![]() |
![]() |
GI_Forum 2019, Volume 7, Issue 2Journal for Geographic Information Science
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
GI_Forum 2019, Volume 7, Issue 2, pp. 60-72, 2019/12/11
Journal for Geographic Information Science
Remote sensing methods for forest monitoring are evolving rapidly thanks to recent advances in Unmanned Aerial Vehicle technology and digital photogrammetry. Photogrammetric point clouds allow the non-destructive derivation of individual tree parameters at a low cost. The fusion of aerial and terrestrial photogrammetry for creating full-tree point clouds is of utility for forest research, as tree volume could be assessed more economically and efficiently than by traditional methods. However, this is challenging to implement due to difficulties with co-registration and issues of occlusion. This study explores the possibility of using spherical targets typically used for Terrestrial Laser Scanning to accomplish the co-registration of UAV-based and terrestrial photogrammetric datasets. Results show a full-tree point cloud derived from UAV oblique imagery in combination with terrestrial imagery. Despite issues of noise produced from the sky in terrestrial imagery, the methodology is promising for aerial and terrestrial point cloud fusion.
Keywords: point cloud fusion, UAV, terrestrial imagery, photogrammetry