Bild

Characteristics of type III radio bursts and solar S bursts

    D. E. MOROSAN, P. T. GALLAGHER

Planetary Radio Emissions VIII, pp. 357-368, 2018/08/16

Proceedings of the 8th International Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Seggauberg near Graz, Austria, October 25–27, 2016

doi: 10.1553/PRE8s357

doi: 10.1553/PRE8s357

€  82,– 

incl. VAT

PDF
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/PRE8s357



doi:10.1553/PRE8s357

Abstract

The Sun is an active source of radio emission which is often associated with the acceleration of electrons arising from processes such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous solar S bursts (where S stands for short) and storms of type III radio bursts have been observed, that are not directly relates to flares and CMEs. Here, we expand our understanding on the spectral characteristic of these two different types of radio bursts based on observations from the Low Frequency Array (LOFAR). On 9 July 2013, over 3000 solar S bursts accompanied by over 800 type III radio bursts were observed over a time period of ∼8 hours. The characteristics of type III radio bursts presented here are consistent with previous studies. S bursts are shown to be different compared to type III bursts: they show narrow bandwidths, short durations and drift rates of about 1/2 the drift rate of type III bursts. Both type III bursts and solar S bursts occur in a region in the corona where plasma emission is the dominant emission mechanism as determined by data constrained density and magnetic field models.