
Kurath et al

173

OSMDeepOD - Object Detection

on Orthophotos with and for VGI

 GI_Forum 2017, Issue 2

Page: 173 - 188

Full Paper

Corresponding Author:

geometalab@hsr.ch

DOI: 10.1553/giscience2017_02_s173

Samuel Kurath, Raphael Das Gupta and Stefan Keller

Geometa Lab at Institute for Software, HSR, Switzerland

Abstract

A great deal of the interesting information captured by aerial imagery is as yet unused,

even though it could help to enrich maps and improve navigation. For this information to

be made available, objects such as buildings or roads need to be recognized on images.

This is laborious to do entirely manually, but non-trivial to perform computationally. In this

paper, we present an automated method for detecting objects of a chosen class

(pedestrian crosswalks) on orthophotos, a method which can be adapted for various

classes of objects. The method uses a supervised machine-learning approach with a deep

convolutional neural network. We re-trained the final layer of a pre-trained neural network

using specific imagery and crowdsourced geographic information from the

OpenStreetMap (OSM) project. The result is an easily enhanceable and scalable

application which is able to search for objects in aerial imagery. We achieved an

accuracy of well over 95% for crosswalks and promising preliminary results for roundabouts.

Keywords:

visual recognition, deep convolutional neural networks, aerial imagery, VGI, parallelism

1 Introduction

As in many other fields, machine learning has become a hot topic in geography and
geoinformation technology, including VGI. It can be used to derive conclusions from
geoinformation or to derive geoinformation from geodata, e.g. feature positions from raster
data using image recognition techniques. In this work we focus on the latter.

As a proof of concept, we chose the task of identifying registered Swiss pedestrian
crosswalks in OpenStreetMap using satellite and aerial imagery (orthophotos). To do this, we
had to devise a method to detect crosswalks as well as a way to feed results back into
OpenStreetMap while adhering to the OpenStreetMap community’s quality standard for
edits made or reviewed by humans.

The objective was to come up with a process which accomplished these aims and which
could be adapted easily for other feature classes. Furthermore, in order to keep

Kurath et al

174

OpenStreetMap up-to-date, the process needed to be replicable using new orthophotos
when they become available.

This article is in 5 main sections. Section 1 is introductory. In section 2 we describe our
method, and in 3 we present the results of applying the approach to pedestrian crosswalks in
Switzerland. We discuss both method and results critically in section 4. Section 5 summarizes
what this work achieves and outlines possible future research.

Motivation: to increase crosswalk coverage in OpenStreetMap

OpenStreetMap®1 is a worldwide community of mapping enthusiasts, and in the words of
Neis, Zielstra, & Zipf (2012) ‘a well-known project in the field of Volunteered Geographic
Information (VGI)’, a term coined by Goodchild (2007), also known as ‘crowd sourced
geodata’. It makes available to the public not just a web map, but also the underlying
database of geographic information, which anyone can edit.

Although the OpenStreetMap project initially set out to create a free street map (hence its
name), today it collects all geographical information (using vector geometry with
attributes/tags) deemed interesting by the community members, as long as that information
is verifiable ‘on the ground’. Thus, many features not displayed on a typical street map can be
found in the OpenStreetMap dataset, including the positions of pedestrian crosswalks on a
road axis.

While pedestrian crosswalk locations are vital for assisting pedestrian navigation and might
also become important for automated driving, a crosswalk existing in reality but missing
from the dataset will not stand out as much to most mappers as a missing road would. This
makes it difficult to improve the completeness of the crosswalk location information in the
dataset, even for mappers interested in this particular topic.

Satellite and aerial imagery are used to assist data collection when surveying in the field and
for directly tracing recognizable objects remotely. However, manually searching the
orthophotos of even just a small country like Switzerland for all instances of one feature
such as pedestrian crosswalks would be a very time-consuming and tedious task. We decided
to help improve the dataset’s completeness by providing more automation, thereby
facilitating targeted editing.

Challenge: Automated visual object detection

Although humans are very good at visual pattern recognition, accurately detecting and
identifying objects on a picture can be difficult or (depending on light conditions, shadows,
and other objects that obscure the interesting aspects of the images) impossible, even for
them. Consider for example the orthophotos in Figure 1 showing pedestrian crosswalks, and
compare them to the orthophotos in Figure 2, which do not show crosswalks.

1 http://openstreetmap.org

Kurath et al

175

Figure 1: Crosswalk examples

Figure 2: Non-crosswalk examples

Devising a computer program to do the image recognition is particularly difficult, as
traditional rule-based programming usually falls flat in this area.2 However, recent
developments in artificial intelligence (AI) research have made computational object
classification feasible. Artificial neural networks, a computational approach that loosely
mimics the way a biological brain works on the neuron level, have been a subject in AI
research for a long time (e.g. Rosenblatt, 1957; for a brief history see Russell, 1996). In our
case, the input is an image (a small part of an orthophoto) and the desired output is a
classification of the object(s) seen there, albeit a simple one: a crosswalk or not a crosswalk.

In recent years, the best results in image recognition have been achieved by deep
convolutional neural networks (Krizhevsky, Sutskever, & Hinton, 2012). A deep
convolutional neural network (dCNN) is a kind of further-developed neural network,
designed to mimic the visual cortex. The networks get their name from stacking many
convolutional layers. A convolutional layer has ‘neurons’, and each layer has a convolution
matrix (called a ‘kernel’ or ‘filter’) as its learned parameter. Each of these layers acts as a
feature-detector working on a fairly local feature set. For the first layer, the input feature map
comprises simply the pixel colour values. Early layers will recognize simple, locally-confined
features like lines, edges and patches of colour. Each successive layer will recognize features
that are visually more and more complex as arrangements of simpler features from the
previous layer(s), until the output layer produces the classification of the whole image.

The chosen approach was not without challenges. We had to: (1) get enough training data
for the neural network; (2) reduce the neural network’s training time sufficiently to allow for

2 For the specific case of pedestrian crosswalks, one might expect a spectral-analysis-based
approach to work. The frequency-based methods we evaluated in Keller, Bühler, & Kurath (2016),
however, failed to perform better than the deep learning-based one, with only fast Fourier transform
coming close.

Kurath et al

176

training the network with different parameters, so that we were able to improve and fine-
tune the result; (3) deal with a huge amount of satellite imagery, and (4) make the results
available in OpenStreetMap without breaking the community’s rules against automated
imports.

Related work

Mnih & Hinton have applied machine learning to orthophotos for per-pixel labelling for
some time now. They have improved road detection with the help of a deep network (2010).
They have also studied the effects of noisy data and the lack of learning data, and devised
methods that allow the training process to better cope with this (2012). This is particularly
relevant when learning from VGI, where ‘(asymmetric) omission noise’ (object visible on
orthophoto, but missing from the VGI) and ‘registration noise’ (different locations of an
object on the orthophoto vs. the VGI) are prevalent.

Chen & Zipf (2017) have applied deep learning to detect buildings by using positive learning
samples from buildings already mapped in OpenStreetMap, and negative samples from data
generated by the MapSwipe mobile app. In this app, users indicated that an area did not
contain buildings. The authors turned this supervised learning setup into an active learning
one by manually labelling the tiles where their network disagreed with labels provided by
MapSwipe, using these samples to re-train the network and thereby significantly improve its
performance,3 though not quite reaching the performance level of MapSwipe volunteers.

In contrast to these studies, we did not devise our own neural network design. Instead, we
chose an existing network which had already proved successful for (non-orthophoto) image
classification, and focused on how to get training data, how to avoid having to train a full
dCNN, and how to automate and computationally optimize the procedure.

2 Method

To detect objects on orthophotos we applied the approach visualized in Figure 3. In the
following subsections, we will describe the individual steps in depth.

3 Here we are referring to precision, recall, F1 score and accuracy, not the computational
performance.

Kurath et al

177

Figure 3: Method overview. Positive samples comprising (1) orthophotos at locations of known

crosswalks (from OSM), from among which (2) false positives have been discarded manually, and

semi-manually collected negative samples (red folder icon) are (3) used to re-train a pre-trained

dCNN. Next (4), orthophotos along OSM streets are then (5) classified. Crosswalks already in OSM are

(6) pruned from the results and those with identical or nearby coordinates are merged. The remaining

results are then (7) fed through MapRoulette for crowd-sourced review and for manual integration into

OSM

Kurath et al

178

At step (1) in Figure 3, we select images from a satellite imagery source with the help of
OpenStreetMap. These images serve as the dataset for the training mechanism of the neural
network. The dataset consists of a positive and a negative subset, containing images with or
without the objects we are looking for respectively. In step (2), false positives are manually
removed from the automatically collected positive subset.

This dataset is then used to retrain a neural network (step (3)), which can classify images into
the different dataset categories (5). The images to classify are obtained by moving a sliding
window over the area of interest (4).

The midpoints of the windows where objects of the class of interest have been recognized
by the neural network are aggregated (to eliminate duplicates) and treated as the object
locations. After removing locations corresponding to instances already in the
OpenStreetMap data set (6), we use the coordinates to generate tasks and challenges for
MapRoulette. MapRoulette users then review the detected objects and add the genuine ones
into OpenStreetMap (7).

Acquiring training data

A huge amount of data is needed to train a large neural network like a deep convolutional
neural network. Significantly less training data is needed for re-training a pre-trained deep
neural network (see next section), but the number of examples should still be in the
thousands (Chollet, 2016). To efficiently obtain a training set of sufficient size, we combine
existing OpenStreetMap data with aerial imagery. Using the fact that some pedestrian
crosswalks are already mapped in OpenStreetMap and that many of these are visible in aerial
imagery, we are able to extract sections from the orthophotos at the positions of crosswalks
that are already present in the dataset (see Figure 5 and (1) in Figure 4) These sections are
likely to show a crosswalk and thus are promising to provide a solid, positive training set. To
obtain the crosswalk positions in OpenStreetMap, we query Overpass (OpenStreetMap Wiki
contributors, 2017b), an easy-to-use application programming interface (API) for accessing
OpenStreetMap data.

Figure 4: Positive samples are obtained by (1) using orthophotos at known crosswalk locations, and (2)

manually removing false positives and unusable images

Kurath et al

179

Figure 5: Visualization of the training data selection. The position of a crosswalk in OpenStreetMap is

indicated by a blue dot. The red square is the border for the 50×50-pixel section to be cropped out of

the aerial imagery

Unfortunately, a manual check of the collected images ((2) in Figure 4) is still needed before
they can be used as training data, since the result is not perfect. The object in question might
not be visible on the image at all, due to either OpenStreetMap or the aerial imagery being
out of date, or because of different translational offsets placing the object outside the
cropped-out section. For our example of detecting crosswalks, we also decided to discard
images where a car, a shadow or a tree covered the target, as is the case in Figure 6.

Figure 6: Example of a crosswalk half covered by a tree, which should not be used in the training set

Having collected the positive samples with the target object on them, to complete our
training set we also needed negative samples. Because the search algorithm is more likely to
encounter areas without the target object, and because these areas will vary more broadly
than the areas containing the target object, we needed even more (and more varied) negative
samples than positive ones.

To gather negative samples efficiently, we created an application which takes small
screenshots along the user’s cursor movement. Using an aerial map, these samples can be
collected simply by moving the cursor over the map at the correct resolution (zoom level)
(illustrated in Figure 7). Of course, hovering over the target objects must be avoided.

Kurath et al

180

Figure 7: A visualization of the sample acquisition process with a cursor moving over satellite imagery.

Every red square represents a cropped-out image

The combination of these two methods to collect images allows us to produce a dataset
within a reasonable time and is applicable to a wide variety of objects.

Re-training a pre-trained dCNN

Deep convolutional neural networks are suitable for our detection task, but very deep
networks with many hidden layers require a lot of training data. With parameter counts of
around 20 million (Chollet, 2016), these networks are prone to over-fitting; that is, if the
training set is not large enough, the networks are unable to generalize enough to handle
unknown situations. The large amounts of time and effort needed to acquire these quantities
of training data, and the long processing time required to train a network with them, can be
avoided by resorting to an already-trained neural network, simply re-training the last layer for
the new classification task (Figure 8). This process is called transfer learning (Yosinski,
Clune, Bengio, & Lipson, 2014; Oquab, Bottou, Laptev, & Sivic, 2014)) and is possible
because the first layers of convolutional neural networks perform very generic tasks like edge
and shape detection (Zeiler & Fergus, 2013). The ‘How to Retrain Inception’s Final Layer
for New Categories’ guideline from TensorFlow (Google, 2016) advises how to do this. We
found that the re-train approach reduces the training time on a Tesla K40m GPU by up to
four hours.

Figure 8: Re-training (3) of the Inception v3 network already pre-trained on ImageNet data

Kurath et al

181

To handle the detection part of the process, we used TensorFlow4, an open source software
library for numerical computation, machine learning and simplification of GPU usage.
TensorFlow provides various pre-trained neural network models for image classification. For
our task, we used a pre-trained Inception-v3 model with 23,853,833 parameters (Chollet,
2016). The network is learned from the images of the ImageNet academic competition,
which has about 1,000,000 pictures divided into 1,000 categories. Inception-v3 achieves a
‘top-5’ error of just 3.58% on the validation set on this competition. That means that the
network had to predict the five classes most likely to describe the image, and that the image’s
real class was amongst these five predicted ones in 96.42% of all cases. To put this into
perspective, Andrej Karpathy went through a subset of the validation set himself (Karpathy,
2014) and scored a human top-5 error rate of 5.1% (1.52% worse than Inception-v3). As a
proof of concept, we re-trained the Inception-v3 model (Szegedy, Vanhoucke, Ioffe, Shlens,
& Wojna, 2015) on 8,242 images of crosswalks and 40,463 images of non-crosswalks, which
reached 98.5% accuracy on our validation set.

Object detection: Searching for crosswalks

The detection procedure for the search for crosswalks is structured as follows: the area to be
analysed is passed to the system as a large bounding box; this large bounding box is then
split into smaller bounding boxes, which are added to the queue of jobs which have to be
processed.

If a so-called ‘worker’ starts processing a job, it collects all streets from OpenStreetMap for
that job’s (small) bounding box ((4) in Figure 9). If there are no streets in the current small
bounding box, the job is already finished, or downloading the corresponding orthophotos
(Figure 10 (a)) is still incomplete.

Figure 9: A sliding window along OSM roads (4) determines the orthophoto excerpts to be used as

inputs for the classification by the dCNN (5)

4 https://www.tensorflow.org/

https://www.tensorflow.org/

Kurath et al

182

a

b

c

d

Figure 10: The steps for object detection using sliding windows along streets. (a) Aerial imagery for one

job’s bounding box; (b) Corresponding street data from OSM (overlaid as blue lines); (c) 50×50-pixel

cutouts (shown as red squares) along the streets; (d) Some of the cutouts (centres marked by green

dots) have been classified as containing crosswalks.

Figure 10 (b) shows the orthophotos overlaid by the street data. Along the streets, the
worker has to cut out 50×50-pixel images from the orthophotos, which is the size the
convolutional neural network needs as its input parameter (Figure 10 (c)). Finally, the
detection algorithm decides for each image whether it contains a crosswalk or not. Detected
crosswalks are shown as a green dot in Figure 10 (d) and as icons in Figure 9.

When the classification has been completed, all detected crosswalks within a radius of 5
metres are merged (part of (6) in Figure 11), because it is possible that some crosswalks are
larger than one cut-out image and may appear in neighbouring or overlapping images.
Furthermore, our mode for searching along streets isn’t yet sophisticated enough to avoid
searching areas twice where streets cross each other.

Kurath et al

183

Figure 11: Detected crosswalks close to each other are merged, and those close to existing ones in

OSM are eliminated (6). The remaining crosswalks are vetted by MapRoulette volunteers and manually

added to OSM if deemed genuine (7).

Optimizations

When faced with the task of finding all crosswalks in Switzerland, we are confronted with an
area of 41,285 km², which would have corresponded to roughly 400 million images of 50×50
pixels at a resolution of 0.3 m per pixel. To speed up the process, we parallelized the image
recognition and also reduced the amount of data that needs to be classified.

TensorFlow already makes use of vector processing and multiple cores within the
classification of a single image and for training. However, to use our hardware to full
capacity, we also analysed several images in parallel by using a message queue5 from which
multiple processes (called ‘workers’) pulled their tasks.

Because our detection algorithm is confronted with a large number of images to classify, we
looked for opportunities to reduce that number. One technique was to analyse images along
streets only. This is sufficient when looking for crosswalks or roundabouts, as these can only
occur along streets. Thus, this approach decreases the number of images significantly
without deterioration of the detection rate. When this option is enabled, our algorithm
checks for known streets before downloading the orthophoto tiles, so that only tiles along
streets are downloaded. To get the street positions, we again use OpenStreetMap with the
help of the Overpass API (OpenStreetMap Wiki contributors, 2017b).

The step size for moving the sliding window along the streets or over the complete
orthophoto tile also heavily influences the number of images to classify. We chose a
translation shift of 0.66 of the window’s side length and found that this gives enough overlap
not to miss too many features.

One way to reduce the data further is to work on the lowest resolution level of the
orthophotos that is still sharp enough to represent the important features of the objects to be
detected, resulting in fewer and smaller images to be analysed. For crosswalks, this turned
out to be zoom level 19. It seems that for roundabouts, zoom level 18 might suffice.

5 specifically, RQ (http://python-rq.org/)

http://python-rq.org/

Kurath et al

184

Crowd-sourced verification and integration

The goal of our work is not only to detect objects on orthophotos, but also to make the
newly acquired information available to the general public, and specifically to the
OpenStreetMap community. An obvious way to achieve this is to integrate the newly-found
crosswalks into the OpenStreetMap dataset. However, OpenStreetMap only accepts data
which are verified by humans, so just dumping the data into an automated import software
was out of the question. Even though the detection rate is very high, there are still false
positives in our detected crosswalk data and we do not want them to contaminate the
OpenStreetMap data. Further, in OpenStreetMap, a crosswalk is tagged on the individual
node (i.e. point) of the way (linestring) representing the section of the street that it crosses
(OpenStreetMap Wiki contributors, 2017c), information which is not available in our results
dataset.6

There are gamification tools that integrate data into OpenStreetMap or help users to edit
data. One of them, MapRoulette, is an open source project and web platform on
http://maproulette.org/ which allows everyone to create challenges with multiple tasks.
These challenges can then be solved by other users (or ‘the crowd’) by editing
OpenStreetMap using their own accounts. In contrast to some other OpenStreetMap
gamification tools, the editing functionality is not built into the MapRoulette platform itself.
Instead, the user can choose which generic OpenStreetMap editor to launch amongst several
popular ones with which MapRoulette is able to interact.

MapRoulette is meant to be used from home rather than in the field, so tasks should be
solvable using only the information provided by available imagery. Deciding from the
imagery whether there is a crosswalk in a small area (step (7) in Figure 11) is a suitable task
for MapRoulette, because crosswalks usually only appear along paved streets (which are
themselves usually easy to discern in aerial imagery), and have a distinctive pattern and a
strong colour contrast with the environment. If a task doesn’t require map editing to be
completed (e.g. because our software detected a crosswalk where there is none – i.e. a false
positive), or when users can’t solve a task (e.g. because they cannot discern whether there is a
crosswalk in the picture, or exactly where), users can indicate this on the MapRoulette
platform.

3 Results

This project yielded (a) a workflow for detecting objects on orthophotos and (b) a software
application implementing this workflow, as well as (c) positions of 18,036 potential
crosswalks that weren’t already mapped in OpenStreetMap, found by applying our approach
region by region over the complete area of Switzerland.

6 For the OpenStreetMap data model, see Ramm, Topf, & Chilton (2011), pp. 51–56 or
OpenStreetMap Wiki contributors (2017a).

http://maproulette.org/

Kurath et al

185

We posted 20 challenges on MapRoulette to get these positions vetted and (if genuine) added
to OpenStreetMap. We observed a weekly increase in the number of crosswalks in
OpenStreetMap within Switzerland, both before and during these challenges, and their
positive influence was clearly visible. During 33 weeks before the first challenge started, we
had an average growth of 63.2 crosswalks per week. During the first 24 weeks of the
challenges, we measured a weekly increase of 370.5 crosswalks. Within those 24 weeks, the
number of identified crosswalks in Switzerland rose from 41,788 to 50,584.7 This means that
almost one in five crosswalks present in OpenStreetMap after 24 weeks of our challenges
were added during that period.

We are therefore confident that we have reached our aim of helping to increase the
completeness of the OpenStreetMap dataset with regard to crosswalks.

4 Discussion

It should be noted that the very high accuracy (98.5%) reported for the training applies to a
validation set taken from the input data and stashed apart by TensorFlow’s retrain.py script.
While this validation data was not used by the script for the actual training, so the high value
should not be the result of overfitting to the training set, the input data to the script could
have been biased as a whole. Consequently, this result may not correspond to the real
accuracy of the actual classification performed after the training in the object-detection steps.

To estimate the actual accuracy, the error rate (false positives and false negatives in relation
to the total number of classified images) could be approximated by using the number of
crosswalks previously in OpenStreetMap that haven’t been re-found by the detection
procedure as a lower bound for the false negatives. A lower bound for the number of false
positives is more directly available if the assessment by MapRoulette volunteers is treated as
the ground truth, which we think should be close enough to reality.

The decision to leave images of partially covered crosswalks out of the training set was made
arbitrarily, without being based on actual findings. Whether including these pictures in the
training improves or degrades the detection rate should be tested.

5 Conclusion and Outlook

We have demonstrated that software developers and GIS-domain experts can apply state-of-
the-art computer vision technology to automate previously manual tasks in their field. The
libraries and frameworks available nowadays have enabled us to do so without extensive
prior knowledge of AI.

7 See http://zebrastreifen-safari.osm.ch/ for an up-to-date graph of recent development.

http://zebrastreifen-safari.osm.ch/

Kurath et al

186

While (near) ready-made routines from the framework used were employed for the
classification part at the core of our process, our contribution comprises the workflow and
steps around that: (a) ways of efficiently and semi-automatically obtaining sufficient training
data; (b) framing the object search/detection/coarse-localization problem as a problem of
classification of focal data within candidate regions; (c) using domain knowledge for limiting
the candidate region within the complete area of interest to decrease the classification
expenditure; (d) verification and integration of the results into OpenStreetMap in accordance
with the community’s rules through use of an existing targeted crowd-editing platform, and
(e) some (limited) automation of the individual steps as a re-usable and adaptable open
source application, available at https://github.com/geometalab/OSMDeepOD.

With the flexibility and the various configuration parameters of OSMDeepOD, it is possible
to search for other objects, such as streets, buildings, swimming pools, solar panels, football
fields, tennis courts, agricultural areas, among many other things. Collecting a suitable data
set and re-training the convolutional neural network should be all that is needed.

Other varieties of object recognition on satellite imagery include the use of oblique
photographs and detecting the number of storeys of buildings, which is very useful
information for the 3D visualization of maps. The same techniques could also be used to
localize objects on the images and determine their shapes.

For further work to improve detection, a good starting point would be to look at the most
recent designs of neural network models (Szegedy, Ioffe, & Vanhoucke, 2016). Advances in
machine learning have been so rapid that better networks are created almost every week. For
localization tasks, Fast Region-based Convolutional Neural Network (Fast R-CNN; see
Girshick, 2015) would seem like the right place to start. The goal of Fast R-CNN is to
classify multiple objects on images and to be able to draw a bounding box around them
(Uijlings, van de Sande, Gevers, & Smeulders, 2013).

https://github.com/geometalab/OSMDeepOD

Kurath et al

187

Images

All orthophoto imagery shown in our figures or their backgrounds is taken from

 Federal Office of Topography (SwissTopo): SWISSIMAGE - The Digital Color
Orthophotomosaic of Switzerland,
https://shop.swisstopo.admin.ch/en/products/images/ortho_images/SWISSIMAGE

All visualizations other than these are our own work (lineart etc.) or screenshots taken by us (mouse
pointer).

References

Chen, J., & Zipf, A. (2017). DeepVGI: Deep learning with volunteered geographic information. In
Proceedings of the 26th international conference on world wide web companion, Geneva,
Switzerland, pp. 771–772. https://doi.org/10.1145/3041021.3054250

Chollet, F. (2016). Building powerful image classification models using very little data. The Keras
Blog. Tutorial, https://blog.keras.io/building-powerful-image-classification-models-using-very-
little-data.html.

Chollet, F. (2016). Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357. Retrieved from http://arxiv.org/abs/1610.02357

Girshick, R. B. (2015). Fast R-CNN. CoRR, abs/1504.08083. Retrieved from
http://arxiv.org/abs/1504.08083

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4),
211–221. https://doi.org/10.1007/s10708-007-9111-y

Google. (2016). How to retrain Inception’s final layer for new categories. TensorFlow Guides.
Tutorial, https://www.tensorflow.org/versions/r0.11/how_tos/image_retraining/.

Karpathy, A. (2014). What I learned from competing against a ConvNet on ImageNet. Andrej
Karpathy blog. Blog, http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-
against-a-convnet-on-imagenet/.

Keller, S., Bühler, S., & Kurath, S. (2016). Erkennung von Fußgängerstreifen aus Orthophotos. AGIT
Journal, 2, 162–166.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in
neural information processing systems 25, pp. 1097–1105. Curran Associates, Inc. Retrieved from
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf

Mnih, V., & Hinton, G. E. (2010). Learning to detect roads in high-resolution aerial images. In K.
Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer vision – ECCV 2010: 11th European
conference on computer vision, Heraklion, Crete, Greece, September 5-11, 2010. Proceedings,
part VI (pp. 210–223). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-15567-
3_16

Mnih, V., & Hinton, G. E. (2012). Learning to label aerial images from noisy data. In J. Langford & J.
Pineau (Eds.), Proceedings of the 29th international conference on machine learning (ICML-12),
pp. 567–574. New York: Omnipress. Retrieved from http://icml.cc/2012/papers/318.pdf

Neis, P., Zielstra, D., & Zipf, A. (2012). The street network evolution of crowdsourced maps:
OpenStreetMap in Germany 2007–2011. Future Internet, 4(1), 1–21.
https://doi.org/10.3390/fi4010001

Kurath et al

188

OpenStreetMap Wiki contributors. (2017a). Elements – OpenStreetMap wiki. Retrieved from
http://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=1479648

OpenStreetMap Wiki contributors. (2017b). Overpass API – OpenStreetMap wiki. Retrieved from
http://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=1479536

OpenStreetMap Wiki contributors. (2017c). Tag:Highway=crossing – OpenStreetMap wiki. Retrieved
from
http://wiki.openstreetmap.org/w/index.php?title=Tag:highway%3Dcrossing&oldid=1437852

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image
representations using convolutional neural networks. IEEE conference on computer vision and
pattern recognition (CVPR)

Ramm, F., Topf, J., & Chilton, S. (2011). OpenStreetMap: Using and enhancing the free map of the
world. Cambridge, UK: UIT Cambridge

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton project para. Cornell
Aeronautical Laboratory

Russell, I. (1996). Brief history of neural networks. Neural Networks Module course notes,
http://uhaweb.hartford.edu/compsci/neural-networks-history.html

Szegedy, C., Ioffe, S., & Vanhoucke, V. (2016). Inception-v4, Inception-ResNet and the impact of
residual connections on learning. CoRR, abs/1602.07261. Retrieved from
http://arxiv.org/abs/1602.07261

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception
architecture for computer vision. CoRR, abs/1512.00567. Retrieved from
http://arxiv.org/abs/1512.00567

Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013). Selective search
for object recognition. International Journal of Computer Vision, 104(2), 154–171. Retrieved from
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural
networks? CoRR, abs/1411.1792. Retrieved from http://arxiv.org/abs/1411.1792

Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional networks. CoRR,
abs/1311.2901. Retrieved from http://arxiv.org/abs/1311.2901

