Bild

Jovian decametric emission with the Long Wavelength Array station 1 (LWA1)

    T. E. CLARKE, C. A. HIGGINS, M. IMAI, K. IMAI

Planetary Radio Emissions VIII, pp. 31-44, 2018/08/14

Proceedings of the 8th International Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Seggauberg near Graz, Austria, October 25–27, 2016

doi: 10.1553/PRE8s31

doi: 10.1553/PRE8s31

€  82,– 

incl. VAT

PDF
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/PRE8s31



doi:10.1553/PRE8s31

Abstract

The Long Wavelength Array Station 1 (LWA1) is located in central New Mexico, USA. It consists of 256 pairs of ‘droopy–dipole’ antennas operating between 10 and 88 MHz. The antennas are distributed in a pseudo–random layout across a 110 m × 100 m region. Observations with the LWA1 are based on peer reviewed proposals for open–skies observing time. LWA1 is an excellent planetary radio emission instrument due to its sensitivity and the low radio frequency interference environment where it is located. We have undertaken several Jovian observing campaigns using the LWA1. We show that LWA1 data provide excellent spectral detail in Jovian decametric emission such as simultaneous left hand circular (LHC) and right hand circular (RHC) polarized Io-related arcs and source envelopes, modulation lane features, S-bursts structures, narrow band N-events, and apparent interactions between S-bursts and N-events. The start of the LHC Io-C source region was traced to earlier longitudes than typically found in the literature. Early LWA1 observations revealed a wealth of Io-D emission, including detection of rare S-bursts during an Io-D event. These initial results have led to new programs to explore the spectral characteristics of Io-D events, investigate modulation lanes of Io-B/Io-C events and examine the beaming structure of S-bursts combining LWA1, NDA, and URAN2. In addition, LWA1 is one of the ground-based support facilities for the NASA JUNO1 mission.