![]() |
![]() |
GI_Forum 2018, Volume 6, Issue 1Journal for Geographic Information Science
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
GI_Forum 2018, Volume 6, Issue 1, pp. 105-116, 2018/06/22
Journal for Geographic Information Science
Precision viticulture (PV) requires the use of technologies that can detect the spatial and temporal variability of vineyards and, at the same time, allow useful information to be obtained at sustainable costs. In order to develop a cheap and easy-to-handle operational monitoring scheme for PV, the aim of this work was to evaluate the possibility of using Sentinel-2 multispectral images for long-term vineyard monitoring through the Normalized Difference Vegetation Index (NDVI). Vigour maps of two vineyards located in northeastern Italy were computed from satellite imagery and compared with those derived from UAV multispectral images; their correspondence was evaluated from qualitative and statistical points of view. To achieve this, the UAV images were roughly resampled to 10 m pixel size in order to match the spatial resolution of the satellite imagery. Preliminary results show the potential use of open source Sentinel-2 platforms for monitoring vineyards, highlighting links with the information given in the agronomic bulletins and identifying critical areas for crop production. Despite the large differences in spatial resolution, the results of the comparison between the UAV and Sentinel-2 data were promising. However, for long-term vineyard monitoring at territory scale, further studies using multispectral sensor calibration and groundtruth data are required.
Keywords: Normalized Difference Vegetation Index, remote sensing, precision agriculture