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Abstract 

The nature of continuous fields implies the necessity to study them through sampling. 

Further, spatial interpolation allows the estimation of values for points that were originally 

discarded. Purely spatial interpolation disregards the temporal component of captured 

data. Such an approach, however, may lead to wrong conclusions if the data being 

studied is change-prone. This paper analyses spatio-temporal interpolation of air 

temperature data captured by an unmanned aerial vehicle (UAV). Since each point in the 

resulting dataset has a unique timestamp, purely spatial interpolation of UAV sensor data is 

likely to be less accurate than spatio-temporal interpolation. In the case of temperature 

data, for instance, spatio-temporal interpolation makes it possible to monitor the 

movement of pockets of warm air. Geoinformation systems, like ArcGIS or QGIS, have rich 

spatial interpolation toolsets. These systems, however, provide no native spatio-temporal 

interpolation means. We explored spatio-temporal interpolation of UAV data and 

developed a prototype of a stand-alone interpolation tool that exploits radial basis 

functions (RBF) and inverse distance weighting (IDW) for interpolation in a continuous 

space-time domain. This paper discusses spatio-temporal interpolation of UAV data in 

comparison with purely spatial interpolation, as well as the application of the developed 

tool. 
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1 Introduction 

Most phenomena on Earth, like air temperature or humidity, change over time. Temporal 
attributes of geodata are often crucial for the understanding of this data and its proper 
application. As our world is infinitely complex, it is rarely possible to study its phenomena 
based on comprehensive data (Longley et al., 2010). When a phenomenon of interest is a 
continuous field, sampling is the only way to study it. Spatial interpolation methods enable 
the estimation of values in unsampled points and the description of a phenomenon as a 
whole. 
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It is important to differentiate between a purely spatial interpolation and spatio-temporal 
interpolation (STI). The first is aimed at calculating a value of interest by processing the 
corresponding values of the nearby points in space, disregarding the temporal component of 
the data under study. The second approach additionally takes into consideration the 
remoteness of the measurement points in time. Interpolating spatial and temporal aspects of 
data separately, one aspect at a time, is, according to Pebesma (2012) and Li et al. (2016), a 
popular approach to the STI problem. A possible reason is the lack of software tools that 
offer interpolation in a continuous space-time domain.  

The goal of this study was to explore possible benefits of STI in comparison with purely 
spatial interpolation when applied to UAV sensor data. To achieve this, we developed a 
prototype of an easy-to-use tool with STI functionality (STI-Tool) and assessed its 
performance on air temperature data captured by a UAV. Tenfold cross-validation together 
with the visualization of interpolation results served for quality assessment.   

This paper is structured as follows. Section 2, ‘STI in the Literature and STI-Software‘, 
presents the theoretical background of STI and information on available STI 
implementations. In Section 3, ‘Choice of STI Approach and Methods’, we explain the 
methodology behind the STI-Tool. ‘Implementation of the STI-Tool’ describes the 
development of the prototype. Section 5, ‘Comparison of STI with Purely Spatial 
Interpolation and Quality Assessment’, presents the results of comparing various 
interpolation methods and discusses the quality assessment of the results. Finally, in 
‘Conclusions and Perspectives’, we sum up the study and suggest directions for its further 
development. 

2 STI in the Literature and STI-Software  

While spatial interpolation has been thoroughly studied, STI has been much less explored. 
Most of STI studies have taken place in the last 20 years. In ‘Interpolation Methods for 
Spatio-Temporal Geographic Data’, Li and Revesz (2004) stated that there was only one 
published study on spatio-temporal interpolation they could find: the work of Eric J. Miller, 
who developed and implemented four-dimensional geostatistical kriging (Miller, 1997). 
Spatio-temporal interpolation was then studied further. Hussain et al. (2010) offered a Box–
Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method 
predicting precipitation in Pakistan. Srinivasan et al. (2010) achieved substantial 
improvements in computational performance of spatio-temporal kriging. Pebesma (2012) 
presented spatio-temporal classes of R package gstat that could be used for STI. Lguensat et 
al.  (2014) developed an STI model for sea surface temperature. Li et al. (2014) implemented 
two spatio-temporal inverse distance weighting (IDW) based methods in order to assess the 
trends of fine particulate matter concentration, and discussed ways to achieve computational 
efficiency while dealing with large datasets. Montero-Lorenzo et al.  (2013) also studied air 
pollution and showed that spatio-temporal strategies lead to more accurate predictions than 
purely spatial or purely temporal strategies. Graeler et al. (2016) developed an extension to an 
R package gstat with spatio-temporal covariance functions for spatio-temporal kriging. The 
topic of STI is attracting more attention. Most of the studies, however, consider only geodata 
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referenced to a 2-dimensional frame, and it has also been pointed out that ‘[a] spatio-
temporal model is not guaranteed to outperform purely spatial predictions’ (Graeler et al., 
2016, p. 216). 

Specialists often treat spatio-temporal interpolation as a sequence of snapshots of spatial 
interpolations’ (Li et al., 2014, p. 9103). Although in some cases STI with space and time 
treated independently can yield good results (Susanto et al., 2016), many scientists (Ferreira et 
al., 2000; Li et al., 2014; Montero-Lorenzo et al., 2013) expect that conducting STI in a 
continuous space-time domain may result in higher interpolation quality. 

Geoinformation systems (GIS) often include a rich set of tools for spatial interpolation, e.g. 
Geostatistical Analyst in ArcGIS (Krivoruchko, 2011), but no or few native STI tools (Li et 
al., 2016). Classes and methods for spatio-temporal kriging written in R language (Graeler et 
al., 2016; Pebesma, 2004) expand the STI functionality of GIS. They are available via R-
Bridge in ArcGIS (ESRI, 2016) and as command line tools in GRASS GIS. In both cases, 
work with the R tools requires users to have programming skills and knowledge of the R 
language. Thus many GIS users may experience difficulties with this approach. To provide 
more users with STI means, an STI tool must be intuitive and have a simple graphical user 
interface (GUI). For this reason, while working on the application of STI to UAV sensor 
data, we also aimed to create a user-friendly tool. 

The literature reveals over 40 spatial interpolation methods (Li & Heap, 2008), including 
IDW (Isaaks & Srivastava, 1989; Li et al., 2014), shape functions (Li et al., 2016; Li & Revesz, 
2004), radial basis functions (Hickernell & Hon, 1999; Škala, 2016), splines (de_Boor, 2001; 
Mitas & Mitasova, 1999), local trend surfaces (Akima, 1978; Cleveland & Devlin, 1988; 
Venables & Ripley, 2002), natural neighbours (Sibson, 1981) and kriging (Cressie, 1990; 
Oliver & Webster, 1990; Srinivasan et al., 2010; Stein, 2013). The following section explains 
the choice of interpolation methods used in this study. It also explains the approach to the 
transformation of a spatio-temporal interpolation problem into a 4D spatial interpolation 
problem. 

3 Choice of STI Approach and Methods 

In STI there are two approaches to the temporal component of data. The so-called extension 
approach, proposed by Li (2003), treats time as another dimension in space. Another 
approach, called a reduction approach, treats time independently (Susanto et al., 2016). The 
logic behind the STI-Tool rests on the extension approach, for the following reasons:  

1. It models reality more accurately, as every measurement in the real world is done in 
both time and space simultaneously. 

2. It reflects the nature of the UAV sensor data, where each location has a different 
timestamp. Interpolation first in space and then in time requires either (1) interpolating 
all target point values from a single point or (2) treating subsets of sampled locations as 
existing in time-space simultaneously, disregarding their temporal attributes, which 
contradicts the very concept of STI. 
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Susanto et al. (2016) provide detailed information on interpolation methods used in 
environmental modelling. Their analysis shows that kriging has been reported as the most 
suitable spatial interpolation method in many studies. The downside of kriging is its 
computational complexity. According to Susanto et al. (2016), Curtarelli et al. (2015) and Li 
et al. (2014), IDW is comparable with kriging, outperforming it in some cases, and its 
computational efficiency is much higher. IDW can be used for 4D data, and was therefore 
the first choice for this study. As IDW produces local extrema at known locations (Mitas 
& Mitasova, 1999), we considered it reasonable to use one more interpolation method for 
comparison.  

Splines were presented by Mitasova et al. (1995) as a good method of interpolation and 
approximation of d-dimensional scattered point data to d-dimensional grids. Although 
splines can produce peaks, waves and pits, they are considered ‘rather successful’ (Mitas 
& Mitasova, 1999, p. 487) for climate data interpolation, as those peaks and pits can be 
smoothened. Smoothness is obtained by a variety of approaches, e.g. a variational approach 
(Mitas & Mitasova, 1999) or radial basis functions (RBFs) (Škala, 2016) that ‘can be 
interpreted as roughness-minimizing splines’ (Hickernell & Hon, 1999, p. 1). As RBFs are 
‘one of the primary tools for interpolating multidimensional scattered data’ (Wright 2003, p. 
iii), we use interpolation by means of RBF along with IDW.  

4  Implementation of the STI-Tool 

Data 

The UAV sensor data used in this study results from a survey near Noetsch im Gailtal in the 
south of Austria. Each data entry contains latitude and longitude (in decimal degrees), 
altitude (in metres), timestamp (date and time), and three measurement values: air 
temperature, atmospheric pressure and humidity. The interpolation results presented in this 
paper are based on air temperature values.  

Figure 1 shows the correlation between temperature values (expressed as colour), altitude (Y-
axis) and measurement time (X-axis). Air temperatures captured in the first half of the flight 
differ from temperatures captured at the same altitudes during the second half of the flight. 
Thus purely spatial interpolation is likely to be less accurate than STI.  
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Figure 1: Correlation Between Temperature Values, Altitude and Measurement Time 

Figure 2 displays the flight trajectory. The temperature values corresponding to the sampled 
locations are expressed in colour. 

 

Figure 2: Air Temperature Values Along the Flight Trajectory 
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The UAV sensor data has the following important characteristics: 

- It is irregular both spatially and temporally.  

- Most of the locations in our dataset are sampled just once.  

- Locations are referenced to a three-dimensional spatial frame. 

Normalization 

As transformation of geographic coordinates into projected coordinates was outside the 
scope of the STI-Tool functionality, we used normalization to unify distance units. This also 
simplified the visualization of interpolated data. Normalization preserves topology. 
Minimum and maximum values of corresponding coordinates are provided in the form of 
metadata in the output JSON file. This allows the restoration of the original shape of the 
study area if desired. Normalization exploits the following formula: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 

After normalization, all the coordinate values belong to the interval [0; 1]. Edges of the 
bounding hexahedron of the input data points have length 1 (one). Last, we normalized 
timestamps by analogy with normalization of coordinates. 

Transformation of the Interpolation Problem into 4D 

The extension approach (Li et al., 2016) is based on the transformation of time units into 
space units. It involves multiplication of timestamps by an empirically chosen factor C (time 

scale) measured in 
distance units

time units
. Conversion of timestamps in date-time format into Unix 

time (Hayes, 2015) enables the necessary calculations. The extension approach is similar to 
Minkowski’s spacetime concept (Minkowski, 1909, trans. 2012). Li et al. (2016) carried out 
their analysis using four time scales: 1, 1/10, 1/5 and 1/15. They chose C = 1/10 as it 
resulted in the best values for error statistics. As they note, the C factor has to be chosen 
experimentally for each particular dataset.  

Technical Solution 

The STI-Tool was developed in Python with the use of scipy libraries 
(https://www.scipy.org/). The visualization of interpolation results given in this paper 
involved the use of plotly (https://plot.ly/python/). Utilization of the k-d tree data 
structure, introduced by Bentley (1975) and known for solving the nearest-neighbour 
problem in logarithmic time (Samet, 1995), enabled quick nearest-neighbour lookup. The 
Python implementation of k-d tree is the class KDTree in the package scipy.spatial. This 
class uses an algorithm by Maneewongvatana and Mount (1999). The Python RBF 
implementation is the Rbf class in the scipy.interpolate package. This class carries out the 
interpolation using the algorithms of Hetland and Travers (2006–2007). The STI-Tool 
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exploits this class for RBF interpolation and includes its own IDW implementation. The use 
of open source libraries enables the reproduction of analyses conducted with the STI-Tool in 
a Python console.  

Accuracy Assessment 

The STI-Tool employs the following statistics to assess interpolation quality: (1) Mean 
Absolute Error (MAE), (2) Mean Squared Error (MSE), (3) Root Mean Squared Error 
(RMSE), (4) Mean Absolute Relative Error (MARE), and (5) Coefficient of Determination 
(R2). These statistics are often used for interpolation error assessment (Curtarelli et al., 2015; 
Graeler et al., 2016; Keller et al., 2015; Li & Heap, 2008; Li & Revesz, 2002; Susanto et al., 
2016; Tomczak, 1998; Wise, 2011), with RMSE being the most popular. The calculation 
formulas were adopted from Li et al. (2016) and Keller et al. (2015). The STI-Tool assesses 
the accuracy of the chosen interpolation methods through a tenfold cross-validation 
approach, which, according to Efron and Tibshirani (1997), provides accurate information 
on the size of interpolation error. 

Comparison of STI with Purely Spatial Interpolation and Quality Assessment 

The study involved testing four interpolation methods: spatio-temporal or purely spatial 
IDW, spatio-temporal or purely spatial RBF. The STI-Tool gives access to these 
interpolation methods by means of a simple GUI (Figure 5). The availability of spatial 
interpolation methods provided means to compare spatial and spatio-temporal interpolation 
results. 

Our input data was in CSV format. The STI-Tool automatically fills in the names of columns 
representing parameters used for interpolation in GUI dropdown lists (e.g. column with the 
name ‘lat’ for latitude) after the user has chosen an input file. Users can adjust the suggested 
parameters. The results of interpolation are saved to a JSON file. It is also possible to 
convert input CSV data into JSON format, e.g. in order to enable simultaneous visualization. 
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Figure 3: STI-Tool Graphical User Interface 

IDW interpolation results depend on the number of nearest neighbours (N) and power (P). 
During the tool development, we tested different values for these parameters: number of 
nearest neighbours from 2 to 100, and power from 1 to 10. Comparison of error statistics 
revealed that the best combinations of parameter values are different for spatial interpolation 
and STI, and also depend on the dataset used for interpolation. High power values in our 
tests are associated with less accurate interpolation results.  

Along with IDW, we tested seven radial basis functions within the RBF interpolation 
method: three piecewise smooth (thin plate, linear, cubic) and four infinitely smooth (inverse, 
quantic, multiquadric and Gaussian). Error statistics for IDW, thin plate and linear RBFs 
have low values for both spatio-temporal and spatial interpolation. Other RBFs conduct 
purely spatial interpolation with large errors. At the same time, cubic function has the best 
STI error statistics.  

Table 1: Comparison of Error Statistics for Spatial Interpolation and STI 

Function Spatial Interpolation Spatio-Temporal Interpolation (C=1) 

MAE MSE RMSE MARE R2 MAE MSE RMSE MARE R2 

IDW(N=6, P=1) 0.1378 0.0673 0.2595 0.0219 0.9076 0.0535 0.0158 0.1256 0.0082 0.9779 

Cubic RBF 0.5955 46.2740 6.8025 0.0840 0.1518 0.0268 0.0043 0.0652 0.0042 0.9946 

Linear RBF 0.1428 0.0603 0.2457 0.0231 0.9084 0.0434 0.0119 0.1092 0.0067 0.9830 

Thin plate RBF 0.1573 0.1304 0.3611 0.0251 0.8215 0.0319 0.0064 0.0802 0.0050 0.9912 

Quintic RBF 40.311 9x104 3x102 6.2236 0 0.1181 0.3272 0.5720 0.0176 0.7245 

Multiquadric RBF 6x102 3x107 5.5x103 91.650 0 28.0252 9x104 3x102 3.6612 0.0000 

Gaussian RBF 6x103 4x109 7x104 9x102 0 1x102 2x106 1x103 13.327 0.0000 

Inverse RBF 5x103 1x1010 1x105 6x102 0 1.1541 1.5x102 12.124 0.1538 0.0539 
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Table 1 displays error statistics for seven RBFs and IDW with parameters N=6, P=1. These 
IDW parameters yield the best spatial interpolation results and second best (after N=4, P=1) 
STI results. Errors of STI are lower in comparison with spatial interpolation, which indicates 
that STI has higher interpolation accuracy. Error values vary with the chosen time scale. 
Table 1 gives STI results for C = 1. For our dataset, these results are improved if C = 4 
(Table 2). 

Table 2:  Error Statistics for Time Scale C = 4  

Function MAE MSE RMSE MARE R
2
 

Cubic RBF 0.0086 0.0002 0.0150 0.0014 0.9997 

Thin plate RBF 0.0111 0.0005 0.0227 0.0018 0.9992 

Linear RBF 0.0204 0.0031 0.0526 0.0031 0.9954 

Quintic RBF 0.0210 0.0041 0.0585 0.0033 0.9938 

IDW(N=4. P=1) 0.0300 0.0067 0.0800 0.0046 0.9901 

IDW(N=6. P=1) 0.0327 0.0079 0.0874 0.0049 0.9879 

The STI-Tool enables calculation of error statistics from GUI upon completion of the 
interpolation (Figure 4). It evaluates errors based on the interpolation method used and 
configuration of parameters. The tool presents the results in the form of a message dialog. In 
addition to the statistics described above, it calculates and displays the percentage of 
interpolated values that lie within the initial value range. 

 

Figure 4: Message Generated on Completion of Interpolation 
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Error statistics given by Tables 1 and 2 imply high interpolation quality. As seen in Figure 4, 
some of the interpolated values are significantly below the initial minimum, and there are no 
interpolants reaching the input maximum. It is expected that RBF interpolation may result in 
values outside of the initial range. These values, however, are not expected to vary 
substantially from the original observations. Thus we can surmise that a standard error 
assessment approach does not comprehensively indicate interpolation accuracy in cases of 
STI of UAV sensor data. The visualization of results of the linear RBF STI supports this 
assumption (Figure 5). 

 

Figure 5: Visualization of Linear RBF STI Results, C = 4 

The interpolated cube corresponding to the beginning of the flight (Figure 5A) has many 
overestimated temperature values. In the middle of the flight (Figure 5C), values tend to be 
underestimated. These RBF interpolation results are inconclusive, which can be attributed to 
the irregularity and sparseness of the input data. As only the outer faces of the cubes are 
visible, it is impossible to visually assess the interpolation quality of inner points.  
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Figure 6: Visualization of Cubic RBF STI Results, C = 4 

Figure 6 displays the results of spatio-temporal cubic RBF interpolation. Interpolation results 
can be visually interpreted as plausible, displaying a moving pocket of warm air that 
eventually cools down. Since the air is not expected to form even layers of equal 
temperature, unambiguous visual assessment of interpolation quality is difficult.  

 

Figure 7: Spatio-Temporal Interpolation with IDW, C = 4 
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Figure 7 visualizes the results of STI by means of IDW. Interpolated bounding cube D 
contains many overestimated values. The results of purely spatial IDW are given by Figure 8. 

 

Figure 8: Visualization of results of purely spatial IDW (N=6, P=1) 

Figure 8 indicates that temperature values for altitudes from 800 to 900 metres are averaged. 
An increase in temperature during the second half of the flight cannot be identified when the 
temporal component of data is discarded. An even more substantial distortion takes place 
when time is disregarded during interpolation with RBF (Figure 9): 

 

Figure 9: Visualization of results of purely spatial cubic and linear RBF 
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Large volumes in the interpolated bounding cube that are located outside the flight trajectory 
have overestimated values. The interpolation results can be visually interpreted as inaccurate. 
Therefore, we can see that if a phenomenon under study experiences change within a 
measurement interval, discarding the temporal attribute during interpolation can lead to 
inaccurate and invalid results. This is less obvious when IDW interpolation is used but 
becomes evident when data is interpolated using RBF. 

4 Conclusion and Perspectives 

Within this study, we performed spatial and spatio-temporal interpolation of UAV sensor 
data by means of the spatio-temporal interpolation tool (STI-Tool). The tool provides an 
easy-to-use GUI for choosing interpolation methods and adjusting interpolation parameters. 
This paper presents results for the interpolation of air temperature data. The STI-Tool was 
additionally tested with humidity and air pressure data and is considered to be suitable for 
other regular and irregular 3-dimensional scattered point data of ratio nature. For the dataset 
tested, Inverse Distance Weighting performed considerably better than Radial Basis 
Functions in cases of spatial interpolation, and cubic RBF yielded the most accurate results 
in the case of STI. The study showed that irrespective of the interpolation method used, 
spatio-temporal interpolation results in more accurate predictions. 

Error statistics calculated under the tenfold cross-validation approach suggest low 
interpolation errors. The visualization of interpolation results, however, shows that low 
values for error statistics do not necessarily mean accurate value prediction in every spatio-
temporal point of the study area. Thus, possible directions for further study are:  

 Raising the STI quality 

 Improving validation procedures 

 Making the STI-Tool accessible to a wide range of GIS users. 

The following steps can be taken to raise spatio-temporal interpolation quality: 

1. Shaping the flight trajectory in such a way that a bounding hexahedron requires little 
extrapolation, or discarding some sample points before the bounding hexahedron 
calculation 

2. Using two UAVs to capture data within one study region simultaneously and in such 
a way that remotely located points are captured at the same time  

3. Capturing vertical atmospheric structure simultaneously with the UAV flight (e.g. by 
means of a tethered balloon or a Small Unmanned Meteorological Observer) and 
using it as an input together with trajectory data. 

Possible improvements of the validation procedures are: 

1. Using points from one UAV trajectory as a training subset, and points of another 
UAV trajectory or a vertical atmospheric profile as a validation subset  

2. Creating synthetic spatio-temporal reference data, sampling it along different 
trajectories at different times and reconstructing this synthetic data from sampled 
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subsets for evaluation purposes. This approach has the advantage of providing 
means for trajectory adjustments, leading to better interpolation results. 

In view of the lack of easy-to-use spatio-temporal interpolation software, the STI-Tool tool 
can be rega6rded as the first step in the creation of free, easy-to-use means of spatio-
temporal interpolation of data referenced to a 3D spatial frame. Its further development may 
include providing additional options, such as storing used parameters to simplify analysis 
reproduction, or saving calculated error statistics. It might also be possible to transform the 
STI-Tool into a QGIS plug-in, thus making it accessible to a wide range of GIS users. 
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