• Adrijana Car – Thomas Jekel – Josef Strobl – Gerald Griesebner (Eds.)

GI_Forum 2018, Volume 6, Issue 1

Journal for Geographic Information Science

Bild


Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at

GI_Forum publishes high quality original research across the transdisciplinary field of Geographic Information Science (GIScience). The journal provides a platform for dialogue among GI-Scientists and educators, technologists and critical thinkers in an ongoing effort to advance the field and ultimately contribute to the creation of an informed GISociety. Submissions concentrate on innovation in education, science, methodology and technologies in the spatial domain and their role towards a more just, ethical and sustainable science and society. GI_Forum implements the policy of open access publication after a double-blind peer review process through a highly international team of seasoned scientists for quality assurance. Special emphasis is put on actively supporting young scientists through formative reviews of their submissions. Only English language contributions are published.

Starting 2016, GI_Forum publishes two issues a Year.
Joumal Information is available at: GI-Forum
GI_Forum is listed on the Directory of Open Access Journals (DOAJ)

Bestellung/Order


Bild
GI_Forum 2018, Volume 6, Issue 1

ISSN 2308-1708
Online Edition

ISBN 978-3-7001-8359-4
Online Edition



Send or fax to your local bookseller or to:

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2,
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: bestellung.verlag@oeaw.ac.at
UID-Nr.: ATU 16251605, FN 71839x Handelsgericht Wien, DVR: 0096385

Bitte senden Sie mir
Please send me
 
Exemplar(e) der genannten Publikation
copy(ies) of the publication overleaf


NAME


ADRESSE / ADDRESS


ORT / CITY


LAND / COUNTRY


ZAHLUNGSMETHODE / METHOD OF PAYMENT
    Visa     Euro / Master     American Express


NUMMER

Ablaufdatum / Expiry date:  

    I will send a cheque           Vorausrechnung / Send me a proforma invoice
 
DATUM, UNTERSCHRIFT / DATE, SIGNATURE

BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
Bild

Automated Quality Assessment of (Citizen) Weather Stations

    Julian Bruns, Johannes Riesterer, Bowen Wang, Till Riedel, Michael Beigl

GI_Forum 2018, Volume 6, Issue 1, pp. 65-81, 2018/06/22

Journal for Geographic Information Science

doi: 10.1553/giscience2018_01_s65

doi: 10.1553/giscience2018_01_s65


PDF
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/giscience2018_01_s65



doi:10.1553/giscience2018_01_s65

Abstract

Today, we have access to a vast amount of weather, air quality, noise or radioactivity data collected by individuals around the globe. This volunteered geographic information often contains data of uncertain and of heterogeneous quality, in particular when compared to official in-situ measurements. This limits their application, as rigorous, work-intensive data-cleaning has to be performed, which reduces the amount of data and cannot be performed in real-time. In this paper, we propose a method to evaluate dynamically learning the quality of individual sensors by optimizing a weighted Gaussian process regression using an evolutionary algorithm. The evaluation was carried out in south-west Germany in August 2016 for temperature data from the Wunderground network and the Deutsche Wetter Dienst (DWD), in total 1,561 stations. Using a 10-fold cross-validation scheme based on the DWD ground truth, we show significant improvements for the predicted sensor readings: we obtained a 12.5% improvement on the mean absolute error.

Keywords: crowdsourcing air temperature; data quality assessment; Evolutionary Learning; Gaussian process regression; volunteered geographic information.