Adrijana Car – Thomas Jekel – Josef Strobl – Gerald Griesebner (Eds.)


GI_Forum 2017, Volume 5, Issue 2

Journal for Geographic Information Science


ISSN 2308-1708
Online Edition

ISBN 978-3-7001-8251-1
Online Edition
doi:10.1553/giscience2017_02_
GI_Forum 2017, Volume 5,  Issue 2 
 
Open access


Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3402-3406, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at

GI_Forum publishes high quality original research across the transdisciplinary field of Geographic Information Science (GIScience). The journal provides a platform for dialogue among GI-Scientists and educators, technologists and critical thinkers in an ongoing effort to advance the field and ultimately contribute to the creation of an informed GISociety. Submissions concentrate on innovation in education, science, methodology and technologies in the spatial domain and their role towards a more just, ethical and sustainable science and society. GI_Forum implements the policy of open access publication after a double-blind peer review process through a highly international team of seasoned scientists for quality assurance. Special emphasis is put on actively supporting young scientists through formative reviews of their submissions. Only English language contributions are published.

Starting 2016, GI_Forum publishes two issues a Year.
Joumal Information is available at: GI-Forum
GI_Forum is listed on the Directory of Open Access Journals (DOAJ)

Bestellung/Order


GI_Forum 2017, Volume 5, Issue 2

ISSN 2308-1708
Online Edition

ISBN 978-3-7001-8251-1
Online Edition



Send or fax to your local bookseller or to:

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2,
Tel. +43-1-515 81/DW 3402-3406, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: bestellung.verlag@oeaw.ac.at
UID-Nr.: ATU 16251605, FN 71839x Handelsgericht Wien, DVR: 0096385

Bitte senden Sie mir
Please send me
 
Exemplar(e) der genannten Publikation
copy(ies) of the publication overleaf


NAME


ADRESSE / ADDRESS


ORT / CITY


LAND / COUNTRY


ZAHLUNGSMETHODE / METHOD OF PAYMENT
    Visa     Euro / Master     American Express


NUMMER

Ablaufdatum / Expiry date:                      

    I will send a cheque           Vorausrechnung / Send me a proforma invoice
 
DATUM, UNTERSCHRIFT / DATE, SIGNATURE

BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code
Permanent QR-Code of DOI
doi:10.1553/giscience2017_02_s173


Permanent QR-Code of DOI
doi:10.1553/giscience2017_02_s173



Thema: geography
Adrijana Car – Thomas Jekel – Josef Strobl – Gerald Griesebner (Eds.)


GI_Forum 2017, Volume 5, Issue 2

Journal for Geographic Information Science


ISSN 2308-1708
Online Edition

ISBN 978-3-7001-8251-1
Online Edition
doi:10.1553/giscience2017_02_
GI_Forum 2017, Volume 5,  Issue 2 
 
Open access


Samuel Kurath, Raphael Das Gupta, Stefan Keller
PDF Icon  OSMDeepOD - Object Detection on Orthophotos with and for VGI ()
S.  173 - 188
doi:10.1553/giscience2017_02_s173

Verlag der Österreichischen Akademie der Wissenschaften


doi:10.1553/giscience2017_02_s173
Abstract:
A great deal of the interesting information captured by aerial imagery is as yet unused, even though it could help to enrich maps and improve navigation. For this information to be made available, objects such as buildings or roads need to be recognized on images. This is laborious to do entirely manually, but non-trivial to perform computationally. In this paper, we present an automated method for detecting objects of a chosen class (pedestrian crosswalks) on orthophotos, a method which can be adapted for various classes of objects. The method uses a supervised machine-learning approach with a deep convolutional neural network. We re-trained the final layer of a pre-trained neural network using specific imagery and crowdsourced geographic information from the OpenStreetMap (OSM) project. The result is an easily enhanceable and scalable application which is able to search for objects in aerial imagery. We achieved an accuracy of well over 95% for crosswalks and promising preliminary results for roundabouts.

Keywords:  visual recognition, deep convolutional neural networks, aerial imagery, VGI, parallelism
Published Online:  2017/12/13 12:19:14
Object Identifier:  0xc1aa5576 0x00373589

GI_Forum publishes high quality original research across the transdisciplinary field of Geographic Information Science (GIScience). The journal provides a platform for dialogue among GI-Scientists and educators, technologists and critical thinkers in an ongoing effort to advance the field and ultimately contribute to the creation of an informed GISociety. Submissions concentrate on innovation in education, science, methodology and technologies in the spatial domain and their role towards a more just, ethical and sustainable science and society. GI_Forum implements the policy of open access publication after a double-blind peer review process through a highly international team of seasoned scientists for quality assurance. Special emphasis is put on actively supporting young scientists through formative reviews of their submissions. Only English language contributions are published.

Starting 2016, GI_Forum publishes two issues a Year.
Joumal Information is available at: GI-Forum
GI_Forum is listed on the Directory of Open Access Journals (DOAJ)



Vergessen Sie nicht das Login am Server, wenn Sie auf Kapitel zugreifen wollen, die nicht allgemein zugänglich sind.
Links zu diesen Dokumenten werden erst nach dem Login sichtbar.
Do not forget to Login on the server if you want to access chapters that are not freely accessible.
Links to these documents will only be visible after logon.

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3402-3406, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at