Planetary Radio Emissions VII, pp. 445-454, 2011/12/28
Proceedings of the 7th International Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Graz, Austria, September 15–17, 2010
When studying microwave emission of active regions on the Sun, an effect of parametric resonance between 5-min velocity oscillations in the solar photosphere and sound oscillations of coronal magnetic loops modulating the microwave emission has been discovered for the first time. The effect shows itself as simultaneous excitation in coronal magnetic loop oscillations with periods 5, 10, and 3 min, which correspond to the pumping frequency, subharmonic, and the first upper frequency of parametric resonance. The parametric resonance can serve as an effective channel of transporting the energy of photospheric oscillations into the upper layers of the solar atmosphere. The energy of acoustic waves excited in a coronal magnetic loop, rate of dissipation of acoustic waves, and rate of heating of the coronal plasma are determined. The maximum temperature predicted for the apex of the loop is calculated as a function of velocity of photospheric oscillations, length of the loop, and electric current in the loop. It is shown that the mechanism proposed can explain the origin of quasi-stationary X-ray loops with temperatures of 3-6 MK. The lengths of these loops are resonant for acoustic waves excited by the 5-min photospheric oscillations. The use of the proposed mechanism to explain heating of the X-ray loops expected to be on stars of late spectral types is discussed.