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Abstract 

This paper summarizes the research conducted to improve the automatic generalization of 

man-made water networks for topographic maps by context-dependent pruning (Altena, 

2014). The aim of this study was to improve existing thinning methods for map 

generalization by accounting for landscape types. The results show that it is possible to 

improve the thinning of water networks by taking into account separate landscape types. 

On a more abstract level, the study delivers a methodology for the pruning of man-made 

networks with regard to landscape typology. In addition, it provides a method for 

evaluating the quality of generalization results for networks. First, previous research on both 

thinning and evaluation of thinning results is described. Secondly, a selection of existing 

algorithms are implemented and evaluated by several experiments: identification of 

landscape variation based on feature morphology and humidity; selection of 

representative test areas; and geometric network improvement. Results show that the 

connectivity of the network can be significantly increased. This is important to obtain better 

generalization results. The final experiments investigated the effectiveness on various 

landscape types of three different thinning algorithms. The results are evaluated in terms of 

the amount of thinning, the resemblance of the results to the input data, and the deviation 

in connectivity. The findings of this research can be used to improve the thinning of artificial 

networks by applying a customized thinning method to each unique landscape type. In 

addition, the proposed metrics to measure the effectivity of thinning algorithms – 

reduction, resemblance and connectivity – have been proved to be appropriate criteria 

for the comparison of results of alternative thinning approaches. 
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1 Introduction 

The issue of automated generalization has resounded for decades in the cartographic and 
academic worlds and has been seen as the 'holy grail' of cartography (Anderson-Tarver et al., 
2011). Recently, there have been several automated generalization achievements, such as the 
automated generalization of OS MasterMap to OS VectorMap District in Great Britain 
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(Revell et al., 2005), and the replacement of the manual generalization production line by a 
fully automated workflow, at the Dutch Kadaster, of the 1:50k map series (Stoter et al., 
2014). Despite these successes, it is also acknowledged that further development is necessary. 
One area where further development is needed is the pruning of man-made water networks, 
because prevailing water-thinning algorithms do not deliver satisfying results for man-made 
water networks.  

Generalization 

Foundational to this research is the concept of generalization. This concept is best explained 
by visual examples.  

 

Figure 1: A fragment of a 25k map (TOP25raster 12A, 

CC-BY Kadaster) 

 

Figure 2: (a) The same 25k map 

fragment reduced in scale; (b) The 

same geographical area, but 

presented as a generalized 50k map 

fragment (TOP50raster 12W, CC-BY 

Kadaster)  

Figure 1 is of a small portion of the most detailed topographic map in the Netherlands. It 
shows individual houses and trees, watercourses and parcels of land.  

Often, this amount of detail is not necessary, or is even distracting, and an overview map is 
needed. One solution for creating an overview map is to simply shrink the original image by 
zooming out. However, this will create legibility problems (see Figure 2a).  

To tackle these issues, it is common mapmakers’ practice to re-create a map by generalizing 
the input data for portrayal at a smaller scale. In the example above (compare the images in 
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Figure 2), the individual houses are replaced by built-up areas, and the width of the roads is 
exaggerated to improve legibility. In performing generalization, operators (Kraak, 2010; 
Stanislawski et al., 2014) such as simplification, selection, exaggeration, typification and other 
strategies are used to create a meaningful map at a smaller (less detailed) scale. 

Automation of generalization 

Until recently, generalization was considered a manual craft. It was doubted whether it would 
be possible to replace the human cartographer by a computer: “After more than three 
decades of effort, it is still a question whether generalization can be formally defined, and 
whether automated generalization can be realized” (Peng, 1997, p. i). 

Recently, there have been several successes. Burghardt et al. (2014), Stoter (2010a, 2010b), 
and Mackaness et al. (2007) can be consulted for an overview of the state-of-the-art up to 
2014. The research presented in this article takes the Kadaster process (Stoter et al., 2014) as 
a case study. Although acceptable results have been achieved (evidenced by the willingness to 
fully replace the manual generalization workflow by an automatic procedure), one of the 
remaining issues is the thinning of the Dutch water network.  

Problem description 

The input data for automatic generalization is produce for a map at a scale of 1:10.000. 
Hydrography is represented as lines and polygons, depending on the width of the waterways. 
Figure 3 shows an example of the input data.  

 

Figure 3: Ungeneralized input data for the dutch hydro network (Blue lines represent waterlines, black 

lines dry ditches. Waterlines are of GREATER importance than ditches) 
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After applying commonly-used thinning algorithms, the resulting data for this area looks as 
in Figure 4. 

 

Figure 4: Current thinning results of the same area. disappearance of features is indicated by red oval 

Many features have disappeared, as was intended. However, two issues remain: the loss of 
resemblance with the input data structure, and the neglect of the density variance in water 
networks. 

Research aim and questions 

This research aims to “deliver a methodology for pruning of artificial manmade networks 
with regard to landscape typology and to research methods to evaluate the quality of 
generalization results” (Altena, 2014, p. 20), in order to overcome the issues identified. 
Therefore, the research needs to answer two closely-related research questions: (1) What is a 
suitable methodology for pruning artificial man-made networks which takes landscape 
typology into account? (2) How can thinning results be evaluated objectively? 

This paper is structured as follows: in section 2, answers to the research questions are 
obtained by studying the literature, starting with a brief overview of thinning algorithms, 
which is followed by a summary of evaluation approaches. Section 3 discusses the 
implementation of the concepts found in the literature and their application to test data. It 
also proves the added value of improved connectivity for the thinning results and discusses 
the application of new evaluation metrics. Finally, section 4 discusses the results and suggests 
subjects for further research. 
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2 Literature Review 

This section describes previous work on the two main issues of this research: the thinning of 
water networks and the evaluation of thinning results. 

Thinning algorithms 

Several approaches for thinning networks already exist. They can be categorized as semantic- 
stroke- or mesh-based. 

Semantic-based selection uses attribute information for the selective omission of network 
features. For a hydrographical network, examples are: type of watercourse (hierarchical order 
of Dutch drainage system: trench, watercourse 1, watercourse 2), the width category of the 
object, whether part of main drainage, etc. The main drawback of this approach is that it 
does not guarantee that topological and geometrical structures are retained (Liu et al., 2010). 

Stroke-based selection is a two-step method to select individual network objects based on 
their importance for keeping essential network characteristics. It derives its name from the 
idea of a ‘stroke’, which Thomson & Richardson (1999, p. 4) define as “a curvilinear segment 
that can be drawn in one smooth movement and without a dramatic change in style”. The 
underlying assumption is that “traffic routes are built as curvature-poor as possible” (Heinzle 
et al., 2005, p. 3). The main principles of stroke-based selection are to keep ‘good 
continuation’ and ‘similarity of characteristics’.  

A network structure is broken down into topological edges and nodes. The relative 
importance of each edge within the network is identified by aggregating the individual 
elements into larger ones based on one or more shared characteristics and predefined rules 
(i.e. which characteristics are allowed to be dissolved with higher-order characteristics). The 
second step is performing a selection, using the identified hierarchy and a predefined 
threshold. 

Finally, the mesh-based approach (Chen et al., 2009; Edwardes & Mackaness, 2000) focuses 
on density. It centres on the concept of a mesh, an area fully enclosed by edges (i.e. roads). 
The density of a theme (i.e. a road or a waterway network) can be calculated by the 
construction of meshes from the individual objects of the theme. 

In this study, experiments were performed using the authors’ own implementations of a 
stroke-based algorithm and a mesh-based algorithm. The commercial implementation by 
Esri® in the Thin Road Networks tool was also used. 

Evaluation of thinning results 

Besides performing the thinning itself, the other main research problem was: How are these 
results to be evaluated? In the literature, two main metrics to evaluate the quality of the 
thinning can be found: the coefficient of correspondence and the application of network 
statistics. The coefficient of correspondence was first proposed by Stanislawski et al. (2010) 
to assess the amount of network thinning and was implemented by Buttenfield et al. (2013) 
as a raster method. The method compares the results of thinning operations with an existing 
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benchmark dataset and provides statistics to evaluate the consistency of the pruning and 
generalization operations. Another approach to measure the quality of the thinning output 
can be found in the application of network statistics: “In a network database, linear features 
are linked together topologically” (Wong, 2005, p. 304). Two approaches to assess network 
qualities based on statistics can be distinguished. The first approach assesses the connectivity 

of an entire network (γ-index), and the second assesses the accessibility of network elements 

(α-index.) 

Although their applicability for measuring the quality of networks is limited, both the γ- and 

the α-indices are useful to assess the quality of networks (Wong, 2005). They are therefore 
used to compare the network connectivity of the input data with the output data and to 
differentiate the outcomes of several algorithms (Altena, 2014).  

3 Experiments with the Dutch Hydro network 

To improve the results of available thinning algorithms as shown in Figure 4, we propose to 
take landscape types into account when thinning. The whole of this research is based on the 
assumption that generalization and more precisely thinning cannot be carried out as 
individual or discrete units, but should be part of an experimental framework (see Figure 5). 

 
Figure 5: Experimental Framework for thinning of a hydro network 

The experimental framework consists of three phases. The first phase prepares the source 
data for the thinning algorithms. In the second phase, three existing thinning algorithms are 
used to prune the source data. The third and last phase evaluates the results for the 
individual test areas and compares the results for the three algorithms. This evaluation is 
based on three criteria: resemblance, thinning and connectivity. 

Preparation 

The preparation of the data can be split into three distinct activities. First, landscape types 
for the whole of the country are identified. Next, suitable test areas are selected based on the 
landscape types identified. Finally, the connectivity of the water networks in the selected test 
areas is improved. 
 
 

Preparation 

•Landscape 

•Test areas 

•Connectivity 

Thinning 

•Stroke-based 

•Mesh-based 

•Thin Road Network 

Evaluation 

•Network statistics 

•Resemblance 

•Thinning 

•Connectivity 
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Landscape identification 

The first preparatory step analyses landscape. Figure 6–9 exemplify what is meant by 
landscape in the context of hydrography. 

  

Figure 6: The Dutch water network (Wikimedia, 

2012)  
Figure 7: A braided river (O’Beirne, n.d.) 

  

Figure 8: Street network in Barcelona (Alhzeiia, 

2007) 
Figure 9: The Gotthard pass (‘Portal’, 2014) 

Figure 6 is a photograph of part of a typical Dutch water network. One of the characteristics 
of Dutch hydrography is its regular structure. Other landscapes have different types of 
hydrographical structures (see for example Figure 7). The same is true for road networks, as 
is illustrated by Figure 8 and 9. It therefore seems reasonable to consider networks primarily 
according to their landscape characteristics (are they regular, braided or winding?) and to use 
thematic information as supplemental.  

The automated identification of landscapes in the data about hydrography is based on a 
hybrid approach. It first calculates statistics about the humidity of an area based on a 
comparison of the ratio of wet and dry areas. Then it identifies the prevailing morphology of 
waterlines in an area (Altena, 2014, pp. 48–49). These two aspects result in two datasets 
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which indicate the humidity of an area (Figure 10) and give an indication of its prevailing 
morphology (Figure 11). 

 

Figure 10: Humidity per landscape type 
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Figure 11: Feature morphology index (M) per landscape area for all watercourse lines (a) and 

diversified by water type (b–d) 
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These analyses evidence that the existing data set shows enough diversity when we consider 
the morphology of waterline features. As such, it is suitable input data to be used in 
identifying landscape typology. The feature morphology is calculated for the whole dataset 
and this is conflated with the test areas. Next, the smallest test areas (partitions), which are 
completely contained by a single landscape type, are selected. These test areas are used for 
experiments. 

Geometric improvement 

The second important preparatory step is the geometric improvement of the network. In a 
network, connectivity of features is the most important characteristic. Figure 12 shows a 
conceptual visualization of a network.  

 

Dyke, cow dam

Culvert

Road

Perceptual link

Dry ditch, trench

Waterway, 0,5 – 3 metres

Waterway, 3 – 6 metres

Water area
 

Figure 12: Initial topographical situation 

At first glance everything seems to be connected: water areas, waterlines and roads. This is 
easy to perceive for the human eye (compare Figure 13). This is why this kind of network is 
termed a ‘perceptual network’ (Altena, 2014, p. 56). 
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These lines, though interrupted, form a 
perceptually continuous structure

 

Figure 13: perceptual network – an example 

However, when focusing on the waterlines only, a lot of gaps appear in the data. These are 
caused because water polygons and roads are removed from the data. Instead of one closed 
network, four unconnected networks appear to exist (see Figure 14). The human eye sees a 
different network from the one that a computer is able to identify, which is problematic for 
thinning algorithms. 

 

Figure 14: Initial network from waterline elements 

To overcome these problems, the network must be improved by: 

1. addition of cow dykes and culvert features to improve the connectedness of the 
network; 

2. substitution of water polygons by their calculated centrelines and connection to the 
adjacent waterline features to close the network; 

3. addition of virtual elements to close the network at those spots where the human 
eye perceives connections which in reality do not exist.  

For each test area, statistics on the number of networks and the number of features in each 
network were calculated for all intermediate results. These numbers show that the total 
number of networks was reduced while the number of features per network increased. 
Therefore, it can be concluded that the connectivity of the source data was improved.  
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The second stage in the experimental framework consists in applying alternative thinning 
algorithms to the selected test areas. A stroke-based, a mesh-based and a commercial 
algorithm (Thin Road Networks – TRN – as implemented in ArcGIS software) were used 
on all test areas. The results are summarized later in this article. Detailed test results can be 
found in Altena (2014, pp. 60–65). 

Evaluation 

The assessment of cartographic generalization is prone to becoming subjective. What is a 
meaningful way to qualify these results? Metrics are suggested to achieve objectivity: to 
achieve ‘reduction’ of detail in a map in a meaningful way, to assure ‘resemblance’ with 
structures in the input data, and to retain ‘connectivity’ in the results. We quantify these three 
characteristics and use them in our evaluation.  

For each criterion, the scores are displayed in tabular format. The last column (Rank) gives 
the score for the performance of the different algorithms in conjunction with each other. 
Here, S stands for Stroke-based algorithm, T the Thin Road Networks algorithm, and M the 
mesh-based algorithm. Ranking is from high (best performing) to low (worst performing). 

Reduction 

The first criterion used in comparing and evaluating the results of the different thinning 
algorithms for the various partitions (i.e. the different types of landscape) is the reduction in 
the number of features for the test areas. Table 1 shows the number of features for the input 
data and the results for the three algorithms. The reduction of features is compared to the 
input data for each thinning algorithm and is expressed as a relative decline. The largest 
negative percentage presents the largest decrease in feature count. From Table 1 it can be 
concluded that the stroke-based approach results in the greatest reduction in number of 
features.  

Table 1: Results of thinning algorithm evaluated for reduction in number of features 

partition input meshes % strokes % TRN % RANK 

1 445 445 0% 168 -62% 317 -29% STM 

17 108 100 -7% 52 -52% 54 -50% STM 

49 29 26 -10% 8 -72% 14 -52% STM 

93 820 789 -4% 496 -40% 766 -7% STM 

198 1560 1482 -5% 516 -67% 1408 -10% STM 

217 137 133 -3% 41 -70% 94 -31% STM 

260 397 389 -2% 139 -65% 280 -29% STM 

298 300 288 -4% 102 -66% 173 -42% STM 

345 582 553 -5% 268 -54% 459 -21% STM 

403 802 783 -2% 408 -49% 615 -23% STM 

442 667 661 -1% 269 -60% 528 -21% STM 

average change  -4%  -60%  -29% STM 
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Resemblance 

The second criterion for comparison of the outcomes of the three algorithms is resemblance 
with the input data. Resemblance can be defined as “X showing the same character as Y”. It 
is not easy to find a metric which can be used. In this case we used the feature morphology 
as an evaluation metric. The Feature Morphology Index (FMI) is a value expressing the 
relation between the number of features and the number of corresponding vertices. This can 
be used to evaluate the average feature morphology within an area. It can also be used for 
comparison between areas or to evaluate the effects of different approaches (Altena, 2014, 
pp. 48–49). From Table 2 it can be concluded that the mesh-based approach changes the 
input data the least.  

Table 2: Comparison of change in average feature morphology per algorithm for each partition 

partition input strokes % meshes % TRN % RANK 

1 0.235 0.076 -68% 0.228 -3% 0.174 -26% MTS 

17 0.389 0.200 -49% 0.374 -4% 0.251 -35% MTS 

49 0.475 0.214 -55% 0.442 -7% 0.353 -26% MTS 

93 0.648 0.340 -47% 0.644 -1% 0.626 -3% MTS 

198 0.761 0.411 -46% 0.771 1% 0.745 -2% MTS 

217 0.643 S0.278 -57% 0.617 -4% 0.590 -8% MTS 

260 0.629 0.270 -57% 0.630 0% 0.558 -11% MTS 

298 0.517 0.228 -56% 0.542 5% 0.392 -24% MTS 

345 0.689 0.383 -44% 0.689 0% 0.637 -8% MTS 

403 0.675 0.444 -34% 0.672 0% 0.639 -5% MTS 

442 0.616 0.300 -51% 0.611 -1% 0.588 -5% MTS 

average deviation in FMI -51%  -1%  -14% MTS 

Connectivity 

The third criterion for comparison of the results is the connectivity level of the features. At 
first glance, using network statistics seems to be appropriate. Unfortunately, these metrics 
can only be applied to one network at a time, and they were therefore not useful for 
comparing the connectivity of the test partitions. For this reason, a different metric was 
chosen for comparison, i.e. the reduction in the number of networks.  
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Table 3: Comparison of reduction in number of networks for each algorithm 

 
input meshes % strokes % TRN % RANK 

1 118 338 186% 37 -69% 19 -84% TSM 

17 68 63 -7% 21 -69% 19 -72% TSM 

49 15 14 -7% 5 -67% 5 -67% TSM 

93 58 162 179% 58 0% 16 -72% TSM 

198 48 228 375% 104 117% 13 -73% TSM 

217 23 52 126% 15 -35% 6 -74% TSM 

260 112 168 50% 35 -69% 20 -82% TSM 

298 148 190 28% 36 -76% 31 -79% TSM 

345 140 210 50% 83 -41% 52 -63% TSM 

403 241 339 41% 152 -37% 106 -56% TSM 

442 99 179 81% 50 -49% 15 -85% TSM 

average change +100%  -36%  -73% TSM 

If we compare the results of the stroke-based, mesh-based and TRN-based algorithms (Table 
3), it can be seen that the most radical reduction in number of networks occurs when 
applying a TRN-based algorithm, while application of a mesh-based approach results in an 
increase of networks for most of the test partitions. The stroke-based algorithm results in the 
second-best reduction, but it is not always stable (Altena, 2014, p. 69). 

Coherent evaluation 

The scores on the individual metrics (Reduction, Resemblance and Connectivity) aggregated 
for the three thinning algorithms indicate the most suitable approach. The total score can be 
computed by adding the individual scores. All metrics have equal weights in a Multi Criteria 
Analysis (MCA), because all three criteria are assumed to be of equal importance (to be 
validated in future research). 

Table 4: Overall evaluation for each algorithm (1= the lowest score, 3 the highest score) 

 stroke-based mesh-based TRN-based 

Reduction 3 1 2 

Resemblance 1 3 2 

Connectivity 2 1 3 

Total 6 5 7 

The results of the MCA indicate a clear hierarchy for the performance of the algorithms: the 
Thin Road Network scores best, followed by the stroke-based algorithm. The mesh-based 
algorithm scores the lowest for both reduction (an average decrease of -4%) and connectivity 
(an average increase of +100%). Therefore it can be concluded that this approach is least 
useful for thinning artificial water networks compared to the other two methods. 
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Another important conclusion is that the three thinning algorithms do not provide 
significant differences in results for the individual landscape types. Therefore using different 
thinning algorithms for different landscape types will not improve the overall thinning 
results, at least not for the three thinning methods investigated in our research. 

4 Discussion and conclusion 

This paper presents research to identify a suitable methodology for pruning man-made water 
networks which takes landscape typology into account. The question is answered by the 
introduction of a prototyping framework, which offers methods to identify landscape type 
for network features and to improve the connectivity of the networks in the input data. This 
is important to obtain better thinning results. 

Results of the study 

The identification of landscape type for an area was researched using a hybrid approach. An 
existing landscape classification dataset was evaluated on its merits to show variance in 
feature morphology and humidity. Results showed enough variety in the landscape for it to 
be suitable in the selection of test areas. This experiment also revealed the usability of 
morphology and humidity as metrics to characterize the hydrographical network of an area. 

It was also shown that the connectivity of a network can be improved by computing 
perceptual links, which were added to the dataset. This results in a reduction of the number 
of networks and a significant improvement in network connectivity.  

The usage and behaviour of this enhanced network in different thinning algorithms were the 
subjects of the next set of experiments. The application of three thinning algorithms was 
researched: a stroke-based approach, a mesh-based approach, and a TRN-based approach. 
The stroke-based algorithm is in essence not a thinning algorithm. Rather it should be 
regarded as a selection algorithm to identify a geometry-based hierarchy for a network. The 
thinning itself has to be implemented in a subsequent step, and results are dependent on the 
sophistication of such an algorithm (i.e. it should also take density and connectivity into 
account). The mesh-based algorithm performed worst: the most significant aspect in the 
results of the mesh-based algorithm is the increase in the number of networks, while hardly 
any thinning occurs. The reason for this is that the thinning breaks existing networks into 
multiple parts, resulting in loss of connecting patterns. The results of the TRN-based 
approach proved to be the most promising, both in general and in the test scores for the 
individual areas.  

An important challenge of the research was to assess the outputs of different thinning 
algorithms. It appeared that existing evaluation methods have limited application possibilities 
for this study, due to the need for benchmark data and data regarding network structures 
Therefore, three new evaluation metrics on Reduction, Resemblance and Connectivity were 
designed for use in comparison with alternative thinning approaches. All three metrics were 
considered to be of equal importance. Each test area was scored on its performance and the 
ranking was determined by using a Multi Criteria Analysis. The results of the MCA indicate a 
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clear hierarchy for the performance of algorithms: the Thin Road Network scores best, 
followed by the stroke-based algorithm. Because of the low scores for both reduction and 
connectivity obtained using the mesh-based algorithm, the use of this algorithm is not 
considered helpful for thinning.  

Limitations and recommendations for further research 

Although the study has successfully demonstrated the ability to identify landscape typology 
and its usefulness for evaluation purposes, it has provided limited results in tailoring the 
choice of thinning algorithm with regard to landscape type. It is possible to distinguish 
landscape types by humidity and feature morphology, and to use these to tailor the pruning 
algorithm. However, the thinning algorithms researched here did not provide significant 
differences in results where the individual landscape types were concerned.  

It would be interesting in the future to assess the effects of other thinning algorithms on the 
identified landscape types (Brewer et al., 2009; Buttenfield, 2010; Savino, 2014). The 
framework proposed provides room for the addition of other algorithms and the 
comparison of different thinning solutions.  

A future study investigating data enrichment from external data sources to generate a more 
sophisticated hierarchy for thinning purposes and its effect on the potential for generalizing 
results would also be of interest. 
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