Bild

Study of the Kinematics, Driver of the Global Moreton Wave Observed on 28-10-2003 (abstract)

    N. Muhr, B. Vrsnak, M. Temmer, A. M. Veronig, J. Magdalenic

Planetary Radio Emissions VII, pp. 473-474, 2011/12/28

Proceedings of the 7th International Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Graz, Austria, September 15–17, 2010

doi: 10.1553/PRE7s473

€  79,– 

incl. VAT

PDF
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/PRE7s473


Abstract

We analyze evolution and kinematics of the fast, globally propagating Moreton wave of 2003 October 28 associated with the extreme X17.2 solar flare/CME event. This Moreton wave is distinct due to its azimuthal span of ~ 360 deg. Thus its characteristics are studied in different propagation directions, and compared with the associated phenomena: EIT wave, coronal dimmings, radio type II burst, fast halo CME, and flare. The sectoral analysis give mean velocity values in the range of v ~ 900 - 1000 kms-1; two sectors show wave deceleration. Analyzing the perturbation profiles indicates an amplitude growth followed by amplitude weakening and broadening, which is consistent with a disturbance first driven and then evolving into a freely propagating wave. We find two ”radiant points” for the Moreton wave fronts on opposite east-west edges of the source region, roughly co-spatial with the bipolar coronal dimming. Type II bursts are known as remote signatures of shocks propagating through solar atmosphere. Thus, the co-spatiality of the associated radio type II burst source and the first Moreton wave fronts indicate that the wave is an initially shocked fast-mode wave launched from an extended region. These findings indicate that the wave is initiated by the CME expanding flanks.