![]() |
![]() |
GI_Forum 2017, Volume 5, Issue 1Journal for Geographic Information Science
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
GI_Forum 2017, Volume 5, Issue 1, pp. 126-140, 2017/06/30
Journal for Geographic Information Science
The paper presents a Linked Data approach within a manufacturing organization to foster sharing, reusing, integrating and the collaborative analysis of datasets originating from different business units and heterogeneous data sources. The paper relies on a semiconductor company that serves as case study. The authors elaborate on manufacturing data and their representation in a spatially-enabled graph database, and as Linked Data based on an ontology describing the indoor space and production processes. A graph database enables data sharing as well as the semantic search and retrieval of data utilizing web-based services. The results present the analysis of historic, future and spatio-temporal data as well as the analysis of similarities of semantically-annotated linked manufacturing data.
Keywords: linked manufacturing data, semantic annotations, smart manufacturing, graph databases