Bild

Insight into atmospheres of extrasolar planets through plasma processes

    CH. HELLING, I. VORGUL

Planetary Radio Emissions VIII, pp. 335-344, 2018/08/16

Proceedings of the 8th International Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Seggauberg near Graz, Austria, October 25–27, 2016

doi: 10.1553/PRE8s335

doi: 10.1553/PRE8s335

€  82,– 

incl. VAT

PDF
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/PRE8s335



doi:10.1553/PRE8s335

Abstract

Extrasolar planets appear in a chemical diversity unseen in our own solar system. Despite their atmospheres being cold, continuous and transient plasma processes do affect these atmosphere where clouds form with great efficiency. Clouds can be very dynamic due to winds for example in highly irradiated planets like HD189733b, and lightning may emerge. Lightning, and discharge events in general, leave spectral fingerprints, for example due to the formation of HCN. During the interaction, lightning or other flash–ionization events also change the electromagnetic field of a coherent, high energy emission, which results in a characteristic damping of the initial, unperturbed (e.g. cyclotron emission) radiation beam. We summarize this as ’recipe for observers’. External ionization by X-ray or UV e.g. from within the interstellar medium or from a white dwarf companion will introduce additional ionization leading to the formation of a chromosphere. Signatures of plasma processes therefore allow for an alternative way to study atmospheres of extrasolar planets and brown dwarfs.