a 3D map adding an 
additional time dimension that enables to correlate the processing of agricultural land and 
SOC. The first dimension consists of a binary map (full 1-byte raster images) containing an 
information class on the cultivated/uncultivated land, the second dimension refers to the 
tillage monitored by S1 “tillage/no-tillage”. The third and last dimension contains the variation 
of the organic substance detected by S2 through a linear correlation between reflectance 
indices and in-situ data. 

 

Figure 4:        
Graphic representation of 3D map + 

Time. From the top left: 

cultivated/uncultivated land map; 

tillage/no-tillage grid; S2 SOC grid. The 

bottom part shows the resampling 

methods for homologating the 

different data resolutions. 
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Satellite data has helped demonstrate that farmers who implement these practices can 
significantly reduce soil erosion rates and indirectly increase the amount of organic matter in 
the soil. The same data can help farmers create a monitoring system of their land and their 
practices to further reduce the impact of agriculture on climate change. Further analyses will 
be carried out on the phenological cycles of 2020 and 2021 to train the neural networks better 
and reduce the error with in-situ data. 

3 Conclusion 

Many scholars and the United Nations themselves noted that the Millennium Development 
Goals (MDGs) missed a chance both in terms of purposes and methodology (Death & Gabay, 
2015; United Nations, 2015). The post-2015 debate promoted vivacity for the definition of the 
“post”, which resulted in the creation of 17 new goals, the Sustainable Development Goals 
(SDGs), with 169 targets to be achieved by 2030.  

Although several initiatives at transnational and European level have been launched, such as 
the Common Agriculture Policy (CAP) and the Zero Pollution Action Plan for Air, Water and 
Soil, to achieve the commitment on land degradation neutrality, there is no consensus about 
how to effectively pursue it. Our research (still ongoing in three areas in Italy and Germany) 
wants to contribute to the implementation of the SDGs framework with a bottom-up 
approach: while SDGs targets directly address governments, most land degradation processes 
take place in the private sphere, where farmers play a key role (Keesstra et al., 2018). The 
solution proposed in this paper suggests that this realignment can be facilitated by introducing 
an innovative monitoring system that promotes sustainable use and management of soil among 
farmers. The facilitation of soil monitoring and management at the farmers’ level will, on the 
one hand, improve SDGs accessibility and applicability. On the other hand, promote a uniform 
methodology, compliant to the international commitments (the 2030 Agenda) and the 
internationally recognised strategies to contrast global change, like the Intergovernmental Panel 

on Climate Change Guidelines. 
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Abstract 

This project aimed to exploit existing open data and open-source software to allow 

visualising and finding spatial coincidences between three groups of indicators: 1) 

agricultural activity, 2) land use and forest cover changes, and 3) spatial distribution patterns 

of vegetation loss. This paper presents preliminary results of developing an interactive map 

using R, Leaflet, and QGIS to perform a simple overlay analysis of layers containing better 

policy and decision-making indicators.  The map uses open data available through the 

Mexican government platforms, and all processing, storage and publication are done using 

free open-source software tools. The data used in this project was limited to the Marqués de 

Comillas municipality because of its importance in Mexico’s forest ecosystem. The maps are 

a work in progress and a continuation of research done for a geomatics graduate program 

in Centro de Investigación en Ciencias de Información Geoespacial. 

Keywords: overlay analysis, Chiapas deforestation, open source geospatial data, open 

source geospatial software 

1 Introduction  

Agricultural expansion continues to be one of the main drivers of deforestation and forest 
fragmentation, and the associated loss of forest biodiversity. The deforestation rate in the 
1990s was 16 million hectares per year and 10 million hectares per year from 2015 to 2020. 
(FAO & UN, 2020). Decisions on land use have prioritized the benefits of agriculture over 
forest conservation, which in large part explains continued deforestation in the tropics. In the 
short term, deforestation allows greater productivity, but long-term effects may be inverse due 
to soil degradation (Benhin, 2006). Although simplistic, analysing links between agricultural 
activity and deforestation can provide preliminary information regarding the drivers of land-
use changes and deforestation (Benhin, 2006). 

Deforestation drivers in Mexico is strongly influenced by contradictory public policies that, on 
the one hand, promote conservation and, on the other, promote productive activities in forest 
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ecosystems. Most recently, the federal program “Sembrando Vida” provides economic 
support to farmers who have access to at least 2.5 ha of workable land for agroforestry projects 
and are located in municipalities with social lag. The broad goals of the program are: promoting 
food auto sufficiency, increasing employment levels and improving forest cover. A review of 
newspaper notes and research papers regarding the program revealed mixed results. While the 
program has had positive results, it has also contributed to the deforestation of natural and 
endemic forest cover (Olvera, 2019; Forbes Staff, 2016; Acosta and Vera-Herrera, 2019; 
Arturo, 2020; Enciso, 2020; Quadri, 2020; CONEVAL, 2020). However, state-level data 
regarding the program is clear, at municipal levels the information about the “Sembrando 
Vida” program is not (Colter et al., 2020). Furthermore, no current evaluations or 
recommendations were found that analyse the effects of the program on forest coverage. In 
this regard, this article presents preliminary results of a interactive map prototype intended to 
use open data and open source software to facilitate monitoring land use changes and 
agricultural activities at a sub-municipal level that could provide useful information for better 
evaluation and monitoring of programs such as these. 

2 Proposal 

There is a large amount of data regarding forest cover, land use and agricultural activities in 
Mexico. Additionally, satellite imagery from several different sources is also freely and widely 
available. Although easily accessed, the data used is often stored in different repositories and 
in different formats and dimensions, making combining data of related phenomena, such as 
agriculture and deforestation, complex. The following table compares three platforms that 
allow visualisation of this type of data in Mexico. 

Table 1: Comparison of existing portals with georeferenced data in Mexico 

 GAIA INEGI Geoportal CONABIO Geoweb Chiapas 

Datasets 20 >13000 >200 

Allows data download Not all layers Yes Yes 

Code is available No No No 

Allows overlays No No No 

Regional or National National Both Regional 

Can filter data by region Not all layers No NA 

Albeit not exhaustive, none of the platforms reviewed allowed overlaying layers of data at state 
or municipal levels, and none of them provided code or development information. Exploiting 
the full potential of all of this data requires it to be easily visualised and compared, which we 
consider as important as developing new models and generating new data. In this sense, this 
paper presents preliminary results of a prototype of a simple GIS that allows basic data 
visualisation by homologating data from different open data sources and open-source 
software. The map is intended to allow simple overlay analysis of the data that contributes to 
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finding likely or best locations for a specific phenomenon (ArcGIS, 2020). The system is 
designed to help to answer three general but essential questions at a local scale: 

1. Where are the changes in land use and forest cover clustering?  
2. What are the main agricultural activities where these clusters are occurring?  
3. What may the different combinations of these clusters/activities indicate? 

This work is not focused on designing or implementing a complex model but rather on 
attempting to configure, process and compare readily available data from different sources in 
a simple interactive map that allows overlay analysis of the following groups of data (see table 
2): 

Group 1: Agricultural activities 
Group 2: Land cover change 
Group 3: Spatial autocorrelation of vegetation loss 

End users will be able to select different combinations of layers data and overlay analysis of 
these combinations as well as access raw and processed data used. 

3 Case Study: Marques de Comillas Chiapas, Mexico 

This pilot project was limited to the Marqués de Comillas municipality because of its relevance 
Mexico’s forest; it is located in the last redoubts of high evergreen forest in the country, an 
ecosystem that went from 10 million hectares to just over 1 million that contains remnants of 
the forest that allow the mobility of different species and also bordered the Montes Azules 
Biosphere Reserve which preserves the greatest diversity of species in Mexico (Carabias, de la 
Maza & Cadena, 2015; Flores, 2019). Productive activities in this region are in constant conflict 
with forest conservation; finding ways to guarantee the population’s well-being should balance 
productive capacity with conserving the ecosystem. It is widely accepted that agriculture is a 
driver of tropical deforestation and its large scale environmental consequences. Thus through 
proxies such as plot size, it may be possible to analyse details that provide accurate data 
regarding forest cover changes (Dang, 2019).  

4 Data Processing and Map Development 

Data sources: Data from Censo Agropecuario 20071 (INEGI, 2007), AMCA 20162 (INEGI, 
2016), USV series III and VI3, was pre-processed in R in order to generate data frames that 
could be easily concatenated with maps and compared with land cover change information. 
The results were then stored as .Rdata and .geojson files in a Github account. 

                                                 

1 Censo Agrícola, Ganadero y Forestal 2007 – Agriculture, Livestock and Forestry Census 2007   
2 Actualización del Marco Censal Agropecuario 2016 – Update of the Agriculture, Livestock and 

Forestry Census 2016 
3 Uso de suelo y vegetación serie III and serie VI – Land use series III and series IV are nationwide maps 

of landuse published in 2005 and 2016 respectively.  
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Data Processing: Data processing was divided into three groups, as shown in the following 
table. 

Table 2: Groups and indicators  
* The census was taken in 2007 and 2016 do not allow comparing data directly. Only data from 2016 

data was used for creating thematic maps for the time being. 

Group 1: Agricultural 
activities (2016)* 

Group 2: Land cover change 
(2007-2016) 

Group 2: Spatial 
autocorrelation of 
vegetation loss (2007-2016) 

Parcels with some kind 
agricultural activity.  
 
Agricultural activities (% 
of parcels)  
 
Productive forestry 
activities (% of parcels) 
 
Livestock activities (% of 
parcels) 

Continued anthropic activity 
(% of ha) 
 
Conserved forest cover (% of 
ha) 
 
Increase of agricultural 
activity (% of ha) 
 
Increase of primary 
vegetation (% ha) 
 
Increase of secondary 
vegetation (% ha) 
 
Reduction of primary 
vegetation (% ha) 
 
Reduction of secondary 
vegetation (% ha) 
 
Increase in urbanized area 
(% ha) 

Spatial autocorrelation of 
changes in primary 
vegetation (no scale)  
 
Spatial autocorrelation of 
changes in secondary 
vegetation (no scale) 
 
Spatial autocorrelation of 
changes in vegetation 
(includes primary and 
secondary vegetation) (no 
scale) 

Interactive Map Development: Processed data was uploaded to Github and then processed 
again using R and its Leaflet library to create thematic map layers of the aforementioned data 
groups. Afterwards, the Shiny library was used to deploy the maps in an interactive map in 
shinyapps.io (Shiny, 2020). Initially, data was read directly from Github through shinyapp.io; 
this made the process slow and surpassed the shinyapp.io server free account limits. However, 
this was solved using the .Rdata file because it allowed loading “pre-processed” data. Data and 
code are stored in Github4, and an experimental version of the map is available on a free Shiny 
Apps5 account.  

                                                 

4 https://github.com/iskarwaluyo/mapa_agricultura_masaforestal/ 
5 https://iskarwaluyo.shinyapps.io/mapa_agricultura_masaforestal_comillas/ 



 Moreno et al 

154 

 

 

Figure 1: Project development scheme 

5 Preliminary Results 

The following figures show overlays of layers of autocorrelation of vegetation loss and 
percentage of plots with agricultural, livestock and forest activities. Although rudimentary, 
these types of visualisations allow quick identification of combinations of clusters of vegetation 
loss and main agricultural activities, theoretically providing quick contextual information for 
decision takers and policymakers.  

 

Figure 2: Overlays with autocorrelation of vegetation loss from left to right a) livestock activity, b) 

agricultural activity and c) productive forestry activity 

A visual analysis of the layers may illustrate overlaps between data may better explain land-use 
changes in the region. For example, it was found that AC 07116010-1007 occupies 46% of 
plots with forestry activities. However, it also had a positive autocorrelation of total vegetation 
loss which seems contradictory; a closer look allows noticing that the net vegetation loss is 
negative due to secondary vegetation loss, but primary vegetation is increasing. A hypothesis 
that arises from this pattern is that overlaps of clusters with secondary vegetation loss and 
primary vegetation gain may indicate reforestation or forest stand maturity. 
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Figure 3: Screenshot of interactive map deployed in shinyapps.io 

Another quick pattern that stands out is that most livestock production activity occurs near 
the northern natural border of the municipality, a river that borders the conservation area. 
Thus agroforestry programs such as the ones being promoted currently in Mexico could be 
beneficial in these specific areas of the municipality. 

6 Conclusions 

After reviewing a number of platforms, we sustain that although there is a large amount of 
data available, there is a need to develop lighter, less robust platforms designed for end-users. 
Current platforms are excellent data repositories but require a lot of data manipulation by 
specialists to exploit the data. Given the urgency many institutions, organisations, leaders and 
decision-makers have to decide sometimes; we believe that current platforms do not allow easy 
access to the data they contain. The prototype we present is practical and allows relatively 
quick overlays and data queries. Although our results are not detailed, they allow an overview 
that we consider helpful for end-users who often need to make general data consultations and 
comparisons. Additionally, the cost and time of development are relatively low, which is 
advantageous for areas where the cost of data analysis and software development are limiting 
factors for progressing towards the UNSDGs. Nonetheless, our project is only a prototype 
and its scalability, and real-world use is unknown at this point. We recognize that further 
research regarding the needs of end-users and computational costs of expanding our work is 
needed in order to determine the potential of using open-source data and software to develop 
quicker, lighter and cheaper speciality platforms such as the one we present in this paper. 
Additionally, it is important that our results be validated; although we are confident that the 
data used is reliable, further developments could include validating our results with other 
processes such as NDVI.  
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Abstract 

From the first days of independence, Kazakhstan has paid attention to sustainable 

development and successfully achieved the Millennium Development Goals and in 2015 

launched the implementation of the 2030 Agenda for Sustainable Development. The article 

discusses the issues of monitoring and reporting on the SDGs in Kazakhstan, the priority of 

nationalization of indicators, the creation of a statistical database on the SDGs, the definition 

of data sources, and methodology for calculation. Geospatial data are inevitable for the 

integration of information about society, economy and environment. A web-portal 

developed by the authors is presented that allows to assess the quality of life of the 

population in different regions based on the SDG indicators. 

Keywords: sustainable development goals, geospatial information, geoinformation 
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1 Introduction  

In 2015 in New York, the UN adopted the "The 2030 Agenda for Sustainable Development" 
- aimed at achieving progressive, sustainable development of all countries of the world (United 
Nations, & Nations, U. (2015). Kazakhstan, among other states, also took an active part in the 
development of this Agenda.  

The Sustainable Development Goals (SDGs) are a set of goals for future international 
cooperation that replaced the Millennium Development Goals 
(https://www.un.org/ru/documents/decl_conv/declarations/) at the end of 2015. The SDG 
goals are planning to achieve from 2015 to 2030. To track progress on each goal developed a 
set of quantifiable indicators, targets, and observables specific to each goal. The final 
document, “Transforming Our World: the 2030 Agenda for Sustainable Development,” 
contains 17 global goals and 169 related targets. The SDGs adopted by 193 UN member states. 
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The targets of the SDGs largely coincide with the priorities of the Republic of Kazakhstan 
outlined in the development documents: the Development Strategy "Kazakhstan-2050", the 
Strategic Development Plan until 2025, the "National Plan – 100 Concrete Steps" for the 
implementation of five institutional reforms, Five social initiatives of the Head of State and 
the State Program "Ruhani Zhangyru" (https://www.akorda.kz/ru/official_documents-
/strategies_and_programs). These national programs and initiatives aimed at improving the 
quality of life of all segments of the population, creating a sustainable economy and 
strengthening human capital in the republic. To date, about 80% of the SDG objectives are 
reflected in the documents of the state planning system of Kazakhstan. 

The 2030 Agenda and its 17 goals call for a balance of social, economic and environmental 
dimensions to ensure inclusive and sustainable economic growth, social inclusion and 
environmental sustainability.  Thus, Kazakhstan sets the main guidelines of its state policy to 
ensure social justice and environmental sustainability, the transition from short-term planning 
to long-term vision. The assumption of social and environmental costs as investments in 
sustainable development, and the limited recognition of planetary boundaries and the need for 
systemic change "by enhancing well-being and quality of life of the population of Kazakhstan 
and the country's entry into the top 30 most developed countries of the world while 
minimizing the burden on the environment and degradation of natural resources." (Decree of 
the President of the Republic of Kazakhstan 2013).  

Thus, the SDGs are in many respects consistent with Kazakhstan's development efforts and 
can serve as a useful and convincing strategic framework for addressing national challenges. 

Monitoring and reporting on the SDGs are receiving close attention. Nationalization of 
indicators, creation of a statistical database on SDGs, identification of data sources, and 
methodology for calculation are in priority.  

2 Material and Methods  

Research uses theoretical and methodological analysis of scientific literature, methods of 
comparative and structural analysis, grouping and systematization of databases, and 
geoinformation technologies. Statistical and analytical data are collected from the national 
SDG reporting platforms of the Republic of Kazakhstan, monographs, scientific articles, 
publications and reports of the UN, etc. 

3 Results and Discussion 

The role of big data in the analysis of SDG indicators has been considered by many scientists 
(MacFeely 2019; Breuer et al., 2019; Allen et al., 2019). 

Information about the physical, chemical, and biological systems of the planet that are needed 
to achieve, monitor, and monitor the SDGs can be detected using remote sensing technologies 
(Masó et al., 2019). Remote sensing and GIS methods use satellite data that provide a synoptic 
overview with global and local coverage at different spatial resolutions. These approaches can 
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also be used to monitor the impact of climate change on various components of aquatic and 
terrestrial ecosystems, in addition to field survey data (Avtar et al., 2013).  

Location plays a huge role in integrating information about society, the economy, and the 
environment, and is key to tracking progress towards each of the SDGs. The UN recognizes 
the role of location in integrating information about society, economy, and environment, while 
also simply tracking each of the SDGs. Over the years, the organization has worked to 
combine geospatial and statistical information to visualize patterns, address data gaps, and 
effectively channel resources into areas most in demand to improve overall development 
outcomes (Paul Cheung 2015). 

 

Figure 1: Correlation of SDGs with the goals and objectives of documents of the State Planning System 

of the Republic of Kazakhstan  

The United Nations Statistics Division (UNSD) is now teaming up with ESRI to conduct 
research for testing a data center that will help target Member States measure, track and report 
on their progress towards achieving the SDGs in a geographical context. 

This data research makes it possible to store all the information in one place. As part of the 
project, several participating countries are leveraging their existing data systems and deploying 
the ArcGIS Hub together with ArcGIS Enterprise to help their national statistical 
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organizations integrate SDG-related data into their work. The event also aims to ensure that 
national statistical organizations align their data and systems with other SDG stakeholders in 
the country, including mapping agencies, ministries, natural resources and environment 
agencies. 

Kazakhstan, as a country that has committed itself to achieving the Sustainable Development 
Goals, is actively working in all areas and contributing to the successful achievement of global 
goals. The state planning system is consistent with the SDG targets (Figure 1). 

Monitoring and reporting on the SDGs are receiving close attention in the Republic of 
Kazakhstan. Nationalization of indicators, creation of a statistical database on SDGs, 
identification of data sources, and methodology for calculation are in priority. The main 
government body responsible for collecting, processing and disseminating data on the SDGs 
is Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the 
Republic of Kazakhstan.  As a result of the work carried out to nationalize the Sustainable 
Development Goals, a nationalized list of 17 goals, 169 targets and 297 indicators was 
approved (with the addition of 76 national indicators, 35 of which are proposed additionally) 
(Figure 2). 

 

Figure 2: Nationalized list of SDG indicators in the Republic of Kazakhstan 

At the same time, according to the results of the analysis, the indicators were grouped into 
four categories, including:  

 Relevant indicators, which are the highest priority for policy implementation - 97; 

 Some of the indicators that need to be monitored taking into account the current 
policy were proposed for monitoring - 130; 

 Deferred indicators for which there are currently no calculation methodology or 
baseline values - 70; 

 Not relevant for the country - 8.  
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At this stage, it is planned to carry out monitoring in the first two categories, where the initial 
data have already been determined. Work on deferred indicators will be phased in as the 
methodology is agreed globally and national data sources are identified. 

The national SDG monitoring and reporting system consists of two main elements: the 
integration of SDG indicators into documents of the state planning system and official 
statistics. The data are published on the official web resources of state bodies in the form of 
official statistics and conclusions based on the results of monitoring and evaluation of strategic 
and program documents. Official statistics will play a key role in providing data for monitoring 
the SDGs and related targets. The Bureau of National Statistics of the Agency for Strategic 
Planning and Reforms of the Republic of Kazakhstan has also developed a national SDG 
reporting platform, which is under development and is available 
at: https://kazstat.github.io/sdg-site-kazstat/ (Figure 3). 

 

Figure 3: National SDG reporting platform Bureau of National Statistics of the Agency for Strategic 

Planning and Reforms of the Republic of Kazakhstan https://kazstat.github.io/sdg-site-kazstat/  

The purpose of this platform is to provide Kazakhstan with data on both global indicators of 
the achievement of the Sustainable Development Goals (SDGs) and national indicators. In 
addition, it provides the interested public with constantly updated information on the status 
of the SDG indicators in Kazakhstan and detailed information on their calculation 
methodology. Data from monitoring SDG indicators in Kazakhstan are presented on the 
website in the form of tables and graphs (Figure 4). 
 

https://kazstat.github.io/sdg-site-kazstat/
https://kazstat.github.io/sdg-site-kazstat/
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Figure 4: Indicator "Maternal mortality ratio" on the national SDG platform of the Republic of 

Kazakhstan https://kazstat.github.io/sdg-site-kazstat/en/  

Unfortunately, geospatial data is not yet presented in the national SDG platform of the 
Republic of Kazakhstan. The continuous flow of information to adapt management methods 
to the changing situation during the implementation of the SDGs emphasizes the importance 
and feasibility of introducing a geographic information system for researching territorial 
aspects and addressing SDG issues. In this regard, work is underway in Kazakhstan to create 
a geospatial database for SDG indicators. On the basis of Al-Farabi KazNU a scientific study 
"Development of an atlas information system for a comprehensive spatial analysis of the 
quality of life of the population of the regions of the Republic of Kazakhstan as part of the 
implementation of the program" Digital Kazakhstan" was carried out, where the quality of life 
of the population of the regions was assessed using SDG indicators. During the work, a 
geodatabase was created for SDG indicators, thematic maps on the website of the developed 
atlas information system.  

The Atlas Information System of the Quality of Life of the Population is a geo-informational 
web system for poly-scale organization of data, mapping, modeling and forecasting the 
situation in the field of research of indicators (economic, social, demographic and natural-
ecological, SDGs) of the quality of life of the population. The main feature of the atlas 
information system in comparison with the geographic information system is the expanded 
capabilities of the cartographic representation of spatial data in the AIS. 

Of course, the management of QoL indicators for the SDGs requires an exhaustive set of 
input data, including natural and socio-economic topics. Depending on the presence or 
absence of a particular set of data, various types of analysis will be available and, accordingly, 
management decisions of different complexity and flexibility will be available. On the basis of 
the considered QoL indicators, as well as the experience of using GIS in the management of 
QoL indicators, a conceptual scheme for the use of geoinformation technologies is proposed 
(Figure 5). 

https://kazstat.github.io/sdg-site-kazstat/en/
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Figure 5: Algorithm for the use of geoinformation technologies in the management of QoL indicators for 

the SDGs 

AIS QoL is characterized by a multi-level structure, consisting of blocks of information - the 
main groups of indicators characterizing the quality of life of the population: economic, social, 
demographic and natural-ecological, SDGs. Each of the blocks has two structural 
components. The first is the structure of files by type (maps and schematic maps, text 
descriptions, graphic material, tables). The second is the corresponding internal structure 
(blocks-sub-blocks-indicators), developed based on the content of the block. AIS QoL made 
it possible to integrate data from various sources, to form and collect information in the form 
of a single geoinformation base, varied in detail, time coverage, methods of obtaining, a set of 
indicators, types of presentation. So, to ensure the functioning of the AIS, a structure was 
developed and a geodatabase (GDB) was formed according to objective indicators of the 
quality of life of the population, consisting of two types of information: statistical and spatial.  
The spatial database is represented by vector layers previously created and processed in GIS 
and corresponding to the basic requirements of vector information (detail, reliability, accuracy, 
unity of the coordinate system and projection, etc.). Methods of geoinformation analysis, ERS 
processing, and digital mapping methods were used through ArcGIS Desktop in creating a 
digital basis. Each layer of the base is accompanied by attributive information in three 
languages about the qualitative and quantitative characteristics of the object.  

The statistical data of the AIS QoL database are partial and integral indicators of the quality of 
life of the population for the following groups of indicators: economic, social, demographic, 
natural and ecological, SDGs. A total of 340 indicators were collected, including 71 SDG 
indicators (Figure 6).  



Nyussupova et al 

165 
 

 

Figure 6: SDG indicators on the AIS QoL website http://ais.kaznu.kz/index 

The development of AIS QoL in the form of a website began with the formation of the 
database structure and dependencies between the database tables. PostgreSQL 9 was chosen 
as the database management system, which supports tools for creating and storing procedures.  

Geographic data, previously created and processed in GIS, are uploaded to the site as a 
cartographic base for all future thematic maps of AIS QoL. The formation of thematic maps 
of QoL was carried out by linking the statistical indicators of QoL uploaded to the site to the 
vector cartographic layer of administrative regions.  

An important feature of the website is the ability for the user to further replenish and update 
the database and automatically compile new thematic maps based on requests, using the site's 
statistical data on indicators. This creates conditions for further monitoring and research of 
QoL indicators of regions, both in the context of regions and in the context of districts of 
cities of republican significance. 

The visualization function of AIS QoL data is a presentation of QoL indicators in the form of 
maps, tables, texts and graphs and is the result of geoanalysis in the most understandable and 
convenient form for solving specific problems of monitoring and managing the level of QoL 
development in the regions of the Republic of Kazakhstan. AIS QoL allows to make inquiries 
and visualize processes. 

The function of geoanalysis and modeling of AIS QoL allows a means of overlaying thematic 
layers - indicators of economic, social, demographic and natural-ecological blocks of QoL 
indicators of the regions of Kazakhstan for 1999-2018 to carry out interactive implementation 
of integrated maps. These cartographic models make it possible to analyze the situation, 
identify patterns of development, relationships in spatial distribution, identify trends in the 
development of processes for solving specific problems, in this case for monitoring and 

http://ais.kaznu.kz/index
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managing QoL indicators and making decisions to increase the QoL level in the regions of 
Kazakhstan. 

When creating the site, the determining factors were: the ability to implement information 
retrieval functions; the possibility of integrated processing of cartographic and text data; 
convenient forms of dialogue with the user; the ability to adapt the atlas to changes in the 
forms of input and output documents; the presence of a variety of data models specialized in 
information processing tasks, closely integrated with a supporting atlas information system; 
flexibility in choosing the architecture of the system supporting the atlas; openness to external 
programs. 

Thematic maps of AIS QoL reflect the indicators of the SDGs in the field of education, health 
care, social sphere, employment, as well as environmental changes in the regions of the 
Republic of Kazakhstan. Visualization of thematic maps by the method of cartograms gives a 
clear picture of the intensity of certain processes and phenomena, allows to reveal the spatial 
differentiation of the development of regions by the level of QoL and SDG indicators (Figure 
7). 

 

Figure 7: Morbidity of circulatory organs of population in Republic of Kazakhstan 
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SDG 1 is poverty eradication. The use of alternative methods based on GIS and digital AIS 
QLM maps (the share of the population with incomes below the subsistence level, poverty 
indicators, average per capita nominal monetary incomes of the population, subsistence 
minimum, regional distribution of poverty) based on geospatial data, provide information on 
the spatial differences of the regions of the republic, related to various SDG 1 indicators. These 
maps are an important tool for developing effective policies aimed at reducing regional 
inequality through the implementation, regulation and improvement of social protection 
programs for the allocation of subsidies, pension payments, efficient resource use, 
unemployment insurance, etc. (Avtar et al., 2019). 

Health system indicator maps, along with indicators of infant and maternal mortality in the 
regions of Kazakhstan, allow to identify regional differences for effective and intensive 
allocation of budgetary funds and human resources in areas with low indicators to improve 
the situation to achieve SDG 3. 

SDG 4 - getting quality education is the most important condition for improving the quality 
of life of people and sustainable development. Maps of the education system, reflecting 
indicators in the field of preschool, school and higher education in the regions of Kazakhstan, 
as well as teaching staff and educational coverage of the population, clearly reflects the 
relationship, deficit and surplus of places, professional staff in these institutions. Also relevant 
during the COVID-19 pandemic and distance learning is a map of access to the Internet in 
the regions, which demonstrates the access of students and teachers to educational platforms 
and learning resources. Geospatial representation allows you to identify problem regions for 
effective and intensive coverage of the population with education, personnel and Internet 
accessibility. 

AIS QoL maps reflect certain aspects of SDG 5. These are maps of the ratio of the male and 
female population in the regions, gender and age structure, indicators of male and female 
population life expectancy, incomes and wages of men and women, etc., which allow 
identifying patterns and conducting a retrospective analysis of gender aspects of the quality of 
life.  

The AIS QoL considers the cities of republican significance Nur-Sultan and Almaty, where 
15% of the population of the republic lives. These megacities are centers of economic growth, 
providing more than 30.5% of GDP. Rapid urbanization leads to an increase in inadequate 
and congested infrastructure and services (such as waste collection and water and sewerage 
systems, roads and transport), worsening air pollution and unplanned urban sprawl. 
Cartographic visualization allows to display the disproportions in the development of 
individual indicators of the quality of life of the population in the administrative districts of 
cities. Research data reflect challenges for SDG 11. 

The introduction of AIS QoL in the process of teaching bachelors, undergraduates and 
doctoral students of the university, work with SDG indicators within the AIS QoL is a key 
moment in the implementation of the implementation of the SDGs in universities. In 
particular, it provides a basic understanding and visual representation of the subject areas of 
each of the SDGs, allows to provide in-depth knowledge in the field of both geographic 
information systems and for the implementation of the SDGs, and expand opportunities for 
building the potential of future specialists to solve sustainable development problems. 
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4 Conclusion 

Achieving the SDGs undoubtedly requires a huge global concerted effort to effectively 
leverage the sharing, processing and aggregation of data in a multidisciplinary framework. 
National Geospatial Information Agencies will need to work closely with national professional 
communities in the area of statistics and Earth observation 
At present, it is becoming easier to obtain spatial geographic data, but the key point is the 
collection, organization, and management of databases to correctly use this data for analysis, 
monitoring, and management when making strategically important decisions of states. Spatial 
analysis plays an important role in determining the causes and effects of a given phenomenon, 
e.g. for agriculture, global health or nature protection, based on classic GIS procedures like 
map overlays and assessing the relationships between them. 
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Abstract 

The current research aims to explore the potential of ESA Sentinel-2 time-series satellite 

imagery, for detecting the seasonal landscape changes of paddy-rice fields, in the north-

west of Italy, by using GIS mapping tools. On a regional scale context, paddy-rice mapping 

has several implications for agricultural monitoring, precision farming, food production, 

water management and climate change. However, it also concerns theirs high scenic value 

in the landscape perception, which can be a great resource for sustainable tourism. The 

defining characteristic of paddy-rice is that rice plants grow on flooded soils. In the field of 

slow tourism, such a temporary site-specific condition of the landscape can become an 

unconventional tourist destination. The research has been applied to territories in between 

cities: Turin and Milan, where the phenomenon of paddy-rice flooding, in the spring season, 

generates an outstanding scenic perception of the rural landscape. The research shows the 

effectiveness of the GIS workflow to compute the vegetation indices, which are sensitive for 

mapping flooded paddy-rice fields. The final outcome is a thematic map highlighting the 

scenic routes in the existing road network that allows experiencing such seasonal landscape 

conditions. 

Keywords: seasonal landscape, vegetation index, paddy-rice, mapping scenic routes, 

Sentinel-2 

1 Introduction  

Seasonal landscape changes are strongly interlaced with the annual cycle of plants and human 
actions impacting the earth. In the last decades, many research efforts have been developed in 
the field of the earth observation, with the aim of finding new ways to monitor environmental 
phenomena that occur on the earth’s surface. Since 2014, the European Commission, in 
cooperation with other partners such as ESA and EUMETSAT, has started the ambitious 
programme for earth observation named: Copernicus. This program consists of seven Sentinel 
satellites in orbit, which supply geospatial data and geo-information referring to six thematic 
streams: land monitoring, marine environment monitoring, atmosphere monitoring, security, 
emergency management and climate change (European Commission, 2015).  
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2 Seasonal landscape changes and sustainable tourism  

The current research aims to investigate the relationships between the seasonal landscape 
changes related to paddy-rice fields and sustainable tourism. Seasonal landscape changes can 
affect specific environments such as forests, paddy-rice, vineyards and grasslands that, over 
the seasons, can assume a high scenic value in landscape perception. Such site-specific 
phenomena that occur seasonally, such as autumn foliage colouring, spring-blooming of 
lavender fields and grasslands, and flooding of paddy-rice fields are major attractions for the 
tourism sector and contribute to increasing the attractiveness of the places (Spotts & Mahoney, 
1993), (Hall et al. 2011), (Chen et al., 2016), (Rozenstein & Adamowski, 2017). Paddy-rice 
fields mapping can play an important role in the field of experiential tourism and perception 
of agricultural landscapes. In fact, the unique  feature of paddy-rice fields is that rice plants 
grow on flooded soils. On regional-scale contexts, such a temporary condition of the landscape 
can become an unexpected and unconventional tourist destination. Furthermore, the growth 
of a new form of tourism, such as experiential tourism, requires new digital tools for 
supporting personal user’s travel-planning. The flooding stage is a time-defined period that is 
also related to different parameters (temperature, water availability, weather forecasts etc.) that 
individual farmers consider for their cultivation schedule. On regional-scale contexts, the 
scenic value of large portions of the rural landscape can be detected through remote sensing 
and mapped by using GIS techniques. Paddy-rice mapping is a very challenging topic that 
affects many research fields such as food production, water management, agricultural 
monitoring, precision farming, water management, and climate changes (Dong & Xiao, 
2016b), which are also strongly interlaced with UN SDGs (United Nations, 2015). Examples 
of these SDGs include: SDG n.2 for sustainable agriculture, SDG n.9 for building resilient and 
sustainable infrastructure, SDG n.11 for safe, resilient and sustainable human settlements, 
SDG n.13 actions for climate change, SDG n.15 for sustainable use of the land and 
environment. Referring to SDGs, the current research will show the application of digital earth 
observation and GIS mapping techniques, as a tool to support new strategies for sustainable 
tourism. In this research field, a global-scale continuously updated map showing where and 
when the flooding of the paddy-rice fields occurs is required. In this framework, the open-
access availability of the huge quantities of Sentinel satellite imagery is a vital data source for 
supporting research activities and decision-making for sustainable tourism management. 

3 Study area 

The current research has been centred on the in-between territories the cities of Turin and Milan, 
in the north-west of Italy, south of the Alps (province of Vercelli 45°19'26"40 N, 08°24'59"04 
E); a complex landscape made up of open spaces, mobility infrastructure, towns, rural 
settlements, and natural protected areas, which is the result of a long process of interaction 
between natural elements and human activities. The historically rural landscape, used in 
intensive agriculture (rice cultivation, vineyards, orchards etc.) is supported by a network of 
artificial waterways, such as the Cavour canal, built between 1863 and 1866, which is a vital 
resource for this territory (Segre, 1983), (Monti, 2002), (Occelli et al. 2012), (Rolando & 
Scandiffio, 2016), for both food production and tourism. Furthermore, the historical network 
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of local roads is widespread, well maintained and ensures the accessibility to the scenic 
landscape of paddy-rice fields over the year. The pilgrimage path, Via Francigena (from 
Canterbury to Rome), that is ridden by many pilgrims over the year, crosses these territories 
from the Alps to Po valley, and it is a great resource for slow tourism. The study area has been 
selected within the towns Vercelli and Santhià, where there is a high concentration of paddy-
rice fields between the Cavour canal, the river Sesia, and the high-speed railways connecting 
Turin and Milan (Fig.1).  

 

 

Figure 1: On the left, scheme of the Piedmont region in the northwest of Italy, with evidence of the study 

area in-between the cities of Turin and Milan, where a high concentration of paddy-rice fields is 

localized. On the right, the study area has been highlighted in the rural landscape of the paddy-rice 

fields. The study area has been localized in-between the towns of Vercelli, Santhià and the high-speed 

railways connecting Turin and Milan. 

Furthermore, Italy is the largest rice producer in Europe (FAO, 2004). To better understand 
the importance of rice production in the Piedmont region, regional and national data were 
compared. In 2019, the paddy-rice land cover in Italy was 220.027,24 ha; while the paddy-rice 
land cover in the Piedmont region was 111.632,07 ha, split up the province of Vercelli 
67.577,86 ha, the province of Novara 32.104,14 ha, and the province of Biella 3.651,82 ha 
(Ente Risi, 2021). The three mentioned provinces have covered more than 92% of the regional 
paddy-rice land cover and 47% of the Italian paddy-rice land cover. All these factors contribute 
to the uniqueness of these territories and support new investigations for local economies and 
tourism management.  

4 Methodology: the GIS workflow 

In this perspective, the current research explores how satellite imagery from ESA Sentinel-2 
mission (European Space Agency, 2015) can be applied for computing vegetation indices and 
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consequently mapping the spatial distribution of the flooded paddy-rice fields during the 
spring season. The workflow exploits the specific physical feature of rice plants, that they grow 
on flooded soils (Xiao et. al., 2006). In this study, the GIS workflow was created by using the 
graphical modeller, in order to improve the effectiveness of the processing. The following 
scheme shows the GIS workflow, from the input to the outputs (fig.2). In the following 
sections, the workflow will be analyzed step by step. 

 

Figure 2: Scheme of the GIS workflow. Satellite images from Sentinel-2 have been considered as input 

data (Bands: Band 3 Green 543-578 nm – Resolution 10 m, Band 4 Red 650-680 nm – Resolution 10 m; 

Band 8 Near Infrared 785-899 nm – Resolution 10 m. 

4.1   Data source and vegetation indices  

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral imagery mission that 
contributes to the ongoing multi-spectral observations and benefits Copernicus services and 
applications such as land management, agriculture, forestry and disaster relief (European Space 
Agency, 2015). Sentinel-2 contributes to land monitoring, by providing input data such as 
multi-spectral imagery with high resolution (10 m, 20 m and 60 m), which supports the 
computing of Vegetation Indices (VI), such as Normalized Difference Vegetation Index 
(NDVI) and Normalized Difference Water Index (NDWI). In the scientific literature, several 
approaches have been identified to observe landscape seasonal changes at ground level, 
particularly forests (Motohka et al., 2010) (Motohka et al., 2011), but also paddy-rice mapping, 
by exploiting satellite imagery (Dong & Xiao, 2016b), (Kaplan & Avdan, 2017), computing 
vegetation indices (e.g. NDVI, NDWI, EVI, LSWI etc.), and using multi-spectral bands (Xiao 
et al. 2006) (Dong et al. 2016a). During the flooding period, the land surface of paddy-rice 
fields is a mixture of water and green rice plants, with water depths usually between 2 and 15 
cm (Xiao et. al. 2006). This specific condition of paddy-rice fields can be captured, by 
computing vegetation indices. NDVI exploits the surface reflectance of near-infrared 785-899 
nm and red 650-680 nm; NDWI exploits the surface reflectance of near-infrared 785-899 nm 
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and green 543-578 nm. (McFeeters, 1996). NDVI and NDWI have been calculated according 
to the following equations: 

(1)  NDVI =
B8 NIR − B4 Red

B8 NIR + B4 Red
       (2)  NDWI =

B3 Green− B8 NIR

B3 Green+ B8 NIR
 

The NDVI and NDWI values can range between -1 and +1. The pixel-based recognition of 
the flooded paddy-rice fields have been conducted with high-resolution bands (10 m), using 
thresholds: NDVI < 0, and NDWI > 0, to compare the results of both indices. In order to 
verify the threshold method, a comparison was made between the pixel-based recognition (1st 
of June 2018) and ground observations (2nd of June 2018). The comparison between the pixel-
based recognition and the ground observation shows good match for both indices in the 
selected locations (fig. 3). Both thresholds perform very well in respect to the scope of current 
research; the NDVI threshold allows to capture a wider area than NDWI. Therefore, the 
NDVI threshold has been assumed for the processing of the current research. 

 

Figure 3: location a) lat: 45.514488, long: 8.270235. Location b) lat: 5.542138, long: 8.275017. The figure 

shows the comparison between satellite pixel-based recognition of flooded paddy-rice (1st of June 

2018) and ground observation (2nd of June 2018). In the figure, it is also possible to compare NDVI and 

NDWI thresholds. 

In the current research, the flooding monitoring was carried out in spring 2020, over three 
months (March, April and May are the traditional flooding months in this area), selecting the 
satellite imagery within a cloud cover of 5% in order to avoid misleading information. The 
following images refer to Sentinel-2 image of a typical day (11th April 2020), selected at the 
beginning of the flooding season (Product: Sentinel-2A, cloud cover 1,30 %, zone: 32TMR, 
min lat: 45.0852, max lat: 46.0535, min lon: 7.70695, max lon: 9.12617) (fig. 4a). The NDVI 
has been performed according to equation (1). The NDVI values (between -1 and +1) have 
been visualized by using a colour ramp from red to green (fig. 4b).  
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Figure 4: a) Satellite images from Sentinel-2 RGB. b) NDVI processing. High values have been mapped 

by dark green; low values, which correspond to the water surfaces, have been mapped by red. c) Pixel-

based detection by using the threshold NDVI < 0. This threshold allows the detection of water surfaces, 

but also other heterogeneous objects. d) The mask and vectorization process enables the isolation of 

the flooded paddy rice-fields into the map. 

4.2  The mask processing 

In a regional-scale context, the performed vegetation indices thresholds enable the detection 
of different typologies of water surfaces and other heterogeneous objects such as flooded 
paddy-rice fields, rivers, waterways, wetlands, permanent water bodies, and particular roofs in 
built-up areas (Dong & Xiao, 2016b) (fig. 4c). Delete misleading information from the whole 
pixel-based recognition was performed by applying the vectorization process to the 
thresholded raster images. The mask process has been successfully performed by using the 
open-access available vectorial datasets (e.g. regional open data and open street map datasets). 
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Mask processing was carried out using several datasets: built-up areas, permanent water-
bodies, waterways, and wooded land cover datasets. The application of the masks to the pixel-
based recognition is a fundamental step of the workflow as it enables isolating the flooded 
paddy-rice fields from the other detected heterogeneous surfaces. In terms of tourism 
attractiveness of flooded paddy-rice fields, it has been computed for the surface of each areal 
entity and applied the following threshold: flooded paddy-rice surface > 1 ha. This threshold 
allows the detection of the most significant sections of flooded paddy-rice fields in the study 
area. The first outcome of the GIS workflow is the flooded paddy-rice map, which shows, on 
a certain date of the year, the spatial distribution of the flooded paddy-rice fields (fig. 4d). 

5 Experiencing the flooded paddy-rice fields through scenic routes 

The final goal of the research is the processing of a thematic map that shows the scenic routes 
in the existing road network. This tool informs a range of end-users decisions in the field of 
tourism and environmental contexts. The scenic routes map should be perceived as a “trip-
advisor” tool, able to support tourists, interested in the perception of this scenic phenomenon, 
in the route-choice. The scenic routes detection is the result of the overlapping between the 
roads-graph, available through the open-access vector datasets (e.g. Open Street Map dataset), 
and the flooded paddy-rice fields map. The roads-graph has been overlapped with the flooded 
paddy-rice fields map, with the aim to identify single stretches of the road network that 
intersect with flooded areas. An offset distance of 50 m from the road axis for the both sides 
was established to determine the geometrical intersection between the flooded areas and the 
offset lines of the roads. The thematic map visualises the single stretches of the road network  
where the flooded paddy-rice fields are within sight (fig. 5). The workflow can be reiterated 
over the flooding period of paddy-rice fields to redetermine the map of scenic routes every 
week.  
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Figure 5: On the left, The Scenic Routes Map. SR WGS84/UTM 32 N. The map highlights the scenic routes 

stretches in the existing roads-network. On the right, the detailed sections (a, b and c) highlight the 

single stretches of the roads-network from where flooded paddy-rice fields are perceivable.   

6 Discussion 

The research shows the effectiveness of the workflow, combining earth observation tools and 
GIS mapping techniques for detecting flooded paddy-rice fields and determining the scenic 
routes map for sustainable tourism. Firstly, the application of the GIS modeller to the 
workflow allows reiterating the process every 3 days (time for Sentinel-2 data acquisition at 
mid-latitude) over the spring season, showing the variability of landscape conditions in a 
dynamic map. The high frequency of Sentinel-2 data acquisition would enable mapping the 
seasonal changes of paddy-rice fields to support the creation of a widespread tourist-
destination offer, year-round. In the current research, the workflow has been applied to a 
limited extension area (about 20 km by 20 km), but the method is replicable and scalable in 
other territories around the world, where such scenic landscape conditions occur seasonally. 
Secondly, the applied NDVI threshold can be further improved, to perform mapping of the 
different rice-growing stages, with higher detection accuracy, even considering formulas which 
combine multiple vegetation indices. Finally, this method uses the vectorization processing of 
raster images in the mask processing, coherently with the targets of the research. This aspect 
could be considered as a limit for large areas, where no uniform vectorial datasets are available 
yet, and can require long processing. In a regional-scale context, such as the performed one in 
the research, the available vectorial datasets can be used successfully in the mask processing. 
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7 Conclusions 

Over the year, many seasonal phenomena occur regularly in different environments (e.g. the 
spring blooming of grasslands and lavender, the autumn colouring foliage). New mapping 
tools, which combine earth observation and GIS mapping tools, can inspire the development 
of new strategies for sustainable tourism, which may also contribute to SDGs, particularly 
addressing the revitalization of inner-areas economies, promoting more efficient use of the 
places, reducing emissions, and overpressures on the environment. New digital services may 
contribute in capturing the seasonal conditions of the landscape and enhancing the tourist 
experience of the places especially if they are localized in marginalized and remote landscapes. 
Better integration of earth observation tools and GIS mapping tools can contribute to the 
“digital earth” by supplying tools that support sustainable actions for the future of our planet. 
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Abstract 

SIMILE (Informative System for the Integrated Monitoring of Insubric Lakes and their 

Ecosystems) is a cross-border Italian-Swiss project aiming to improve the management of the 

Insubric lakes and their ecosystems with different technologies as well as the participation of 

citizens and stakeholders in water resources monitoring. In this project, water monitoring and 

management was carried out through different technologies: in situ sensors, satellite 

imagery, and data coming from citizen science. This paper focuses in particular on this last 

source of information, describing how data sourced from citizen science can contribute to 

the Sustainable Development Goals (SDGs) of the United Nations (UN). The report illustrates 

the tools that have been developed for the collection and management of information 

provided through citizen science; a mobile cross-platform application for smartphones that 

can be used by any citizen and a Web application for administrators, useful for data 

management and editing. 

Keywords: lake monitoring, water quality, citizen science, Sustainable Development Goals 

1 Introduction  

Lakes are a fundamental resource for the environment, not only in terms of water 
consumption for agricultural and domestic usage, but also for the touristic and leisure activities 
that benefit from them (Carrion et al., 2020). Recently, scientific and technological 
development has provided useful tools for improving the management and monitoring of 
water resources. 

SIMILE (Informative System for the Integrated Monitoring of Insubric Lakes and their 
Ecosystems) is a cross-border Italian-Swiss project. It aims to improve the collaboration and 
coordination between public administrations and stakeholders; for the management of the 
Insubric lakes (Lugano, Como and Maggiore) and their ecosystems, as well as monitoring water 
resources quality. The project involves both technical/scientific partners (Politecnico di 
Milano, Fondazione Politecnico, Water Research Institute – National Research Council and 
University of Applied Sciences and Arts of Southern Switzerland) and institutional partners 
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(Lombardy Region and Ticino Canton), yet also benefits from the involvement of schools, 
general public, and associations (Carrion et al., 2020). 

The project’s aim is the development of a business intelligence platform supporting decision 
and policy making for the public administrations regarding the Insubric lakes’ management 
(Brovelli et al., 2019). This platform will integrate all the data retrieved in the context of the 
project. In particular, the technologies used for data collection including low-cost in-situ 
sensors (installed on dedicated buoys) that make high-frequency measurements, free and open 
satellite images (for example, those provided by the European Space Agency Sentinels), and 
information derived through a citizen science approach. 

This paper primarily focuses on a citizen science approach, particularly tools developed for the 
collection and management of data coming from citizen science. Albeit, it is worth underlining 
that the business intelligence platform will integrate all the data collected and elaborated in the 
framework of the project. Therefore, data retrieved from satellite images and in-situ sensors 
represent relevant components as well. 

The project strongly links to the purpose of the 6th Sustainable Development Goal (SDG) of 
the United Nations (“Ensure availability and sustainable management of water and sanitation 
for all”). There is a particular focus on targets 6.3 (stressing the importance of improving water 
quality and encouraging the recycling and safe reuse of water on a global level) and 6.5 
(highlighting the importance of a coordinated management of water resources, including a 
transboundary cooperation). As SIMILE aims to strengthen the coordinated management of 
the water resources and the participation of citizens in water quality monitoring, we can view 
it as a form of “geospatial enabler” monitoring the SDG 6 (Brovelli et al., 2019). 

2 Existing tools for the collection and management of citizen science 
data 

The development of the above-mentioned applications started from an in-depth research of 
existing tools. 

As for the mobile application, a detailed analysis of similar tools is described in a paper from 
Jovanovic et al. (2019). The authors presented six different applications used for water quality 
monitoring with a citizen science approach. These tools allow the user to provide information 
about different water quality related parameters (such as water colour, reflectance, 
transparency, and turbidity). Even though most applications are free, none of them is open 
source. For this reason, a new mobile application has been designed according to the following 
criteria: it should provide user support, it has to be user-friendly, able to work offline, free, and 
open source (Jovanovic et al., 2019). 

In terms of the integrated system mobile/Web application, there are existing tools developed 
for the collection and visualization of crowdsourced data. For example, EpiCollect+ allows 
users to collect spatially referred data with a smartphone by completing a single questionnaire. 
Users have the possibility of attaching photos, short videos, sound clips, and measurements. 
The mobile app is integrated with a Web page dedicated to data visualization, downloading, 
and management (Aanensen et al., 2014). Another example is the Ultra Mobile Field GIS 
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system, which consists of a mobile component dedicated to real-time data collection and a 
Web-GIS application for data visualization, downloading, and analysis (Lwin et al., 2011). Two 
other examples based on free and open source technologies are the projects: PoliCrowd 2.0 
and The Paths of Via Regina. In both cases, data is collected with a smartphone, and a Web 
platform enables their visualization. With crowdsourced data displayed on a Virtual Globe, 
users can edit the data visualization, create customized maps, and use a time bar to investigate 
temporal distribution (Brovelli et al., 2016). 

Although the above-mentioned systems have not been developed specifically for lake 
monitoring, there were some similarities with the tool created for SIMILE. The latter consists 
of a client-side with both the mobile and Web applications; and a server side with servers used 
to host, install, and execute the applications, the database, and a workstation processing 
collected images (Jovanovic et al., 2019). In the following section the system’s functionalities 
will be introduced. 

3 Description of the mobile application and administration interface 

The first tool is a cross-platform, open-source mobile application called “SIMILE – Lakes 
Monitoring” (Biraghi et al., 2020). The application interface opens with a map centred on the 
user’s current position and showing the contents uploaded by all users. In the application, a 
user can: share observations relative to the lake status (presence of algae, foams, oil stains, 
litters, odours, drains, and fauna), measure the water quality (transparency, temperature, pH, 
oxygen, and bacteria concentration), participate in education and sensibilisation events (such 
as clean-ups andworkshops), and learn more about the lake ecosystem (through a glossary 
available in the app). 

The user can report strange phenomena or measure one of the water-quality parameters by 
adding a new observation to the map. A single observation consists of a georeferenced image 
and a series of attributes, selected through a guided interface (a list of entries is available for 
every indicator). A dedicated interface offers more precise information for every item, and a 
help button provides explanations about concepts that the user might not be familiar with. 
These contributions can be provided by any user, as they do not require particular 
competencies nor additional tools with respect to the smartphone. Additional instruments are 
necessary for actual measurements; for example, the Secchi disk to evaluate the water 
transparency and a thermometer to measure the water temperature. This functionality, which 
is available for everyone, allows sharing the results of lake monitoring through a simple tool. 
Once the fields are completed, the observation can be submitted, and it will become visible to 
all the users. 

Figure 1 shows some functionalities of the mobile app. 
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Figure 1: screenshots representing the functionalities of the mobile app. From left to right: cartographic 

representation displaying the position of events and observations; guided interface for adding a new 

observation;  glossary. 

In case of particularly dangerous or severe conditions, it is possible to contact the competent 
authorities through their official channels. The observations and the photographs uploaded 
through the app can be advantageous for a preliminary evaluation of the phenomenon.  

Thanks to the mobile application, public and private authorities can promote public events 
with subjects relating to the project, directly addressing all application users. Uploaded events 
are visible in the dedicated section, accessible from the main menu, through an icon 
symbolizing a bell and the map itself. In the same section, the user can also find important 
communications published by the project partners or the competent authorities about 
environmental issues. This functionality can be quite helpful in case of weather warnings (or 
other types of alerts). 

The information provided by citizens through the app is collected and managed with a 
dedicated Web application. The administration interface allows the user to visualize, delete, 
and edit the data provided with the app . The two applications are synchronized, thus, the edits 
performed on the database through the Web app are visible on the mobile app and vice versa. 
The information provided through the app is visible and editable with the Web app. 

On the home page of the Web interface, it is possible to easily access all the functionalities 
through a series of buttons, each one dedicated to a specific theme (Figure 2). Data is provided 
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either in a table format and through cartographic representation; therefore, it is possible to 
visualize their spatial distribution (either singularly or grouped in spatial clusters). 

The themes accessible through the app are also available in the Web app. With proper 
credentials, it is possible to edit the database. For instance, a user can delete or edit existing 
observations, or improve their geographic position. Deleted data can be consulted applying an 
adequate filter to the table, and they can be recovered at any time. 

Provided here is a short description of the available functionalities. Firstly, it is possible to 
consult, delete, and edit observations submitted by the users and create new observations 
(theme “observations”). The system can visualise graphs of some numerical variables 
(temperature, oxygen, and pH) as functions of depth. The Web interface is intuitive and well 
guided. The user can choose pre-set attributes for each field and manually add the value of the 
numerical variables. 

Similarly, the user can consult or edit events and add new events (theme “events”). The 
possibility to modify or create a new event is available only on the Web application (through 
the mobile app, the user can only consult existing events). Similar functionalities are available 
for alerts (theme “alerts”); however, alarms have an “expiry date” after which they are no 
longer visible. 

The Web app displays photographs uploaded by the users (theme “photos”), with all 
corresponding observation information in chronological order. Moreover, it is possible to 
visualize the boundaries of the different sub-areas within the region of interest (theme “ROIs”, 
Region Of Interests). All the uploaded news, events and observations in either application are 
visualized on a dedicated calendar (theme “scheduler”) or time bar (theme “timeline”). 

Finally, the Web application allows performing some analyses on the data (theme “analysis”): 
in particular, a user can filter the observations based on their attributes and visualize some 
useful statistics and trends. 
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Figure 2: above,  home page of the administration interface; below,  interface for the management of 

observations. 

4 Conclusions  

This paper describes the tools that have been developed in the framework of SIMILE Interreg 
Italy-Switzerland project: allowing citizens to get involved in monitoring the Insubric lakes and 
the public administrations to manage the data provided with a citizen-science approach.  

The project provides an example of how citizen science activities can contribute to the 
monitoring and management of water resources. The project involves citizens and public 
administrations along with schools, local leisure associations, and regular lake visitors. The goal 
is for more conscious management of the water resources and increasing awareness of citizens 
about the problems regarding water quality and preservation. For this reason, the project is 
consistent with the sixth SDG (in particular, targets 6.3 and 6.5) of the UN, encouraging the 
reduction of pollution for the water quality improvement and the coordinated management of 
this resource. 

The proposed tools are a cross-platform mobile application and a Web-based application that 
can be used by any citizen or specific users with administrator credentials. The mobile app is 
currently promoted through online or public events among public administrations, schools, 
leisure associations (such as rowers and fishermen), and environmental associations (e.g. 
Legambiente) demonstrating app functionalities. Public events include clean-ups, mapathons 
and workshops, where participants can collect observations and measurements on lake 
conditions, or suggest improvements for app functionalities, aiming at attracting their interest 
for water preservation. A push notification service is enabled on significant “international 
days” (i.e. Earth Day, Environment Day, Water Day). The Web application is presumed to be 
used by a limited number of people (i.e. project partners and regional institutions) that can edit 
and manage the data provided by citizens. Therefore, dedicated courses are organized to teach 
the application functions. 
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This data alone is not sufficient for monitoring purposes. It will be integrated with satellite 
images and data from in-situ sensors, through the business intelligence platform, for a broader, 
more comprehensive view of the lake conditions. Citizen science contributions are currently 
being used by the project partners for monitoring purposes, as they contribute to validate the 
other data and improve their spatial and temporal coverage. They will be used by politicians 
and public administrations as a decision support system. In any case, data can be accessed and 
used by anyone. 

Approximately 100 contributions have been uploaded so far; hopefully they will keep 
increasing, thanks to newly scheduled events and the involvement of more people. These 
contributions have already revealed to be effective in detecting potentially dangerous 
phenomena occurring in the lakes. For instance, a user observed an active outlet draining into 
the lake for five consecutive days, leading the competent regional authority to intervene for 
further inspections. 

These tools are currently being tested and will be released as open-source software. The mobile 
application is already available for Android devices and will soon be available for IoS. In the 
next months, the measurement campaigns will be activated, and new algorithms will be 
introduced in the software dedicated to data management. The project will be concluded by 
January 2022. 
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Abstract 

Our mobility is responsible for substantial global greenhouse gas emissions and urban 

problems such as air pollution, usage of public spaces for infrastructure and parking, and 

congestion. Therefore, the transformation of our mobility towards sustainability is essential to 

achieve the sustainable development goals #11 (sustainable cities and communities) and 

#13 (climate action). 

Mobility as a Service (MaaS) is a core concept for this transformation; however, there are still 

many open questions and challenges due to its novelty and complexity. The Empirical use 

and Impact Analysis of MaaS (EIM) project conducts a large-scale user study during the roll-

out of a MaaS offer in Switzerland to gather empirical data that help to address and answer 

challenges and open questions. 

Keywords: sustainability, mobility, MaaS, mobility behaviour change, ICT 

1 Introduction  

A large portion of our GHG emissions can be traced back to the movement of people and 
goods. In 2018, the transport sector was responsible for 24 % of the global GHG emissions 
(IEA, 2020), for 26 % of the GHG emissions in the European Union (Pilzecker et al., 2020) 
and for 32.4 % of the GHG emissions in Switzerland (Schilt, 2020). Tackling climate change, 
therefore, requires significant action in the transport sector.  

Apart from the severe impact on climate change, the transport sector is linked to additional 
problems that are especially relevant for cities, such as air pollution, injuries, an increase of 
impervious cover for infrastructure (Gössling, 2020) and more traffic and congestion, which 
already results in high economic costs (Reed, 2019). 

The primary source of these problems, including GHG emissions in the transport sector, is 
the private ownership of fossil fuel-based internal combustion engine cars (ICEV), therefore 
transitioning of the transport sector towards sustainability will have to focus on a sustainable 
alternative to ICEV based trips. 
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The most promising path for fast decarbonisation of the transport sector is the aggressive roll-
out of battery electric vehicles (BEV) due to their significantly smaller environmental impact 
than ICEVs (Haasz et al. 2018; Cox et al., 2020).  However, simply replacing ICEVs with 
BEVs leaves many challenges unresolved. Individual motorised transportation will still block 
large areas of public space for parking and infrastructure instead of using it for housing or 
recreational space. The problem of increasing traffic would persist. 

In this paper, we will discuss the main strategies for the transition of individual human mobility 
towards sustainability in the sense of the Sustainable Development Goals (SDG) #11 
“Sustainable Cities and Communities” and #13 “Climate Action”. We thereby relate to the 
case study YUMUV, a novel Mobility as a Service (MaaS) platform in Switzerland and its 
associated research project Empirical use and Impact Analysis of MaaS (EIM), which studies 
its impact as an enabler of sustainable mobility.  

2 MaaS key challenges: 

MaaS is a mobility concept that integrates shared modes with public transport to facilitate 
intermodal travel (Reck, 2020). One goal of MaaS is to decrease private car ownership. This is 
a significant challenge as it requires individuals to undergo a significant behaviour change 
(Weiser et al., 2016; Raubal et al., 2020). 

The integration of shared modes and public transport creates a high degree of complexity as 
many stakeholders such as mobility service providers (MSP), public transport operators and 
regulators need to synchronise to create a MaaS offer. The creators of these offers have a large 
degree of freedom along ten design dimensions such as the geography of the offer, the 
included modes, or the subscription cycle (Reck et al. 2020). Using this design space, several 
key factors are required for the resulting MaaS offer to be attractive to a broad audience: 

 Attractive and easy pricing:  
Apart from an attractive price, the offer needs a comprehensible pricing structure, 
i.e., avoiding different pricing schemes for each mode of transport.  

 Easy access: 
The user should be able to access all modes via a single gateway, such as a single 
app, instead of using a different gateway per mode of transport. 

 Optimal availability and mobility options: 
The core of the MaaS package is the offered mobility. The desired modes of the user 
should be sufficiently available in space, time, quantity and sufficiently diverse to 
cover mobility demands in different situations. 

The correct design of a MaaS offer concerning these factors is of utmost importance as they 
can potentially impact how a MaaS offer is used and its potential to decrease private car 
ownership. First evidence supports the claim that MaaS could decrease private car usage 
(Hensher et al., 2021); however, due to a lack of substantial behavioural data, it remains unclear 
how these design decisions influence the perception and the impact of MaaS and to what 
degree and how MaaS can change travel behaviour (e.g., mode choice, car ownership). 
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With these rather design-oriented questions, there are novel challenges regarding the technical 
realisation of a MaaS offer. The (large-scale) analysis of individual mobility behaviour poses 
the problem of combining heterogeneous data from various sources such as tracking data, 
context data or booking data all from different providers, different vehicles, and users. This is 
especially true for spatial tracking data, as there are many different possibilities to record a 
person’s position with varying spatio-temporal granularity (e.g. GPS tracking data or public 
transport smart card data) (Miller and Goodchild, 2015). To answer questions about MaaS 
usage that help support the design of MaaS offers, the data must be collected, stored, filtered, 
integrated, and enriched with relevant context data. 

One goal of MaaS is to cover the current mobility demand with less but optimised resources. 
This requires predictive knowledge about individual mobility behaviour and the available 
resources to solve tasks such as the optimal redistribution of mobility tools, optimised charging 
and maintenance cycles and the improvement of intermodal route recommendations. In the 
past years, machine learning has become the predominant tool for the prediction of human 
mobility (LUCA et al., 2020). However, most approaches assume mobility recordings to be 
independent and identically distributed or use simplistic 1st order Markov assumptions 
(Kulkarni et al., 2019), thereby omitting the information that lies in the highly regular structure 
of individual human mobility (Schneider et al., 2013). We, therefore, see great potential in 
expanding current work on the prediction to incorporate the spatio-temporal structure of 
human mobility and relevant context data to support a more efficient operation of MaaS.  

3 study – The EIM project and YUMUV: 

The EIM project is a collaboration between the Swiss Federal Railways (SBB) and ETH Zürich 
to fill the gap of lacking empirical data. For this, we designed a user study based on YUMUV1 
- a new MaaS offer that was introduced as a collaboration of SBB and the public transport 
providers in Zürich, Bern, and Basel. 

YUMUV aggregates various mobility service providers (MSP) such as car-sharing, bike-sharing 
and shared e-scooters as a mobility platform and allows users to access all transport modes via 
mobility bundles – a subscription acting as an easy-to-understand pricing scheme for all MSPs. 
These bundles are city-specific, and in the case of Zürich, users can choose between a 30- or 
60-minutes monthly subscription (shown in Figure 1 on the right), which allows using all 
modes of transport for a total of the respective minutes. The user can book different mobility 
options via the YUMUV app (shown in Figure 1 on the left), created in collaboration with 
trafi2.  

                                                      
1 https://yumuv.ch/en 
2 https://www.trafi.com/ 
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Figure 1: Two screenshots of the YUMUV android app. The left side shows the overview of available 

modes at Zurich main station, the right side shows one of the available bundles 

The case study took place between August and October 2020 in the agglomeration of the city 
of Zürich and consisted of 71 persons in the treatment group and 417 persons in the control 
group. All participants were tracked for 3 month, and participants in the treatment group got  
access to a mobility bundle after 4 weeks. 

During the study period, all participants recorded their movement using an app on their 
smartphone and provided labels for activities and modes of transport. The treatment group 
recorded booking data from the YUMUV app, and all users participated in a survey at the 
beginning and the end of the tracking period.  

4 Takeaways from the data preprocessing phase 

A crucial part of this project is integrating tracking data with context data for the subsequent 
analysis of the impact of MaaS on mobility behaviour and mode choice behaviour. In the 
following, we describe takeaways to keep in mind when designing a similar case study. 
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Label correction using different data sources: 

In this study, all users were required to regularly label their recorded movement data with the 
mode of transport and activity categories in the tracking app. These labels are of great 
importance for the analysis of transport behaviour. However, they are often noisy as users 
might forget the labelling task or save effort and validate an incorrect label. During the 
preprocessing, it was very valuable that we could use the recorded booking data to validate 
and correct the user-provided labels. Even though it increases complexity, we recommend 
planning redundant tracking from different sources to reduce the noise in labels.  

An early collection of context data:  

The availability of shared modes in proximity plays a vital role in the mode choice for a trip. 
To analyse this influence, we started logging the locations of all relevant micro-mobility modes 
every 5 minutes in the study area during the study period. The resulting dataset has more than 
600’000 entries per day and is used to calculate availability measures at the beginning of each 
trip.  
We recommend planning the context data acquisition (e.g., by scraping) and the necessary 
infrastructure as early as possible in the project so that all context data is recorded in the same 
period as the tracking data and easily accessible. 

Increase impact and reproducibility by contributing to open source projects: 

Today, there are plenty of excellent open-source frameworks for processing and analysing 
spatial data. In this project, we used the open-source routing machine3 for map matching, 
PostgreSQL4 with PostGIS5 extension for data management and relied on the many spatial 
Python libraries such as GeoPandas6. However, many niches, such as the processing of 
tracking data libraries, are missing or incomplete. We, therefore, decided to implement all 
suitable methods within the trackintel7 framework and contribute to this open-source project. 
This increases code quality, reproducibility and the impact of this work as it allows others to 
benefit from it. 

5 Outlook and expected contributions: 

MaaS is expected to play a major role in the transport sector’s contribution to achieving the 
sustainable development goals of climate action (#13) and creating sustainable cities and 
communities (#11). An essential next step to test the potential of MaaS to improve the 
sustainability of transport systems is the analysis of the impact of bundles on travel behaviour. 
Hopes are that multimodal transport bundles can reduce car usage in the short term and reduce 
car ownership in the long term (Mulley, 2017; Hensher et al., 2020; Ho et al., 2021). 
Substitution effects such as using shared cars instead of owned cars have to be carefully 
accounted for to measure the net effect of bundles on transport emissions (Reck et al., 2021). 

                                                      
3 http://project-osrm.org/ 
4 https://www.postgresql.org/ 
5 https://postgis.net/ 
6 https://geopandas.org/ 
7 https://github.com/mie-lab/trackintel 
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Thus, comprehensive mobility profiles of trial participants are needed. 
The YUMUV trial allows analyses of these effects at unprecedented accuracy due to the broad 
scope of the collected data, including each participant’s comprehensive mobility profile 
(tracking data, booking data, context data). Our trial set-up further includes a control group 
which is a first in studies aiming to analyse the impact of multimodal transport bundles. 

The following step proceeding data preprocessing is to estimate YUMUV bundles impact on 
participants’ mode choice using discrete choice models. In doing so, we expect to make a 
substantial contribution towards understanding the potential of MaaS to improve the 
sustainability of transport systems to inform policy-making towards more sustainable and 
integrated future mobility. 
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Abstract 

Although the amount of data, generated in the mobility domain, has been increasing 

dramatically over the past years, specific cycling-related data are still hardly ever employed 

as the evidence base for cycling promotion. This is due to lacking data availability and 

accessibility on the one hand and to the absence of frameworks for integrating data from 

a different source on the other hand. We, therefore, propose a Bicycle Observatory, which 

facilitates a continuous observation of cycling mobility and serves as decision support in the 

broader context of cycling promotion. In this study, we investigate the contribution of a 

Bicycle Observatory achieving of strategic goals in cycling promotion and summarize major 

requirements and recommendations for establishing a Bicycle Observatory. 

Keywords: cycling, bicycle observatory, evidence base, cycling promotion, monitoring 

1 Introduction: cycling data 

Cycling data are commonly regarded as essential for planning and decision-making processes. 
Due to the rise of cycling in many cities and regions, the demand for valid data as an evidence 
base has constantly been rising. In parallel to this development, advancements in the ICT and 
wearable sector have led to growing amounts of generated data. Over the past ten years, 
numerous studies contributed to an optimistic perspective on transport data availability in the 
broader context of “Smart Cities” and the “Internet of Things” (IoT). Miller and Shaw (2015) 
see huge potential in data from mobile sensors when it comes to the investigation of mobility 
patterns and behaviour. In the context of big data and smart urbanism, Kitchin (2014) 
appraises new opportunities for gaining insights into cities and their governance. Anda et al. 
(2017) regard big data, opportunistically collected by wearables, as game-changer in transport 
modelling. 

In a recent review of available pedestrian and bicycle data, Lee and Sener (2020) distinguished 
between traditional data sources, such as counts and travel surveys, and emerging data. The 
latter are all generated by wearables with location sensors, ranging from GNSS to Wi-Fi and 
Bluetooth, and user-generated data, such as system data from bike-sharing systems or feedback 
in citizens’ apps. The authors point to the fact that there are still a lot of open questions 
connected to emerging data sources. These range from mode detection, data validity, sampling 
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bias, privacy, to a lack of contextual information and costs for obtaining and utilizing the data. 
Thus, it is not surprising that a substantial gap between theoretical opportunities and common 
daily practice becomes evident. Steenberghen et al. (2017) investigated the availability of 
mobility data from cyclists and pedestrians in the European Union, plus Norway and 
Switzerland. In interviews with national representatives, the authors found that only 40% were 
able to determine the average distance cycled per person at the national level. For cities and 
regions, where a sound evidence base for planning decisions and implementing measures is 
most needed, the situation is expected to be even worse. 

Independent from data availability, different data sources need to be integrated for a holistic 
perspective (Romanillos et al., 2016, Conrow et al., 2018). However, a standardized framework 
for how to relate different data to a common picture of cycling mobility does not exist yet. 
Consequently, we are facing two interlinked issues: a lack of data availability and accessibility, 
especially at a local scale level, and the absence of concepts, frameworks or tools for data 
integration. Against this backdrop, we introduce a concept for a geospatial Bicycle Observatory 
(Loidl et al., 2020), which serves as an integrator of different data and allows for monitoring 
bicycle mobility in an integrated way. In this study, we are aiming for determining a Bicycle 
Observatory’s contribution to achieving strategic goals with regard to cycling and identify the 
cornerstones of such a platform. 

2 Bicycle Observatory 

Instead of single measurements at specific locations and time periods, a Bicycle Observatory 
facilitates continuous and integrated measurements of cycling-related parameters. The concept 
is well established in different observational disciplines, such as astronomy, biology or 
economy. The application of an observatory for geographic information was proposed by 
Janowicz et al. (2014) and further elaborated by Miller (2017). Geographic Information 
Observatories (GIOs) facilitate holistic insights into geographic data and underlying 
phenomena. Since mobility is spatial and all data that are relevant for capturing aspects of 
cycling mobility, we applied the concept of a GIO and developed the concepts for a Bicycle 
Observatory (Loidl et al., 2020).  

For this, the following data sources are tapped and technically integrated: spatial data 
(infrastructure, physical environment, and weather), movement data (trajectories from mobile 
applications), statistical data (census, crash reports), mobility surveys and qualitative data 
(surveys, data from feedback apps). These data have different temporal characteristics 
(sporadically or periodically updated, real-time) and spatial resolutions. However, the 
geographical reference facilitates the linking of these data sources. Decentral storage of the 
data ensures maximum efficiency in terms of data ownership and updating. In order to 
integrate data, spatial and temporal re-sampling methods need to be employed. Semantic 
interoperability is supported by Semantic Web technologies, such as ontologies (see Reda et 
al.2018) for an example in a related domain). We refer to existing approaches for dealing with 
heterogeneous and erroneous data (Loidl and Keller, 2015, Vaccari et al., 2009), which need 
to be user-tailored for the specific data set and purpose. 
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Figure 1: Concept of a Bicycle Observatory with decentral data storage (modified from (Loidl et al., 

2020)) 

The Bicycle Observatory platform refers to the data sources and provides standardized 
interfaces for different clients (Figure 1). In a proof of concept (POC), we established a Bicycle 
Observatory for Salzburg and adjacent municipalities (Loidl et al., 2020, Leitinger et al., 2020, 
Heym et al., 2020, Brocza and Kollarits, 2020). The following investigations are based on this 
POC. 

3 Supporting cycling promotion strategies 

When it comes to supporting a modal shift towards cycling, cycling promotion strategies are 
fundamental for political decisions and implementation processes. In order to conduct an 
effective and credible cycling policy, sound data for status-quo analyses and monitoring are 
essential. We evaluated the contribution of a Bicycle Observatory to this demand. For this, we 
selected cycling promotion strategies at different administrative levels: the European Cycling 
Strategy by the European Cyclists’ Federation (ECF)1, the Masterplan for Cycling by the 
Austrian ministry for climate action (BMK)2, the cycling strategy of the Austrian province of 
Vorarlberg3 and the cycling strategy of the city of Salzburg4. 

We extracted all action fields and measures mentioned in the four strategies and evaluated how 
the integrated data provision in a Bicycle Observatory supports efficient implementation of 
the respective measure. The matching matrix revealed a strong relation, especially at a local 
level (Table 1). 

                                                           
1https://ecf.com/eu_cycling_strategy (last access: 2020-09-28) 
2https://www.klimaaktiv.at/mobilitaet/radfahren/masterplan_RF_2025.html (last access: 2020-09-28) 
3https://vorarlberg.at/documents/21336/80850/Kettenreaktion+Radverkehrsstrategie+Vorarlberg/ (last 

access: 2020-09-28) 
4https://www.stadt-salzburg.at/smartcity/smarte-mobilitaet/radverkehrsstrategie-2025/ (last access: 

2020-09-28) 

https://ecf.com/eu_cycling_strategy
https://www.klimaaktiv.at/mobilitaet/radfahren/masterplan_RF_2025.html
https://vorarlberg.at/documents/21336/80850/Kettenreaktion+Radverkehrsstrategie+Vorarlberg/
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Table 1: Matching of action fields and measures in cycling promotion strategies with a Bicycle 

Observatory. 

Cycling promotion strategy Number of action fields 
and measures 

Number of matches 

European Cycling Strategy 4 2 

Austrian Masterplan for Cycling 25 7 

“Kettenreaktion” – cycling 
strategy Vorarlberg 

21 8 

“Radverkehrsstrategie 2025+” – 
cycling strategy Salzburg 

25 16 

In a subsequent step, the most supported strategy by a Bicycle Observatory, namely the cycling 
strategy Salzburg, was investigated in-depth. For this, we developed an assessment matrix. We 
described the ideal status after implementing all suggested measures, the current status, and 
the gap (necessary actions) between the two. Moreover, we assessed the availability and 
accessibility of the data that could support the achievement of the respective goals. The 
necessary data for seven out of sixteen measures, which data from a Bicycle Observatory could 
support, are currently available. The data are partly available for seven measures and currently 
not available for two measures. None of these data sets is currently entirely accessibly as open 
data; seven are partly provided as open data.  

Table 2: Example for the assessment of action fields and measures defined in a local cycling strategy. 

Action 
field 

Ideal status Current status Required 
actions 

Data 
available 

Data 
accessible 

Planning 
consistent 
main 
bicycle 
network 

The main bicycle network 
is designed based on data 
on the existing 
infrastructure, bicycle 
traffic flows, as well as 
sources and destinations. 
The current situation 
before the measures are 
implemented is recorded 
and periodically compared 
with counting and tracking 
data in order to monitor 
the effect of the 
measures. In addition, 
user feedback is used for 
the qualitative evaluation 
of the measures 

The main bicycle 
network of the 
city of Salzburg 
was designed by 
traffic planners 
in 2018. The 
planning was 
based on expert 
knowledge, an 
assessment of 
potential routes 
and an 
experimental 
simulation of 
effects. 

Monitoring of 
bicycle 
traffic flows 
(dense 
network of 
cycle 
counting 
stations, 
processed 
trajectories) 
and analysis 
of user 
feedback. 

Yes Partly 

Table 2 provides an example for how action fields in the cycling strategy Salzburg could be 
supported by data and insights from a Bicycle Observatory and to which degree necessary data 
are available and accessible. 
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4 Requirements for the establishment of a Bicycle Observatory 

Since the contribution of a Bicycle Observatory to achieving strategic goals is evident, we 
identified the requirements for the establishment in a consecutive step. For this purpose, we 
launched an international web survey among experts (which is going to be published 
elsewhere) and conducted expert interviews with representatives of four institutions (two 
academic, two companies). From these inputs, we derived requirements in three different 
categories. 

4.1 Requirements and recommendations with regard to data 

We identified the accessibility of data as the major bottleneck for establishing a Bicycle 
Observatory. Thus, we recommend publishing all cycling-related data as open data for two 
reasons. Firstly, open data contribute to value creation in various application fields. This holds 
especially true for authoritative data, which are generated with public money anyway. Examples 
of this are road status data, counting data, or socio-demographic data. Secondly, open data 
usage leads to permanent quality control of the data and a subsequent improvement. In this 
context, we see huge potential for secondary data usage. Data that is initially generated for 
another purpose could be re-used in a Bicycle Observatory if it was made accessible. For 
instance, data from navigation apps, where the location is sensed in order to optimize the 
service for individual users, could be perfectly re-used in aggregated form for analysis purposes 
at a population level. Independent from the data source, the spatial and temporal resolution 
of available data is identified as being crucial for in-depth analysis. However, we found that 
most data are not available at the necessary resolution and quantity. In addition to data 
availability and accessibility, research gaps with regard to data integration became evident. For 
example, it remains unclear how crowdsourced trajectories (GNSS tracks) can be linked 
conceptually to stationary counting data. o the best of our knowledge, no method set exists 
beyond map matching trajectories and calculates correlation coefficients at selected locations. 
We, therefore, call for further research in the GIS domain in order to facilitate true integration, 
in addition to overlay analyses or visual inspections. 

4.2 Requirements and recommendations with regard to data management 

The effective handling of large amounts of data is only feasible with rigorous data management 
and the usage of data standards. Since data are integrated and linked based on geographical 
reference, we used data and service standards by the Open Geospatial Consortium (OGC). 
For managing the data, we recommend using a comprehensive data management plan (DMP), 
as for example, developed and provided as an Open Source template by Leitinger et al. (2020). 
This template describes data layers individually and contains core metadata, compatible with 
national and international metadata standards. For the operation of a Bicycle Observatory, the 
following information in a DMP is regarded as essential: geographical extent and coverage, 
update cycle, licence and privacy issues. On the basis of these four categories, the suitability of 
data for a Bicycle Observatory can be determined.  
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4.3 Organizational and legal requirements and recommendations 

The organizational effort for establishing a Bicycle Observatory increases with the number of 
integrated data layers. This holds especially true if third-party data is used. In this case, data 
usage contracts need to be concluded, which is commonly associated with considerable effort. 
In addition to the data management, the success of a Bicycle Observatory very much depends 
on continuous conceptual, technical and content-related support. Regardless of whether a 
Bicycle Observatory is established within administrative bodies or outsourced to external 
service providers, a project owner is highly recommended. 

With regard to privacy, we recommend not using individual data with direct reference to 
individual persons. Instead, anonymized and aggregated data are sufficient for the most 
common purposes of a Bicycle Observatory, where the observation of the entire system is key 
(and not the surveillance of individuals!). 

5 Conclusion and outlook 

Cycling data are essential for an evidence-based promotion of cycling mobility, as we revealed 
by a structured analysis of cycling promotion strategies. Although the number of sensors has 
increased at an unprecedented pace over the past years and huge amounts of data are being 
generated in the transport sector, we found that relevant cycling data are still sparsely available 
and accessible, respectively. A Bicycle Observatory would provide a suitable framework for 
integrating relevant data and provide them to decision-makers, planners and cycling 
communities. The framework of a Bicycle Observatory is adaptable and transferable. The 
POC, evaluated in this study, serves best activities at a local and regional level. However, the 
organizational and technological architecture can be employed for other scale levels and 
regions in the world as well. Against this backdrop, we call for further investments in data 
acquisition and provision and publish existing data to generate additional value through 
secondary data usage. 

Acknowledgments 

Research presented in this paper was conducted in the project Bicycle Observatory (FFG Nr. 
865176), which received funding by the Austrian Ministry for Climate Action, Environment, 
Energy, Mobility, Innovation and Technology (BMK) under the program “Mobility of the 
Future”. 

 



Loidl et al 

200 
 

References 

Anda, C., Erath, A. & Fourie, P. J. 2017. Transport modelling in the age of big data. International Journal 
of Urban Sciences, 21, 19-42. 

Brocza, U. & Kollarits, S. 2020. Dashboard Radverkehr: alles im Blick. AGIT ‒ Journal für Angewandte 
Geoinformatik, 2020, 238-243. 

Conrow, L., Wentz, E., Nelson, T. & Pettit, C. 2018. Comparing spatial patterns of crowdsourced and 
conventional bicycling datasets. Applied Geography, 92, 21-30. 

Heym, L., Werner, C., Innerebner, G. & Kofler, P. 2020. Mission Impossible: Typologisierung von 

Radfahrenden – ein Designsoziologischer Ansatz. AGIT ‒ Journal für Angewandte Geoinformatik, 2020, 
244-254. 

Janowicz, K., Adams, B., McKenzie, G. & Kauppinen, T. 2014. Towards Geographic Information 
Observatories. GIO 2014: Proceedings of the Workshop on Geographic Information Observatories 2014, 
collocated with the 8th International Conference on Geographic Information Science (GIScience 2014). Vienna. 

Kitchin, R. 2014. The real-time city? Big data and smart urbanism. GeoJournal, 79, 1-14. 
Lee, K. & Sener, I. N. 2020. Emerging data for pedestrian and bicycle monitoring: Sources and 

applications. Transportation Research Interdisciplinary Perspectives, 4, 100095. 
Leitinger, S., Wagner, A. & Kremser, W. 2020. Erfahrungen bei der Umsetzung eines Datenmanage-

mentplans für räumliche Daten des Radverkehrs. AGIT ‒ Journal für Angewandte Geoinformatik, 2020, 
255-262. 

Loidl, M. & Keller, S. 2015. An intrinsic approach for the detection and correction of attributive 
inconsistencies and semantic heterogeneity in OSM data. In: HAKLAY, M. & MCCONCHIE, A. 
(eds.) AAG Annual Meeting, Workshop OpenStreetMap Studies. Chicago. 

Loidl, M., Wagner, A., Kaziyeva, D. & Zagel, B. 2020. Bicycle Observatory – eine räumlich 

differenzierte, kontinuierliche Beobachtung der Fahrradmobilität. AGIT ‒ Journal für Angewandte 
Geoinformatik, 2020, 263-271. 

Miller, H. J. 2017. Geographic information science I: Geographic information observatories and 
opportunistic GIScience. Progress in Human Geography, 41, 489-500. 

Miller, H. J. & Shaw, S.-L. 2015. Geographic Information Systems for Transportation in the 21st 
Century. Geography Compass, 9, 180-189. 

Reda, R., Piccinini, F. & Carbonaro, A. 2018. Towards Consistent Data Representation in the IoT 
Healthcare Landscape. Proceedings of the 2018 International Conference on Digital Health. Lyon, France: 
Association for Computing Machinery. 

Romanillos, G., Zaltz Austwick, M., Ettema, D. & de Kruijf, J. 2016. Big Data and Cycling. Transport 
Reviews, 36, 114-133. 

Steenberghen, T., Tavares, T., Richardson, J., Himpe, W. & Crabbé, A. 2017. Support study on data 
collection and analysis of active modes use and infrastructure in Europe. Brussels: European 
Commission, DG Mobility and Transport. 

Vaccari, L., Shvaiko, P. & Marchese, M. 2009. A geo-service semantic integration in Spatial Data 
Infrastructures. International Journal of Spatial Data Infrastructures Research, 4, 24-51. 



Braun 

201 
 

Extraction of Dwellings of 

Displaced Persons from VHR 

Radar Imagery – A Review on 

Current Challenges and Future 

Perspectives 

 GI_Forum 2021, Issue 1  

Page: 201 - 208  

Research Paper 

Corresponding Author: 

andreas.braun@sbg.ac.at 

DOI: 10.1553/giscience2021_01_s201 

Andreas Braun12  

1 Paris Lodron University of Salzburg, Austria 
2 University of Tübingen, Germany 

Abstract 

While many studies exist to identify buildings from optical satellite images, radar-based 

approaches are still lacking in humanitarian contexts. This article outlines the main 

challenges related to scattering mechanisms returning from huts, tents, informal dwellings, 

and their natural surroundings, but also from geometric distortions caused by the side-

looking radar aperture. An outlook summarizes how these limitations  can be overcome by 

image enhancement or multi-image composites, but also by advanced methods on 

building extraction, such as convolutional neural networks (CNNs). This article aims to 

stimulate scientific debate and to lay a foundation for the development of new methods.  

Keywords: synthetic aperture radar (SAR), earth observation, humanitarian aid, building 

extraction 

1 Introduction  

Satellite images are increasingly used in humanitarian work. They effectively deliver consistent 
and accurate information over large areas, especially when they are remote or dangerous. 
Images help to allocate and count displaced persons, monitor natural resources and 
environmental changes, and therefore support the planning of missions, the distribution of 
goods and services, and the protection of people in need (Lang et al., 2020). Radar images are 
especially helpful in this context because they map physical surface characteristics 
independently from cloud cover, therefore, allowing quick response to emergencies (Boccardo 
et al., 2015). Their use for humanitarian action has been demonstrated in various cases, for 
example, for mapping settlements or identifying natural resources and hazards (Braun, 2020). 
However, while numerous approaches exist using very high resolution (VHR) optical imagery,  
radar-based studies are rare, particularly in the detection of dwellings as a crucial information 
for humanitarian work. This article discusses the reasons for this research gap and outlines 
how this issue can be addressed in the future. Furthermore, it provides examples on the 
interaction of microwaves with informal settlements to provide a basic understanding 
necessary for the design and conduction of studies in this domain.  
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2 Current limitations 

2.1 Spatial resolution 

One reason for the scarcity of radar studies on building extraction is the low availability of 
VHR radar images. Compared to optical satellites with sub-meter resolutions which have 
operated since the beginning of the 21st century, the development of VHR SAR satellites 
shows a delay of 10-20 years which, of course, also affects the methodological development. 
Among the small number of existing studies on building extraction from single VHR SAR 
images, sufficient results were only achieved for medium-size and large buildings with regular 
shapes (Ferro et al., 2012). Studies on small and irregular buildings are still missing. As a 
foundation for future studies, Table 1 lists the currently available radar data operating at very 
high spatial resolution.  

Table 1: Selection of suitable SAR missions for dwelling detection 

Sensor / Image Mode Azimuth 
resolution  

Range 
resolution 

Availability 

TerraSAR-X / HighRes Spotlight 0.6 m 1.1 m 2007 – today  
Radarsat-2 / Spotlight 0.8 m 1.6 m 2008 – today  
TerraSAR-X / Staring Spotlight 0.24 m 0.6 m 2013 – today 
COSMO SkyMed / Spotlight 0.9 m 1.0 m 2014 – today  
RISAT-1 / HighResolution 1.0 m 0.67 m 2012 – 2017  
Kompsat-5 / Ultra HighResolution < 0.85 m < 0.85 m 2015 – today   
COSMO SkyMed SG / Spotlight 2A 0.35 m 0.55 m 2020 – today  
ICEYE / Spotlight 0.5 m  0.5 m 2020 – today  
ICEYE / Spotlight High 0.25 m 0.5 m 2020 – today  
Capella / Site 0.5 m 1.0 m 2021 – today  
Hisea-1 / Spotlight < 1.0 m 1.0 m 2021 – today  
Capella / Spot 0.4 m 0.6 m planned for 2022 
Umbra / Staring Spotlight 0.25 m 0.25 cm planned for 2022 
XpressSAR / Spotlight < 1.0 m < 1.0 m planned for 2024 

2.2  Information content 

Radar images are formed by microwaves of several centimetres length. This makes them 
sensitive to physical characteristics (roughness, moisture, material, shape and orientation) of 
surfaces and objects (Ulaby et al., 2019). A systematic comparison of how buildings of different 
materials react to radar waves is provided in Figure 1. As shown by the TerraSAR-X (Spotlight) 
image in Figure 1b, the buildings of Goz Beïda (Chad) produce high radar backscatter, mainly 
because of the corner reflection of signals from buildings. However, high returns are also 
received by trees in the eastern part (volume scattering) and wetlands in the north (specular 
scattering). The identification of buildings by high radar backscatter from single images is 
therefore a challenge. Besides the ambiguity of the radar signal, a significant limitation in 
humanitarian settings is the material of the buildings.  
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Figure 1: Goz Beïda (a, b), Lilleström (c, d) and  Minawao (e, f) in VHR optical and radar images. Green 

outlines indicate building footprints retrieved from the optical image. TerraSAR-X © DLR 2021 
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Buildings covered by natural materials (straw on tukuls), or fabric or canvas (tents) produce 
distinctively less backscatter than solid clay or metal roof tiles. While solid buildings in the city 
of Lillestrøm (Norway) are characterized by locally high backscatter in Figure 1d, the regularly 
arranged tents in the refugee camp of Minawao (Cameroon) are mostly penetrated by the radar 
signal (Figure 1f) and therefore produce no backscatter. These low signals are often even 
superimposed by volume scattering of hedges or shrubs, which are used in arid regions to 
separate households in refugee camps, as demonstrated in Figure 2a showing the refugee camp 
of Dagahaley (Kenya). Accordingly, the potential of radar data often depends on the type of 
dwellings and their materials which can range from textile or natural materials (low visibility)to 
all kinds of solid coverage (higher visibility) in refugee camps or informal settlements.  

Lastly, due to interference of different signal returns, radar images are characterized by speckle:  
a granular pattern (Figure 2b and Figure 5) which complicates both visual interpretation and 
the automated extraction of information (Lee et al., 1994). It can be partially mitigated by 
adaptive filters, as demonstrated in section 3.2.  

  

Figure 2:  Volume scattering in a TerraSAR-X image of Dagahaley (a), and speckle in an unfiltered 

ICEYE image of Al Hol (b). TerraSAR-X © DLR 2021 

2.3  Acquisition geometry 

The active nature of a radar sensor requires a side-looking geometry of the satellite, resulting 
in incidence angles between 25 and 45 degrees. This introduces several geometric and 
radiometric distortions in the image, which require careful pre-processing (Oliver et al., 2004). 
Most of them can be compensated by the integration digital elevation model. However, with 
increasing spatial resolutions, freely available DEMs are no longer sufficient, especially for 
reducing signal saturation at slopes facing towards the sensor (Figure 3a). Besides these 
topographic effects, the orientation of buildings combined the flight and look direction of the 
radar sensor has a considerable impact on their backscatter intensity. As shown in Figure 3b, 
even solid administrative buildings in camp Minawao (Cameroon) are only visible as a thin line 
because the incoming microwave is reflected by just one wall. This brings new challenges 
regarding the delineation of building footprints. 
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Figure 3: Geometric effects in radar images of Kutupalong (a) and Minawao (b). TerraSAR-X © DLR 

2021 

3 Solutions and future developments 

3.1  Using proxy measures 

The previous examples have shown that some types of dwellings do not produce a distinct 
backscatter signal which can be used to allocate them, for instance because of their material, 
their orientation, or their size. When the spatial resolution is not sufficient to delineate single 
buildings, one alternative is dwelling density. The relationship between dwelling density and 
backscatter intensity has been investigated and utilized in studies for Dagahaley (Figure 4; 
Braun, 2020) and Maiduguri (Lang et al., 2020). Combined with knowledge of household sizes, 
these approximations can then be used to estimate the number of residents. However, this 
requires collecting reference statistics on household sizes in the field and is not a precise 
method for subtle changes within informal settlements.   

 

Figure 4: Observed (A) and predicted (B) dwelling density of camp Dagahely (Braun, 2020) 

3.2 Image enhancement  

While most speckle filters were designed for SAR satellites such as ERS, ENVISAT or ALOS, 
they approach speckle at pixel resolutions between 10 and 30 meters. Accordingly, they are 
not entirely suitable to address patterns within VHR data, because the concept of a moving 
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window with the size of a few pixels is not applicable at this scale. For these VHR products, 
filters based on region-growing algorithms, such as the intensity-driven adaptive-
neighborhood (IDAN) filter  (Vasile et al., 2006), have proven to be more effective because 
they suppress speckle while keeping the outlines of very bright pixels sharp. This is illustrated 
in Figure 5 (top): While traditional filters, such as Lee Sigma, Frost or Boxcar struggle with 
locally high values, the region-growing IDAN filter preserves the outlines of the building while 
smoothing its surroundings. Still, more filter techniques adapted to very high resolutions have 
to be developed.  

Another way of increasing the quality of a radar image is to combine images from multipe 
dates using temporal averaging of the backscatter intensity. As shown in Figure 5 (bottom), a 
single scene can contain a large proportion of random signal contributions. A clearer image is 
produced by increasing number of images, these are systematically suppressed. However, this 
requires a large number of images, preferably within a short time frame. Therefore, this 
approach is not ultimately applicable in cases of emergencies where no archived images exist.  

    

    

Figure 5: Top: Effect of different filters on a single dwelling in Namibia. Bottom: Effect of image averaging 

on TerraSAR-X © DLR 2021 

Lastly, little backscatter of buildings made of light construction materials can be mitigated by 
a fusion of VHR optical and radar images, for example, as demonstrated by Spröhnle et al. 
(2017), who systematically compared the information content of WorldView-2 and TerraSAR-
X Spotlight products for the extraction of dwellings in the Al Zaatari refugee camp (Jordan). 
They confirm that only metal buildings can be reliably identified in radar images, nevertheless, 
reporting that the fusion of both sensors brings the highest accuracy. A benchmark dataset for 
the systematic evaluation of approaches based on optical and radar imagery in urban areas 
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(SARptical) is provided by Wang and Zhu (2019). On the downside, fusion methods increase 
the dependency of users from several product sources, which unfortunately is 
counterproductive in emergencies.  

3.4 Advanced approaches 

As shown in the previous chapters, traditional pixel-based methods fail to reliably identify 
buildings of displaced persons because of insufficient spatial resolution, little backscatter 
intensity compared to their surroundings, and geometric effects on building and landscape 
levels. For this reason, advanced methods which aggregate pixels to segments or semantic 
objects can be used. Object-based image analysis (OBIA) has already been applied in urban 
areas using VHR radar imagery, but primarily for change detection based on multi-temporal 
approaches and not identifying dwellings from single images (Pirrone et al., 2020). One key to 
successfully identifying dwellings is the understanding and exploitation of typical patterns of 
double-bounce and signal shadow caused by solid buildings and how these relate to the actual 
footprint (Soergel, 2010). Once more, this is complicated by partial lacking of backscatter from 
buildings containing natural construction materials. Advancements in machine learning or 
pattern recognition, particularly in the training and application of convolutional neural 
networks (CNN),  an help overcome these gaps. Nonetheless, they do currently struggle with 
the asymmetric dynamic range of the radar signals in urban areas, hich require suitable 
histogram normalization (Zhu et al., 2020). Lastly, the integration of phase information can 
greately enhance the quality of urban footprinz delineation, for example, by methods of SAR 
tomography (Wang & Zhu, 2019). Nevertheless, these require large numbers of systematic 
image acquisitions and are currently not tested for rural areas.   

4 Discussion and outlook 

Concludingly, the development of radar-based approaches for the identification of buildings 
for humanitarian purposes still faces many challenges. Predominantly, the variety of different 
settings brings difficulties for the creation of both accurate and transferable methods, which 
can then be used in operational settings with low dependencies on specific sensors, acquisition 
geometries, or extensive data preparation. Future SAR missions will bring new opportunities 
for spatial resolution and data quality (Table 1), especially in combination with advancements 
in Deep Learning. Methods adapted to buildings of light construction materials and rural 
settlements still have to be developed. However, these will still require a sufficient number of 
input images (SAR only or combined with optical data) and training samples, for example, 
from previous dwelling extractions. Finally, the availability of in-situ information is crucial for 
developing methods contributing to both the calibration of models and the validation of 
generated results. As areas of interest can be hard or even dangerous to access, this is only 
possible in close collaboration with humanitarian organizations depolyed in such regions. To 
grant results with an accuracy sufficient for humanitarian decision making, the development 
of approaches should, therefore initially, focus on specific sites or settings instead of aiming at 
universally transferable methods.  
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Abstract 

Amongst the many benefits of remote sensing techniques in disaster- or conflict-related 

applications, timeliness and objectivity may be the most critical assets. Recently, increasing 

sensor quality and data availability have shifted the attention more towards the information 

extraction process itself.  With promising results obtained by deep learning (DL), the notion 

arises that DL is not agnostic to input errors or biases introduced, in particular in sample-

scarce situations. The present work seeks to understand the influence of different sample 

quality aspects propagating through network layers in automated image analysis. In this 

paper, we broadly discuss the conceptualisation of such a sample database in an early 

stage of realisation: (1) inherited properties (quality parameters of the underlying image such 

as cloud cover, seasonality, etc.); (2) individual (i.e., per-sample) properties, including a. 

lineage and provenance, b. geometric properties (size, orientation, shape), c. spectral 

features (standardized colour code); (3) context-related properties (arrangement Several 

hundred samples collected from different camp settings were hand-selected and 

annotated with computed features in an initial stage. The supervised annotation routine is 

automated so that thousands of existing samples can be labelled with this extended feature 

set. This should better condition the subsequent DL tasks in a hybrid AI approach.  

Keywords: humanitarian action, earth observation, deep learning, data assimilation, 

hybrid AI, sample quality, automation 

1 Shifting demands in operational humanitarian EO  

1.1 Time criticality vs reliability 

Remote sensing and Earth observation (EO) derived products play a growing role in providing 
relevant and up-to-date information for humanitarian operations (Lang et al., 2019). Amongst 
the many benefits of remote sensing techniques in disaster- and conflict-related applications, 
timeliness and objectivity may be regarded as the most critical assets (Denis et al., 2016; Voigt 
et al., 2016). This applies, for example, to refugee camp mapping or dwelling extraction 
routines in deprived urban areas for population estimation, where otherwise such figures are 
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missing or largely outdated (Quinn et al., 2018). About a decade ago, when the humanitarian 
community started to adopt EO technologies in operations, both aspects of actuality (i.e., up-
to-date and trustworthy information) were mainly referred to image (source) quality. 
Reluctance with respect to image provision, image manipulation, limited spatial resolution, 
cloud contamination, etc., was the main concern with respect to operational use. Recently, 
increasing sensor quality, data fusion techniques, and data availability have shifted the attention 
more towards the information extraction process itself (Lang, Füreder, et al., 2019).  The 
increasing acceptance has experienced a synchronous shift in attention of the larger EO 
community from data management to data exploitation (Giuliani et al., 2017; Sudmanns et al., 
2019; Voigt et al., 2016).  

In highly demanding operational settings, timeliness and reliability may be considered mutually 
exclusive, if not contradictory, even. In demanding tasks, innovation in the automation process 
is limited, making the information extraction process ‘stagnant’ and dominated by and manual 
delineation. Recently, the community saw many approaches labelled as “semi-automated”, 
attempting to best implement computer vision with (GE-)OBIA techniques (Lang, Hay, 
Baraldi, Tiede, & Blaschke, 2019) and to overcome the tedious delineation process of small 
features which occurs in large frequencies and diversities (Füreder et al., 2015). In particular, 
in well-structured camp arrangements with distinct structures, the performance of region-
based segmentation routines are satisfying and – once the delineation of dwellings has been 
achieved – object features such as size, colour, shape, etc., can be used to categorise them. The 
process is challenging when a clear distinction of individual dwellings is hampered by the 
complexity of the arrangement, and even visual inspection reaches its limits, and inter-subject 
objectivity is no longer guaranteed among experts. 

With promising results obtained by deep learning (DL) in various applications (Ghorbanzadeh, 
Tiede, Wendt, Sudmanns, & Lang, 2020; Quinn, et al., 2018; Tiede, Wendt, Schwendemann, 
Alobaidi, & Lang, 2021) humanitarian community adopts to data science techniques as well.  
This also applies to computer vision, which gradually evolves from static rule-based strategies 
to a more dynamic, self-adaptable machine learning-based approach. The limitation for the 
latter, however, is the existence and quality of samples. Despite the inherent improvement 
capabilities of machine learning, DL is not agnostic to input errors (Ghorbanzadeh, Tiede, 
Dabiri, Sudmanns, & Lang, 2018) or biases introduced, in particular in sample-scarce 
situations. Sample scarcity in humanitarian applications may be attributed to the complexity 
and required level of detail (e.g., complex urban settings or organically grown refugee camps), 
for which samples on a generalised level do not exist in sufficient number or quality. Even 
though tents and other dwelling types can be generalised and described according to standard 
building codes, the confusion with other and similar features, mixed in and intermingled, is 
high and the appearance on EO imagery greatly depends on seasonal conditions (dry vs. humid 
periods, overgrown by vegetation, etc.). The detection and correct interpretation of different 
dwelling types, in a degree relevant to humanitarian organisations, is a dedicated expert task. 
While support is increasingly available through community-mapping approaches such as 
Humanitarian Open Street Map (HOT OSM or Missing Maps), utilising crowd-sourced 
information needs, therefore, to be curated and the existing dwelling delineations need to be 
evaluated and characterised (Albuquerque, Herfort, & Eckle, 2016; Elia, Balbo, & Boccardo, 
2018).  
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The challenge remains: compromising reliable results for the sake of increased automation is 
a tricky decision in operational humanitarian settings, where actions and decisions may have 
severe implications for human lives and wellbeing. Taking the ‘best of two worlds’, we try to 
apply hybrid approaches, which are aware of the physical properties of the target dwellings, 
which rests upon the experience of operational mapping task of the last ten years. Based on 
this legacy, an annotated dwelling sample database is foreseen, which documents sample 
provenance and characteristics in a way that observations and dwelling models are well attuned 
in a hybrid AI and data assimilation approach. 

1.2 Hybrid AI and data assimilation 

Artificial intelligence (AI) simulates processes characteristic to human intelligence and thereby 
mimics human actions. Among the cognitive relevant AI tasks includes knowledge 
representation, automated reasoning, machine learning (ML) and teaching. Types of AI are 
distinguished by adaptability, performance, proficiency as compared to the human brain 
ranging from narrow AI and general AI to Super AI. Physics-aware or hybrid AI is a strategy 
to better condition ML/DL tasks by employing physical models, principles, or even laws. 
These principles into consideration using general conditions and constraints utilising machine 
teaching as an enabler (Lang, Hay, et al., 2019). One strategy is data assimilation.  

Data assimilation aims to foster data integration and data harmonisation in a bi-directional way 
between the measured and the modelled reality (Lahoz and Schneider, 2014). In Earth 
observation, data assimilation compensates for the fact that a specific site may be observed in 
a variety of measurements by satellites with different sensor types, at different dates, different 
angular geometries and viewing directions, illumination conditions (solar time), observation 
frequencies, etc. (Verhoef and Bach, 2003). In particular, for monitoring purposes, 
measurements over time need to assure to actually measure the status of the system or object 
and not the divergence in observation. For vegetation and crop type monitoring, radiative 
transfer modelling (RTF) is being used as an example (Graf, Papp, & Lang, 2020; Verhoef and 
Bach, 2003). In general, when interpreting images and overcoming the semantic gap, rigorous 
classifiers based on solid spectral models, acting across sensors, are available. Semantic 
enrichment of satellite data (Augustin, Sudmanns, Tiede, Lang, & Baraldi, 2019). For satellite 
image time-series (SITS), the seasonal dynamics and the variability the appearance of the target 
classes are relevant. Data assimilation can also bridge non-availabilities of EO data and other 
observations to provide estimates or prediction for geographical variables. A related aspect is 
data imputation, i.e. filling gaps in observations, e.g. by other, complementary data sets (e.g. 
Radar imagery in the absence of VHR data under cloudy weather conditions).  

2 Quality-controlled samples  

2.1 Rationale in the context of dwelling extraction 

A better understanding of sample quality is a critical requirement to improve automated DL 
tasks in image analysis. Our aim is to investigate systematically how various imperfections in 
the delineation and provision of samples affect the result of machine learning. We, therefore, 



Lang et al 

212 
 

in a first step, defined and tested a set of quality indicators, computed and recorded in a 
database next to each sample’s label (dwelling category). These indicators comprise: (1) 
inherited properties (quality parameters of the underlying image such as cloud cover, 
seasonality, etc.); (2) individual (i.e., per-sample) properties, including a. lineage and 
provenance, b. geometric properties (size, orientation, shape), c. spectral features (standardized 
colour code); (3) context-related properties (spatial arrangement Currently, the approach is 
‘static’ and does not consider the temporal dynamics of dwelling evolution, meaning we record 
quality indicators per image timeslot (epoch). Several hundred samples collected from different 
camp settings were selected and annotated using the expert-based selection of quality 
indicators in an initial stage. It is foreseen that thousands of existing samples and future 
delineations are labelled automatically with this set of quality-relevant features. 

The following figures illustrate the challenges encountered in documenting the quality 
indicators of the samples using mixed methods for dwelling delineation in an operational 
production environment. We deal with different sensors and image resolutions, limitations due 
to cloud cover and atmospheric conditions, problems of geometric correction (shifts), 
incomplete interpretation or extraction (false positives and negatives), different delineation 
techniques (segmentation-based vs. manual delineation), and inconsistencies in the 
classification and labelling (see figure 1). Some of these aspects influence the quality of the 
samples globally, i.e. per image. Atmospheric conditions and cloud contamination or any other 
aspects of image correction introduce a global bias to the extraction process. While difficult to 
estimate, this bias is an important aspect of data provenance in the process of turning primary 
(continuous image) data into secondary (discrete object) data.  
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Figure 1: Various aspects to consider in estimating quality parameters of extracted dwellings (see text 

for further explanation). 

Global (per-image) quality indicators. We aim to use quality-proven polygon data as input for 
training tasks of ML algorithms rather than labelled imagery. We, therefore, have to ensure 
that the extracted dwelling polygons have a unique image source assigned. What sounds trivial 
is sometimes impaired by the complexity of operational tasks, using multiple input data (e.g. 
VHR satellite images, drones), or observing dwellings over a certain longer time period with 
updated image data (monitoring). Once a unique match of source and dwelling object is 
assured, the produced dwelling data will inherit the global image quality indicators, like cloud 
cover, incidence angle, atmospheric conditions, geometric shift, etc. This is another crucial 
aspect of data provenance and reproducibility because only polygon data with a unique source 
should be considered a matching pair to be used as training samples.  

In the absence of an alternative option, we are currently experimenting with a global quality 
score for judging the data provenance as a combination of image resolution, cloud cover and 
feature delineation (including shifts). Table 1 shows a draft version of such a grading scheme, 
which would attest all samples taken from one input image at a certain epoch a global quality 
score. Those with a quality score 1 could be used as testing samples to start the model training 
without any bias. Further, samples with a lesser quality can be used for training to increase the 
robustness of the model. Samples of quality scores 3 or 4 might suffer inconsistencies in spatial 
registration or delineation type but may still be used for sample augmentation purposes. 
Quality score 6 would indicate a status of non-correspondence between image and extracted 
dwellings. 
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Table 1: Grading scheme for assessing the overall quality of data provenance (draft) 

Delineation 
Image 

resolution 
Cloud cover 

Quality 
score 

Nearly perfect 
delineation, minor 
differences in delineation 

High none 1 

Minor differences in 
delineation 

high-medium none 2 

Larger difference in 
delineation; repairable 
dwelling shift 

High-medium partly  3 

Dwellings partly missing; 
repairable dwelling shift 

High-medium partly 4 

Many dwellings missing; 
shift not repairable 

Medium-Low large 5 

no correspondence in 
delineation 

- - 6 

2.2 Quality features per dwelling 

The present work is a precursor to a larger investigation that aims at documenting 
systematically how different aspects of quality of samples propagate through artificial neural 
network layers, thereby judging how this reflects in the result of the DL task. An extensive 
number of annotated samples, semi-automatically derived and manually revised, are collected, 
representing features suitable for enumerating and estimating the actual local population; they 
are stored and made accessible in a dedicated sample database. The samples consist of vector 
representations (polygons) of dwellings of different types like tents, huts, tukuls, facility 
buildings, etc.; hence have a different characteristic to be taken into account for the structure 
of the database. Next to the labels, the dwelling samples are characterised by a set of quality 
indicators assessing their spectral and spatial properties (table 2).  
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Table 2: Dwelling sample quality indicators 

Spectral features. Spectral characteristics are recorded based on standardised colour categories 
using a knowledge-based feature space partitioning system called SIAM® The idea is to 
generate standardised categories (semi-concepts) fully automated from VHR imagery (figure 
2). This requires calibration (as far as possible), even in operational, demanding application 
contexts. The advantage is to have stable categories rather than subjective colour impressions 
(“light-blue tents”, “brownish tukul”, “bright dwellings”, etc.). This helps enrich the sample database 
because we have a (certain level of) semantic understanding of the global image content (e.g. 
dominance of dwelling type X) and a per-object uniform colour label to support the 
classification. The standardised colour categories are based on a fully automated pre-
classification of the multi-spectral properties from VHR images; this process involves 
radiometric calibration of the images into top-of-atmosphere (TOA) reflectance followed by 
a knowledge-based feature classifier. The image calibration process includes the absolute 
radiometric calibration factors provided by the VHR image vendors; this ensures the baseline 
for multiple sensors data integration and fusion in every operational and demanding 
application contexts. The predefined colour codes consist of a discrete and fixed number of 
cross-sensor spectral categories (e.g. 33 or 61) whose degree of semantic information – while 
lower than common land cover classes – is superior to non-semantic image data. This provides 
a stable and uniform representation of object primitives labelled to support recognition and 
classification by the model. 

Dwelling delineation process 
Dwelling shift Polygons do not match the source image and show offsets 
Inconsistency in 
classification 

Different labels depending on the source of the footprints and 
image 

Incomplete and double 
count of dwellings 

Dwellings double-counted or do not totally cover the apparent 
dwelling on the source image 

Delineation strategy Manual, semi-automated (OBIA), etc. 
 

Image characteristics (inherited by dwellings) 
Cloud cover Not all dwelling in the imaged scene captured  
SITS Evolution of a camp and seasonal effects 
Delineation strategy (see above) 

 
Dwelling individual properties 

Representation As polygon, as point (centroid) 
Spectral properties Colour categories (SIAM-based) 
Neighbourhood, 
context 

Embeddedness in dwellings of the same type 

Geometrical 
attributes 

Size, position (centroid) 

Shape Compactness, regular fit, orientation, etc. 
SITS Dwelling dynamics (emergence, disappearance, etc.)  



Lang et al 

216 
 

 

Figure 2: Fully automatic pre-classification of calibrated VHR Pléiades imagery into a fixed set of 61 

spectral categories using SIAM®. Different vegetation, water, built-up, and other low-level semantic 

classes are discerned in a standardised and transferable manner,   

Spatial features. Spatial properties comprise geometric properties and spatial arrangement. The 
azimuth angle is the angle between two points in the Cartesian plane; it is calculated between 
the centroid of the dwelling itself and the neighbouring dwelling. The orientation angle was 
calculated to show the orientation of individual dwellings against geographic North. The shape 
index measures the deviation of a given polygon from the circularity of a perfect circle of the 
same size. For any set of geometric forms of a given area, the circle has the shortest perimeter 
in relation to the area; thus its compactness is highest. Any other form exhibiting the same 
area shows less compactness and a higher shape index. The proximity index is well suited for 
indicating the embeddedness of an extracted dwelling in its surrounding, i.e. to which degree 
a dwelling differentiate from neighbours in terms of size and distance. It was calculated for 
each dwelling by identifying the dwellings that were within the buffer distance of the indexed 
dwelling and then calculating the size to distance ratio for each of the n dwellings identified 
within the buffer. 
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2.3 Annotated sample database – a prototypical implementation 

A spatial database in PostgreSQL stores the quality indicators of the image source and the 
respective dwellings (vector data). This database aims to store spatial and spectral 
characteristics of the dwellings analysed in the area of investigation. The simplified database 
schema (figure 3) consists of two main tables: the Image table and the Dwelling 
table connected via image ID as primary and foreign key. The dwellings delineated from each 
image were originally stored in separate individual tables per country and now collated in one 
single schema. The Image table serves as the main table containing information about 
individual dwellings in all images in one place. The Image table contains information about 
image characteristics of the image (radiometric, etc.) properties. The Dwelling table contains 
information about spatial characteristics of individual dwellings, as described above.  

 

Figure 3: Simplified ER diagram of sample DB 
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3 Outlook 

The described conceptual framework for quality indicators of dwelling extraction is currently 
investigated and expert-evaluated in terms of impact on the performance of various DL tasks. 
Being in an early stage of development, we plan to consider temporal aspects of dwelling 
evolution by deriving quality indicators not from single epochs but from multi-temporal (and 
potentially semantically enriched) data cubes. 

Prospectively, hundreds of thousands of existing samples are going to be labelled automatically 
with this extended set of quality indicators. This should better condition the subsequent 
mapping tasks using a hybrid AI approach and improve existing operational mapping routines. 
It may also serve as a stimulating reference dataset for benchmark contests.   
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Abstract 

For effective humanitarian response in refugee camps, reliable information concerning 

dwelling type, extent, surrounding infrastructure, and respective population size is essential. 

As refugee camps are inherently dynamic in nature, continuous updating and frequent 

monitoring is time and resource-demanding, so that automatic information extraction 

strategies are very useful. In this ongoing research, we used labelled data and high-

resolution Worldview imagery and first trained a Convolutional Neural Network-based U-net 

model architecture. We first trained and tested the model from scratch for Al Hol camp in 

Syria. We then tested the transferability of the model by testing its performance in an image 

of a refugee camp situated in Cameroon. We were using patch size 32,  at the Syrian test 

site, a Mean Area Intersection Over Union (MIoU) of  0.78 and F-1 score of 0.96, while in the 

transfer site, MIoU of 0.69 and an F-1 score of 0.98 were achieved. Furthermore, the effect of 

patch size and the combination of samples from test and transfer sites are investigated.   

Keywords: deep learning, dwelling extraction, refugee camp, transferability, U-net 

1 Introduction  

Humanitarian aid organizations, human rights groups, and concerned parties working in 
emergency response need accurate and reliable information related to the camp extent, 
dwelling type, number, and structure of dwellings of camps of refugees and internally displaced 
persons (IDP). Especially in the absence of exact population numbers, estimating the number 
of people in need of relief from these proxies is a viable option. Earth observation is routinely 
used to this end when information collection on the ground would be too time-consuming or 
dangerous (e.g., Lang and Füreder, 2015; Bjorgo, 2000; Lang et al., 2020). 

Despite recent advances in computer vision and particularly deep learning for information 
extraction from satellite images (Ma et al., 2019; Li et al., 2020), manual digitization or at least 
extensive clean-up of automatically extracted dwelling features is still required. Quinn et al. 
(2018), who demonstrated the potential of deep learning for automatic dwelling counting, 
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noted problems of transferability of models emanated from differences in sensors and inherent 
characteristics of dwelling structures. To overcome these challenges, Ghorbanzadeh et al. 
(2018) investigated combining object-oriented and deep learning approaches for dwelling 
extraction to improve the transferability of classifiers from one satellite scene to another. 

The large number of dwellings we extracted from satellite images of refugee and IDP camps 
in an operational setting for a major international humanitarian organization over the past 
years now enables us to experiment on the optimal combination of sample-based machine 
learning / deep learning techniques, prior-knowledge based machine teaching methods and an 
optimized selection of samples. As part of ongoing work, this study focuses on the spatial 
transferability of deep learning-based dwelling extraction. More specifically, it has the 
following contributions: firstly, it tests the U-net architecture (Ronneberger, Fischer, & Brox, 
2015) for dwelling extraction in two refugee camps; secondly, it investigates the impact of 
patch size on model capability for dwelling extraction; thirdly, it explores the transferability of 
the model trained at one site to another refugee camp situated in a different geographic region; 
finally, it compares the performance of U-net segmentation network trained on local samples, 
samples from a different camp setting, and network using a combined set of samples.   

2 Methodology 

2.1 The test sites 

The study is based on the two refugee camps in Al Hol, Syria, and Minawao, Cameroon. The 
two camps are characterized by a large fraction of standard-issue shelters as used by UNHCR 
and other organizations but are located in a different part of the world. Therefore, these sites 
allow testing the generalization capability of the trained model from one geographic setting to 
the other. Al Hol consisted of approximately 19,396 dwellings at the time of the investigation. 
It has a total area of 289 hectares with dwelling density ranging from below 15 dwellings per 
hectare at the outskirts of the camp towards 108 dwellings per hectare in the inner parts. 
Almost 97% of the dwellings are standard-issue tents (UNHCR, 2016). It has experienced a 
high population influx (Neil, 2020; REACH, 2020). Minawao has a camp area of 623 hectares 
with a total of 16,601 dwellings with a dwelling density of 1-2 dwellings per hectare towards 
180 dwellings per hectare. The camps have different dwellings, which include small structures 
(~2-5 m2) towards large facility structures (~102 m2). 

2.2 Data and sample generation 

We used a WorldView-2 image with a spatial resolution of 0.5 meters for Al Hol acquired on 
27 April 2020, and a WorldView-3 image with a resolution of 0.3 meters for Minawao acquired 
on 3 June 2016. The Worldview-3 image is resampled to Worldview-2 resolution. The labelled 
vector data used in this study were generated as part of ongoing operational humanitarian 
service by combining object-based image analysis (OBIA) and subsequent manual digitization 
with proper post-processing operations. For labelled data, a qualitative check is made for 
completely missing polygons and the presence of systematic positional shifts. Then these 



Gella et al 

222 
 

vector files were converted to binary raster tiles (dwelling and non-dwelling), irrespective of 
dwelling type (Figure 1). 

   

Figure 1: Dwelling types in Minawao (right) and Al Hol (left) 

To train, validate and test the model, the test site in Syria is partitioned into training and test 
area. During this partitioning, some part of the area surrounding the camp is also included in 
training and validation samples to reduce model confusion on unseen features from the 
surrounding environment during the prediction phase both onsite and at the transferability 
test site. As patch size influences the variation of Fully Convolutional Network (FCN) model 
performance (Hamwood, Alonso-Caneiro, Read, Vincent, & Collins, 2018), from a training 
area, three sample sets with a mutually exclusive patch size of 32 by 32, 64 by 64, and 128 by 
128 pixels were generated. To train the model, these sample sets are randomly partitioned into 
training and validation samples with a ratio of 0.8 and 0.2. Testing of the trained model is done 
with unseen samples taken from camp parts partitioned to test areas that are not included in 
the training and validation samples and also in the transferability test site. To see the impacts 
of training on mixed samples from test and transfer sites, we have also generated some samples 
from Cameroon and mixed them with samples from Al Hol Syria. 

2.3 The model and training process 

We used the U-net model architecture (Ronneberger et al., 2015). The model is a family of 
Convolutional Neural Network (CNN), which are FCN architectures (Long, Shelhamer, & 
Darrell, 2015) and was reported robust in many problems that need semantic segmentation, 
like medical (Ibtehaz & Rahman, 2020) and aerial (Ivanovsky, Khryashchev, Pavlov, & 
Ostrovskaya, 2019) image segmentation. The model mainly works with an encoder-decoder 
architecture where the contracting encoder extracts abstract features from an image while the 
expanding decoder block reconstructs segmented features (Ibtehaz & Rahman, 2020). Both 
encoder and decoder blocks are constructed from a stack of convolution, pooling, and 
activation layers with skip connections between the decoder and encoder blocks at some stage.  
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For the current study, decoder and encoder blocks used Rectified Linear Unit (ReLU) 
activation (Nair & Hinton, 2010; Zeiler et al., 2013). Weight updating and feature learning are 
done using a categorical cross-entropy loss and stochastic gradient descent (SGD) optimizer 
(Zaheer & Shaziya, 2019) with a learning rate of 0.01. To prevent model overfitting (Ying, 
2019) and reduce unnecessary computational time, an early stopping strategy with a patience 
of 10 epochs taking validation cross-entropy loss as a target monitoring metric has been 
implemented. Final dwelling structure presence probabilities are predicted by using a softmax 
activation, which is further converted to hard binary classes of dwelling features. To see the 
pixel-wise overall model performance, the F-1 score is used. Given that pixel-based metrics 
yield relatively inflated values in segmentation tasks, especially in unbalanced samples, an 
object-based metric, Mean Intersection over Union (MIoU) (Atiqur & Yang, 2001), was used. 
This metric evaluates the spatial (geometric) congruency of predicted and reference objects 
where a perfect match gives MIoU of 1 while complete disjoint MIoU of 0. 

3 Results 

Table 1 shows dwelling extraction accuracy metrics for a model in Syria trained on Syria, 
Cameroon trained on Syria, and Syria and Cameroon trained on samples from both sites 
combined for different patch sizes. The accuracy is calculated over all dwellings, irrespective 
of their type (Figure 1). As model prediction is made on an image that includes areas outside 
of the camp, false positives outside the camp area are masked out before the calculation of 
evaluation metrics.  

Obtained results show variation as per utilized patch size for model training. In terms of MIoU 
metrics, 78.2% areal fit is achieved when trained with patch sizes of 128 pixels by 128 in Syria 
and 79.5% in Cameroon. The combination of samples from the transferability test site to train 
the model has yielded MIoU values almost similar to outputs from the model trained on 
samples from a single site. The model transferability metric is also varying as per input patch 
size, where a model trained with a patch size of 128 performed better. This also holds the same 
for a model trained with samples mixed from model training and transferability site 
(Cameroon). 

Table 1: Accuracy metrics for experiments 

 Test site Syria Cameroon 

Patch size 32 64 128 32 64 128 

F-1 score          0.964 0.961 0.963 0.985 0.983 0.989 

Mean IoU           0.781 0.776 0.782 0.691 0.758 0.795 

 Combined samples Combined samples 

F-1 score          0.963 0.961 0.963 0.986 0.983 0.988 

Mean IoU           0.778 0.777 0.779 0.726 0.763 0.770 
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Figures 1 and 2 show a visual comparison of classification and reference data.  In the first test 
site, except for lack of crispness at the edge of dwellings, it has extracted dwellings with good 
completeness. In the transferability test site (Cameroon), relatively, there are some dwellings 
flagged by a model as false negatives. Combining samples from both sites during model 
training has not added any accuracy improvements except for patch size 32 where combining 
samples resulted in a 3.5% improvement of MIoU.  

 Reference Patch 32 Patch 128 

A 

   

B 

   

Figure 2: Dwelling extraction results in A) from Syrian test site and B) from Cameroon transferability test 

site 

4 Discussion  

Though the model fails to detect small and circular buildings made from natural materials, 
called tukuls (UNHCR, 2016) in the transferability test (Figure 1B), overall, the obtained results 
were in good agreement with segmentation results reported for building extraction (Rastogi, 
Bodani, & Sharma, 2020) and tent detection in refugee camps (Kahraman, Ates, & Kucur 
Ergunay, 2013). Current results were slightly better than segmentation results reported using 
the CNN with OBIA approach (Ghorbanzadeh et al., 2018), which achieved F-1 scores of 
85.2%, 96.3%, and 93.3% for tunnel-shaped, rectangular, and large buildings, respectively. 
Variations in findings could also be attributed to differences in model architecture, patch size 
and details included in dwelling types.  Increasing patch size has resulted in a reduction of false 
negatives within the dwelling blocks with respective trade-offs, including some reflective 
features like roads and bare land as false positives, especially in areas outside of the dwelling 
camp.  Contrary to this, when the patch size is reduced, the model fails to properly segment 
larger and linearly attached dwelling structures (area >280 km2). This is especially prevalent in 
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the transferability test site. Using a different segmentation model, Ergunay et al. (2013) have 
also reported the same impact of window size on the proper segmentation of tents. It should 
be noted that though the dwellings structures are extracted with good performance, the 
segmentation is not exact at the edges. The samples for this study had been produced in a 
time-constraint operational setting, where outlining the dwellings precisely was not essential. 
At some blocks, even segmentation outputs have more precise outlines than reference 
polygons (Figure 1A). We assume that somewhat unsharp outlines in the samples resulted in 
a less-than-perfect segmentation, which also affects evaluation metrics.   

Reference  Patch 32 Patch 64 Patch 128 

    

    

Figure 3: Confusion of background features with dwelling structures in Syria (first row) and patch wise 

variation of larger structure extraction (lower row) 

5 Conclusion 

Though the deep learning-based U-net model showed good overall performance, not all types 
of all dwelling structures were similarly well extracted. Structures that have good contrast with 
the background (bright and drop-shaped dwellings) are well extracted, while those with poor 
contrast (tukuls and small dark structures) were not well extracted. The model’s capability to 
extract features varies with the patch sizes used for model training, especially to segregate 
background features with resembling reflectance characteristics. The model trained with a 
larger patch size can extract features in the transferability test site. In this study, except with 
patch size 32, the combination of samples from both sites has not changed the model 
performance. To get a more robust model that can universally extract dwelling structures, we 
plan further research with different pre-processing strategies that can enhance low contrast 
dwelling from its background, test segmentation models, and further detailed mapping of types 
of dwelling structures in the camp. 
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Abstract 

Satellite imagery is an important information source for research on remote sensing (RS)-

based humanitarian applications. The selection of satellite imagery is one of the most 

important steps for such research. This paper firstly shows the selection of satellite imagery in 

past research from 2015 to 2021. It can be found that most research on land cover and land 

use (LCLU) change caused by conflicts or refugees/internally displaced persons (IDPs) chose 

medium spatial resolution (MSR) imagery. Most research on dwelling detection of 

refugee/IDP camps applied high or very high spatial resolution (HSR/VHSR) imagery. There is 

much research that applied multiple types of satellite imagery for humanitarian applications. 

Then, the paper presents general characteristics of commonly available optical satellite 

imagery. Next, with the development of sensors, this paper suggests that data fusion of SPOT-

5 and Sentinel-2 may be helpful in LCLU change detection caused by refugees/IDPs or 

conflicts. Smallsat imagery may be promising for research on humanitarian applications that 

require a high temporal frequency of imagery.  

Keywords: remote sensing, satellite imagery, humanitarian applications 

1 Introduction  

Remote sensing (RS) technology has assisted humanitarian aid applications for the past few 
decades (Lang & Füreder, 2015). During a crisis, critical information for planning humanitarian 
operations, such as population in need and their spatial distribution, is usually hard to access 
by fieldwork (Witmer, 2015). Therefore, the major role of RS is to provide such information 
for users to support their humanitarian operations in hard-to-reach areas (Voigt, Schoepfer, 
Fourie, & Mager, 2014). Satellite imagery is a central information source for RS-based 
humanitarian applications. With the fast development of satellite sensors, more and more 
satellite imagery has become available. This paper firstly reviews the selection of satellite 
imagery in past research for humanitarian applications. Then it presents the latest collection 
of optical satellite imagery and discusses under-explored satellite imagery that may be beneficial 
for future research.  
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2 The selection of satellite imagery in past research  

Different crises can result in different impacts on the ground with different spatial and 
temporal scales (Witmer, 2015). The selection of satellite imagery for different crises requires 
considering characteristics of both crises and imagery (Marx & Goward, 2013). Table 1 lists 
common research topics and the selection of satellite imagery from the most literature 
published from 2015 to 2021. The satellite imagery in Table 1 includes four categories that are 
optical imagery, synthetic-aperture-radar (SAR) imagery, nighttime light imagery, and the 
combination of multiple types of imagery. General characteristics of imagery, such as spatial 
resolution and revisit days, could be found in Table 2. Explanations of abbreviations in Table 
1 and Table 2 could be found in Table 3.  

Table 1: The selection of satellite imagery in past research 

Type  Research topic Sensors Reference 

Optical 
satellite 
imagery 

LCLU change caused 
by refugee/IDP 

camps  
 

Quickbird, WorldView‐
2, Pléiades‐1A 

 (Rossi et al., 2019) 

SPOT-4, IKONOS, 
QuickBird 

 (Spröhnle, Kranz, Schoepfer, 
Moeller, & Voigt, 2016) 

Sentinel-2 
 (Bernard, Aron, Loy, Muhamud, 

& Benard, 2020) 

Landsat-5, Landsat-7, 
Landsat-8 

 (Alayyash, 2017; Hossain, 
Labib, & Patwary, 2018; Lu, 
Koperski, Kwan, & Li, 2020; 

Quinn et al., 2018; Ren, Calef, 
Durieux, Ziemann, & Theiler, 
2020; Rossi et al., 2019) 

 

 

MODIS 
 (Maystadt, Mueller, Van Den 
Hoek, & Van Weezel, 2020) 

 

Vegetation cover 
and urban LST 

change caused by 
the influx of 
refugees/IDPs 

Landsat-5, Landsat-8 
 (Rashid, Hoque, Esha, Rahman, 
& Paul, 2021; Shatnawi & Abu 

Qdais, 2019) 
 

Detecting  
dwellings of 
refugee camps 

QuickBird, WorldView-
2 

 (Tiede, Krafft, Füreder, & 
Lang, 2017) 

 

WorldView-3 
 (Ghorbanzadeh, Tiede, Dabiri, 

Sudmanns, & Lang, 2018) 
 

GeoEye-1, Pléiades- 
1A 

 (Jenerowicz, Wawrzaszek, 
Krupinski, Drzewiecki, & 
Aleksandrowicz, 2019) 

 

WorldView-2  (Lu et al., 2020)  

GeoEye-1, WorldView-2 
 (Ghorbanzadeh, Tiede, Wendt, 

Sudmanns, & Lang, 2021) 
 

Dwelling 
infrastructure 
change detection 
for refugee/IDP 

camps 

GeoEye-1, QuickBird, 
Worldview-1, 
Worldview-2, 
Worldview-3 

 (Tomaszewski, Tibbets, Hamad, 
& Al-Najdawi, 2016) 
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Dwelling change 
monitoring for 
refugee camps 

Sentinel-2,  
(WorldView-2 and 

WorldView-3 used for 
comparison) 

 (Wendt, Lang, & Rogenhofer, 
2017) 

 

LCLU change caused 
by conflicts/wars 

Sentinel-2 
(Hassan, Smith, Walker, Rahman, 

& Southworth, 2018)  
 

Landsat-5, Landsat-8  (Al-husban & Ayen, 2020)  

Pléiades-1A, Landsat-
8, Landsat-5 

 (Aung, 2021)  

Village burnings 
caused by 

conflicts/wars 

 CubeSat 3U (Planet 
Dove) 

 (Marx, Windisch, & Kim, 2019)  

Satellite-derived 
drought indicators 
for humanitarian 
applications 

MODIS  (Enenkel et al., 2016)  

SAR 

Refugee camp sizes 
and their 

environmental 
impacts 

ALOS-2, TerraSAR-X, 
RADARSAT-2 

 (Trinder, 2020)  

Environmental 
change around 

refugee/IDP camps 

 
ALOS PALSAR, ALOS-2, 

(Landsat-7 and 
Landsat-8 used for 

comparison) 

 
 (Braun & Hochschild, 2017) 

 

 

ERS-2, Sentinel-1 
 (Braun, Lang, & Hochschild, 

2016) 
 

Impacts of refugee 
camps on land 

surface elevation 
Sentinel-1 

 (Braun, Höser, & Delgado 
Blasco, 2020) 

 

Change detection 
of refugee camps 

TerraSAR-X  (Braun, 2020)  

Nighttime 
light 

products 

Detecting areas 
under conflicts 

DMSP-OLS 
 (Coscieme, Sutton, Anderson, 

Liu, & Elvidge, 2017) 
 

DMSP-OLS, VIIRS  (Jiang, He, Long, & Liu, 2017)  

City light 
dynamics of human 
settlements during 

conflicts 

DMSP-OLS, VIIRS  (Li, Li, Xu, & Wu, 2017)  

Combination 
of multiple 
types of 
satellite 
imagery 

Land cover 
classification 

around refugee/IDP 
camps 

Sentinel-1, Sentinel-
2 

 (Braun et al., 2016)  

Detecting 
dwellings of 
refugee camps 

WorldView-2, 
TerraSAR-X 

 (Sprohnle, Fuchs, & Aravena 
Pelizari, 2017) 

 

Pléiades, TerraSAR-X  (Sprohnle et al., 2017)  

Environmental 
changes caused by 
refugee/IDP camps 

ALOS-2, Sentinel-1, 
SRTM 

 (Braun, Fakhri, & Hochschild, 
2019) 

 

Sentinel-1, Sentinel-
2 

  (Fakhri & Gkanatsios, 2021)  

Pléiades-1A, VIIRS 
(Aung, Overland, Vakulchuk, & 

Xie, 2021) 
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Dwelling 
destruction caused 
by conflicts/wars 

GeoEye-1, WorldView-
2, QuickBird 

  (Knoth & Pebesma, 2017)  

Detecting 
anomalous fire and 

destroyed 
settlements 

MODIS, VIIRS, 
Sentinel-1 

(Ren et al., 2020)  

Analyzing hazards 
and risks around 
refugee/IDP camps 

Landsat-8, SRTM 
 (Ahmed, Firoze, & Rahman, 

2020) 
 

Based on summarization in Table 1, there are some common rules for selecting satellite 
imagery for humanitarian applications. Firstly, most research on LCLU change detection 
caused by the influx of refugees/IDPs or conflicts typically selected MSR satellite imagery. 
The selection is mainly because LCLU change detection usually requires large spatial scales 
and long-term series imagery. Landsat-5, together with Landsat-7 and Landsat-8, can provide 
long-term series imagery from 1984 until now. Thus, Landsat imagery is widely used for such 
research. Though in many cases, the performance of Sentinel-2 is better than Landsat imagery 
in LCLU classification (Sekertekin, Marangoz, Akcin, & Faculty, 2017). Sentinel-2 imagery is 
not broadly used for such research, possibly due to its short archived history. Most research 
on dwelling detection of refugee/IDP camps selected HSR/VHSR satellite imagery. Due to 
the small sizes of refugee/IDP camps, MSR imagery usually cannot capture details of 
dwellings. The applications of optical imagery usually are hacked by cloud covers.  SAR 
imagery can reduce the influences of cloud covers and, thus, also plays a vital role in 
humanitarian applications (Braun et al., 2016). In recent years, the combination of optical 
imagery, SAR imagery, together with other data, has been paid more and more attention. These 
studies aim to make use of the advantages of different imagery to improve the performance of 
RS-based humanitarian applications.  

3 Under-explored satellite imagery for humanitarian applications 

In the past few decades, the development of satellite sensors is quite fast. Table 2 presents the 
general characteristics of currently common optical satellite imagery that may help researchers 
select the imagery for related research quickly.  

In 2014, CNES announced that SPOT archive imagery older than five years is open for non-
commercial purposes (Witmer, 2015). It may be valuable to combine satellite imagery from 
SPOT-5 (starting from 2002 to 2015) and Sentinel-2 (starting from 2015 until now) for LCLU 
change detection caused by refugees/IDPs or conflicts. The fusion may outperform Landsat 
imagery due to higher spatial resolution. Up to now, no similar studies have combined these 
two datasets specifically for LCLU change detection for humanitarian applications.  

As shown in Table 2, the revisit days of several satellites can be within one day. Among them, 
SkySat and Jilin-1-Smart video can revisit the same location more than 5 times per day. This 
very high temporal resolution may be helpful for humanitarian applications, especially for 
emergent situations such as earthquakes and flooding. Compared to other traditional satellites, 
the size of these satellites is usually much smaller. Thus, they are called small satellites 
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(smallsats). Usually, the cost of smallsat imagery is lower than other traditional commercial 
satellite imagery such as WorldView (Datta, 2018). Currently, only one research on RS-based 
humanitarian applications used smallsat imagery (Planet Dove). It is proved that the smallsat 
imagery has high potentials for long-term monitoring of village burning in Myanmar (Marx et 
al., 2019). Hence, smallsat imagery may be valuable for research on humanitarian applications 
that require a high temporal resolution. 

Table 2: General characteristics of common optical satellite imagery (European Space Agency, 2021) 

Provider Sensor 

Spatial resolution / 
m and Spectral 
information 

Revisit 
days 

Availability 

PAN RGB+NIR 

Digital 
Globe 

IKONOS 0.8 3.2 3 1999-2015 

QuickBird 0.6 2.6 3 2001-2015 

GeoEye-1 0.5 1.8 3 2008-now 

WorldView-1 0.5  2 2007-now 

WorldView-2 0.5 0.5 2 2009-now 

WorldView-3 0.3 1.2 1 2014-now 

WorldView-4 (GeoEye-2) 0.3 1.2 <1 2016-2019 

CNES 

Pleiades-1A, 1B 0.5 2 <1 2011-now 

SPOT4 10 20 2 - 3 1998-2013 

SPOT5 2.5-5 10 2 - 3 2002-2015 

SPOT6 1.5 6 1 2012-now 

SPOT7 1.5 6 1 2014-now 

Planet 
Lab 

SkySat (1,2,3,4,5,6,7) 0.8 1 
7 times/ 

day 
2013-now 

PlanetScope  3 1 2009-now 

RapidEye (1,2,3,4,5)   5 5.5 2008-2020 

DSC TripleSat 0.8 3.2 1 2015-now 

CAST Gaofen-2 0.8 3.2 5 2014-now 

CGST 

Jilin-1-Optical 0.7 2.9 3.3 2015-now 

Jilin-1-Hyperspectral  5 2 - 3 2019-now 

Jilin-1-Smart video   
1.1 (only 

RGB) 
5-7 

times/day 
2017-now 

ESA Sentinel-2   10 5 2015-now 

NASA 

Landsat-5 TM  30 16 1984-2013 

Landsat-7 ETM+ 15 30 16 1999-now 

Landsat-8 OLI-TIRS 15 30 16 2013-now 

MODIS  250/500/1000 1-2 1999-now 
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Table 3: Explanations of abbreviations 

Abbreviation Explanation 

CAST China Association for Science and Technology (China) 

CGST Chang Guang Satellite Technology Company (China) 

CNES National Centre for Space Studies (France) 

DSC Dhawan Space Centre (India) 

DMSP-OLS 
The Defence Meteorological Program 

Operational Line-Scan System 

MODIS Moderate Resolution Imaging Spectroradiometer  

PAN Panchromatic 

SRTM Shuttle Radar Topography Mission 

RGB+NIR Red, Green, Blue, Near-Infrared 

VIIRS Visible Infrared Imaging Radiometer Suite  

4 Conclusion and Outlook 

 This paper first presents satellite imagery selection in numerous research on RS-based 
humanitarian applications from 2015 to 2021. It can be observed that MSR satellite imagery is 
usually selected for LCLU change detection caused by conflicts or refugees/IDPs. For 
detecting dwellings of refugee/IDP camps, most research chose HSR/VHSR satellite imagery 
due to the small size of camps. In addition to optical imagery, SAR imagery also plays an 
important role in humanitarian applications. Recently, quite a lot of research combined 
multiple types of imagery to explore more possibilities of improving RS-based humanitarian 
applications. Then, this paper displays some general characteristics of current optical satellite 
imagery, as shown in Table 2. This summarization may help researchers have a quick 
understanding of existing optical satellite imagery, and thus, be helpful for related research. At 
last, with some latest development in satellite imagery, the paper provides two suggestions for 
future research. The first suggestion is to combine SPOT-5 and Sentinel-2 data to create a 
long-term-series dataset that may help LCLU change detection for humanitarian applications. 
The second suggestion is considering smallsat imagery that usually has a lower cost and a 
higher temporal resolution. The smallsat imagery may be helpful for research or applications 
that require very high temporal frequency, such as natural disasters.  
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