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Abstract 

A great deal of the interesting information captured by aerial imagery is as yet unused, 

even though it could help to enrich maps and improve navigation. For this information to 

be made available, objects such as buildings or roads need to be recognized on images. 

This is laborious to do entirely manually, but non-trivial to perform computationally. In this 

paper, we present an automated method for detecting objects of a chosen class 

(pedestrian crosswalks) on orthophotos, a method which can be adapted for various 

classes of objects. The method uses a supervised machine-learning approach with a deep 

convolutional neural network. We re-trained the final layer of a pre-trained neural network 

using specific imagery and crowdsourced geographic information from the 

OpenStreetMap (OSM) project. The result is an easily enhanceable and scalable 

application which is able to search for objects in aerial imagery. We achieved an 

accuracy of well over 95% for crosswalks and promising preliminary results for roundabouts. 
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1 Introduction 

As in many other fields, machine learning has become a hot topic in geography and 
geoinformation technology, including VGI. It can be used to derive conclusions from 
geoinformation or to derive geoinformation from geodata, e.g. feature positions from raster 
data using image recognition techniques. In this work we focus on the latter. 

As a proof of concept, we chose the task of identifying registered Swiss pedestrian 
crosswalks in OpenStreetMap using satellite and aerial imagery (orthophotos). To do this, we 
had to devise a method to detect crosswalks as well as a way to feed results back into 
OpenStreetMap while adhering to the OpenStreetMap community’s quality standard for 
edits made or reviewed by humans. 

The objective was to come up with a process which accomplished these aims and which 
could be adapted easily for other feature classes. Furthermore, in order to keep 
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OpenStreetMap up-to-date, the process needed to be replicable using new orthophotos 
when they become available. 

This article is in 5 main sections. Section 1 is introductory. In section 2 we describe our 
method, and in 3 we present the results of applying the approach to pedestrian crosswalks in 
Switzerland. We discuss both method and results critically in section 4. Section 5 summarizes 
what this work achieves and outlines possible future research.  

Motivation: to increase crosswalk coverage in OpenStreetMap 

OpenStreetMap®1 is a worldwide community of mapping enthusiasts, and in the words of 
Neis, Zielstra, & Zipf (2012) ‘a well-known project in the field of Volunteered Geographic 
Information (VGI)’, a term coined by Goodchild (2007), also known as ‘crowd sourced 
geodata’. It makes available to the public not just a web map, but also the underlying 
database of geographic information, which anyone can edit. 

Although the OpenStreetMap project initially set out to create a free street map (hence its 
name), today it collects all geographical information (using vector geometry with 
attributes/tags) deemed interesting by the community members, as long as that information 
is verifiable ‘on the ground’. Thus, many features not displayed on a typical street map can be 
found in the OpenStreetMap dataset, including the positions of pedestrian crosswalks on a 
road axis. 

While pedestrian crosswalk locations are vital for assisting pedestrian navigation and might 
also become important for automated driving, a crosswalk existing in reality but missing 
from the dataset will not stand out as much to most mappers as a missing road would. This 
makes it difficult to improve the completeness of the crosswalk location information in the 
dataset, even for mappers interested in this particular topic. 

Satellite and aerial imagery are used to assist data collection when surveying in the field and 
for directly tracing recognizable objects remotely. However, manually searching the 
orthophotos of even just a small country like Switzerland for all instances of one feature 
such as pedestrian crosswalks would be a very time-consuming and tedious task. We decided 
to help improve the dataset’s completeness by providing more automation, thereby 
facilitating targeted editing. 

Challenge: Automated visual object detection 

Although humans are very good at visual pattern recognition, accurately detecting and 
identifying objects on a picture can be difficult or (depending on light conditions, shadows, 
and other objects that obscure the interesting aspects of the images) impossible, even for 
them. Consider for example the orthophotos in Figure 1 showing pedestrian crosswalks, and 
compare them to the orthophotos in Figure 2, which do not show crosswalks. 

                                                        

1  http://openstreetmap.org 
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Figure 1: Crosswalk examples 

 
Figure 2: Non-crosswalk examples 

Devising a computer program to do the image recognition is particularly difficult, as 
traditional rule-based programming usually falls flat in this area.2 However, recent 
developments in artificial intelligence (AI) research have made computational object 
classification feasible. Artificial neural networks, a computational approach that loosely 
mimics the way a biological brain works on the neuron level, have been a subject in AI 
research for a long time (e.g. Rosenblatt, 1957; for a brief history see Russell, 1996). In our 
case, the input is an image (a small part of an orthophoto) and the desired output is a 
classification of the object(s) seen there, albeit a simple one: a crosswalk or not a crosswalk. 

In recent years, the best results in image recognition have been achieved by deep 
convolutional neural networks (Krizhevsky, Sutskever, & Hinton, 2012). A deep 
convolutional neural network (dCNN) is a kind of further-developed neural network, 
designed to mimic the visual cortex. The networks get their name from stacking many 
convolutional layers. A convolutional layer has ‘neurons’, and each layer has a convolution 
matrix (called a ‘kernel’ or ‘filter’) as its learned parameter. Each of these layers acts as a 
feature-detector working on a fairly local feature set. For the first layer, the input feature map 
comprises simply the pixel colour values. Early layers will recognize simple, locally-confined 
features like lines, edges and patches of colour. Each successive layer will recognize features 
that are visually more and more complex as arrangements of simpler features from the 
previous layer(s), until the output layer produces the classification of the whole image. 

The chosen approach was not without challenges. We had to: (1) get enough training data 
for the neural network; (2) reduce the neural network’s training time sufficiently to allow for 

                                                        

2  For the specific case of pedestrian crosswalks, one might expect a spectral-analysis-based 
approach to work. The frequency-based methods we evaluated in Keller, Bühler, & Kurath (2016), 
however, failed to perform better than the deep learning-based one, with only fast Fourier transform 
coming close. 
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training the network with different parameters, so that we were able to improve and fine-
tune the result; (3) deal with a huge amount of satellite imagery, and (4) make the results 
available in OpenStreetMap without breaking the community’s rules against automated 
imports. 

Related work 

Mnih & Hinton have applied machine learning to orthophotos for per-pixel labelling for 
some time now. They have improved road detection with the help of a deep network (2010). 
They have also studied the effects of noisy data and the lack of learning data, and devised 
methods that allow the training process to better cope with this (2012). This is particularly 
relevant when learning from VGI, where ‘(asymmetric) omission noise’ (object visible on 
orthophoto, but missing from the VGI) and ‘registration noise’ (different locations of an 
object on the orthophoto vs. the VGI) are prevalent. 

Chen & Zipf (2017) have applied deep learning to detect buildings by using positive learning 
samples from buildings already mapped in OpenStreetMap, and negative samples from data 
generated by the MapSwipe mobile app. In this app, users indicated that an area did not 
contain buildings. The authors turned this supervised learning setup into an active learning 
one by manually labelling the tiles where their network disagreed with labels provided by 
MapSwipe, using these samples to re-train the network and thereby significantly improve its 
performance,3 though not quite reaching the performance level of MapSwipe volunteers. 

In contrast to these studies, we did not devise our own neural network design. Instead, we 
chose an existing network which had already proved successful for (non-orthophoto) image 
classification, and focused on how to get training data, how to avoid having to train a full 
dCNN, and how to automate and computationally optimize the procedure. 

2 Method 

To detect objects on orthophotos we applied the approach visualized in Figure 3. In the 
following subsections, we will describe the individual steps in depth. 

                                                        

3 Here we are referring to precision, recall, F1 score and accuracy, not the computational 
performance. 
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Figure 3: Method overview. Positive samples comprising (1) orthophotos at locations of known 

crosswalks (from OSM), from among which (2) false positives have been discarded manually, and 

semi-manually collected negative samples (red folder icon) are (3) used to re-train a pre-trained 

dCNN. Next (4), orthophotos along OSM streets are then (5) classified. Crosswalks already in OSM are 

(6) pruned from the results and those with identical or nearby coordinates are merged. The remaining 

results are then (7) fed through MapRoulette for crowd-sourced review and for manual integration into 

OSM 
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At step (1) in Figure 3, we select images from a satellite imagery source with the help of 
OpenStreetMap. These images serve as the dataset for the training mechanism of the neural 
network. The dataset consists of a positive and a negative subset, containing images with or 
without the objects we are looking for respectively. In step (2), false positives are manually 
removed from the automatically collected positive subset. 

This dataset is then used to retrain a neural network (step (3)), which can classify images into 
the different dataset categories (5). The images to classify are obtained by moving a sliding 
window over the area of interest (4). 

The midpoints of the windows where objects of the class of interest have been recognized 
by the neural network are aggregated (to eliminate duplicates) and treated as the object 
locations. After removing locations corresponding to instances already in the 
OpenStreetMap data set (6), we use the coordinates to generate tasks and challenges for 
MapRoulette. MapRoulette users then review the detected objects and add the genuine ones 
into OpenStreetMap (7). 

Acquiring training data 

A huge amount of data is needed to train a large neural network like a deep convolutional 
neural network. Significantly less training data is needed for re-training a pre-trained deep 
neural network (see next section), but the number of examples should still be in the 
thousands (Chollet, 2016). To efficiently obtain a training set of sufficient size, we combine 
existing OpenStreetMap data with aerial imagery. Using the fact that some pedestrian 
crosswalks are already mapped in OpenStreetMap and that many of these are visible in aerial 
imagery, we are able to extract sections from the orthophotos at the positions of crosswalks 
that are already present in the dataset (see Figure 5 and (1) in Figure 4) These sections are 
likely to show a crosswalk and thus are promising to provide a solid, positive training set. To 
obtain the crosswalk positions in OpenStreetMap, we query Overpass (OpenStreetMap Wiki 
contributors, 2017b), an easy-to-use application programming interface (API) for accessing 
OpenStreetMap data. 

 
Figure 4: Positive samples are obtained by (1) using orthophotos at known crosswalk locations, and (2) 

manually removing false positives and unusable images 
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Figure 5: Visualization of the training data selection. The position of a crosswalk in OpenStreetMap is 

indicated by a blue dot. The red square is the border for the 50×50-pixel section to be cropped out of 

the aerial imagery 

Unfortunately, a manual check of the collected images ((2) in Figure 4) is still needed before 
they can be used as training data, since the result is not perfect. The object in question might 
not be visible on the image at all, due to either OpenStreetMap or the aerial imagery being 
out of date, or because of different translational offsets placing the object outside the 
cropped-out section. For our example of detecting crosswalks, we also decided to discard 
images where a car, a shadow or a tree covered the target, as is the case in Figure 6. 

 
Figure 6: Example of a crosswalk half covered by a tree, which should not be used in the training set 

Having collected the positive samples with the target object on them, to complete our 
training set we also needed negative samples. Because the search algorithm is more likely to 
encounter areas without the target object, and because these areas will vary more broadly 
than the areas containing the target object, we needed even more (and more varied) negative 
samples than positive ones. 

To gather negative samples efficiently, we created an application which takes small 
screenshots along the user’s cursor movement. Using an aerial map, these samples can be 
collected simply by moving the cursor over the map at the correct resolution (zoom level) 
(illustrated in Figure 7). Of course, hovering over the target objects must be avoided. 
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Figure 7: A visualization of the sample acquisition process with a cursor moving over satellite imagery. 

Every red square represents a cropped-out image 

The combination of these two methods to collect images allows us to produce a dataset 
within a reasonable time and is applicable to a wide variety of objects. 

Re-training a pre-trained dCNN 

Deep convolutional neural networks are suitable for our detection task, but very deep 
networks with many hidden layers require a lot of training data. With parameter counts of 
around 20 million (Chollet, 2016), these networks are prone to over-fitting; that is, if the 
training set is not large enough, the networks are unable to generalize enough to handle 
unknown situations. The large amounts of time and effort needed to acquire these quantities 
of training data, and the long processing time required to train a network with them, can be 
avoided by resorting to an already-trained neural network, simply re-training the last layer for 
the new classification task (Figure 8). This process is called transfer learning (Yosinski, 
Clune, Bengio, & Lipson, 2014; Oquab, Bottou, Laptev, & Sivic, 2014)) and is possible 
because the first layers of convolutional neural networks perform very generic tasks like edge 
and shape detection (Zeiler & Fergus, 2013). The ‘How to Retrain Inception’s Final Layer 
for New Categories’ guideline from TensorFlow (Google, 2016) advises how to do this. We 
found that the re-train approach reduces the training time on a Tesla K40m GPU by up to 
four hours.  

 
Figure 8: Re-training (3) of the Inception v3 network already pre-trained on ImageNet data 



Kurath et al 

181 
 

To handle the detection part of the process, we used TensorFlow4, an open source software 
library for numerical computation, machine learning and simplification of GPU usage. 
TensorFlow provides various pre-trained neural network models for image classification. For 
our task, we used a pre-trained Inception-v3 model with 23,853,833 parameters (Chollet, 
2016). The network is learned from the images of the ImageNet academic competition, 
which has about 1,000,000 pictures divided into 1,000 categories. Inception-v3 achieves a 
‘top-5’ error of just 3.58% on the validation set on this competition. That means that the 
network had to predict the five classes most likely to describe the image, and that the image’s 
real class was amongst these five predicted ones in 96.42% of all cases. To put this into 
perspective, Andrej Karpathy went through a subset of the validation set himself (Karpathy, 
2014) and scored a human top-5 error rate of 5.1% (1.52% worse than Inception-v3). As a 
proof of concept, we re-trained the Inception-v3 model (Szegedy, Vanhoucke, Ioffe, Shlens, 
& Wojna, 2015) on 8,242 images of crosswalks and 40,463 images of non-crosswalks, which 
reached 98.5% accuracy on our validation set. 

Object detection: Searching for crosswalks 

The detection procedure for the search for crosswalks is structured as follows: the area to be 
analysed is passed to the system as a large bounding box; this large bounding box is then 
split into smaller bounding boxes, which are added to the queue of jobs which have to be 
processed. 

If a so-called ‘worker’ starts processing a job, it collects all streets from OpenStreetMap for 
that job’s (small) bounding box ((4) in Figure 9). If there are no streets in the current small 
bounding box, the job is already finished, or downloading the corresponding orthophotos 
(Figure 10 (a)) is still incomplete. 

 
Figure 9: A sliding window along OSM roads (4) determines the orthophoto excerpts to be used as 

inputs for the classification by the dCNN (5) 

                                                        

4  https://www.tensorflow.org/ 

https://www.tensorflow.org/
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a 

 

b 

 

c 

 

d 

Figure 10: The steps for object detection using sliding windows along streets. (a) Aerial imagery for one 

job’s bounding box; (b) Corresponding street data from OSM (overlaid as blue lines); (c) 50×50-pixel 

cutouts (shown as red squares) along the streets; (d) Some of the cutouts (centres marked by green 

dots) have been classified as containing crosswalks. 

Figure 10 (b) shows the orthophotos overlaid by the street data. Along the streets, the 
worker has to cut out 50×50-pixel images from the orthophotos, which is the size the 
convolutional neural network needs as its input parameter (Figure 10 (c)). Finally, the 
detection algorithm decides for each image whether it contains a crosswalk or not. Detected 
crosswalks are shown as a green dot in Figure 10 (d) and as icons in Figure 9. 

When the classification has been completed, all detected crosswalks within a radius of 5 
metres are merged (part of (6) in Figure 11), because it is possible that some crosswalks are 
larger than one cut-out image and may appear in neighbouring or overlapping images. 
Furthermore, our mode for searching along streets isn’t yet sophisticated enough to avoid 
searching areas twice where streets cross each other. 
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Figure 11: Detected crosswalks close to each other are merged, and those close to existing ones in 

OSM are eliminated (6). The remaining crosswalks are vetted by MapRoulette volunteers and manually 

added to OSM if deemed genuine (7). 

Optimizations 

When faced with the task of finding all crosswalks in Switzerland, we are confronted with an 
area of 41,285 km², which would have corresponded to roughly 400 million images of 50×50 
pixels at a resolution of 0.3 m per pixel. To speed up the process, we parallelized the image 
recognition and also reduced the amount of data that needs to be classified. 

TensorFlow already makes use of vector processing and multiple cores within the 
classification of a single image and for training. However, to use our hardware to full 
capacity, we also analysed several images in parallel by using a message queue5 from which 
multiple processes (called ‘workers’) pulled their tasks. 

Because our detection algorithm is confronted with a large number of images to classify, we 
looked for opportunities to reduce that number. One technique was to analyse images along 
streets only. This is sufficient when looking for crosswalks or roundabouts, as these can only 
occur along streets. Thus, this approach decreases the number of images significantly 
without deterioration of the detection rate. When this option is enabled, our algorithm 
checks for known streets before downloading the orthophoto tiles, so that only tiles along 
streets are downloaded. To get the street positions, we again use OpenStreetMap with the 
help of the Overpass API (OpenStreetMap Wiki contributors, 2017b). 

The step size for moving the sliding window along the streets or over the complete 
orthophoto tile also heavily influences the number of images to classify. We chose a 
translation shift of 0.66 of the window’s side length and found that this gives enough overlap 
not to miss too many features. 

One way to reduce the data further is to work on the lowest resolution level of the 
orthophotos that is still sharp enough to represent the important features of the objects to be 
detected, resulting in fewer and smaller images to be analysed. For crosswalks, this turned 
out to be zoom level 19. It seems that for roundabouts, zoom level 18 might suffice. 

                                                        

5  specifically, RQ (http://python-rq.org/) 

http://python-rq.org/
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Crowd-sourced verification and integration 

The goal of our work is not only to detect objects on orthophotos, but also to make the 
newly acquired information available to the general public, and specifically to the 
OpenStreetMap community. An obvious way to achieve this is to integrate the newly-found 
crosswalks into the OpenStreetMap dataset. However, OpenStreetMap only accepts data 
which are verified by humans, so just dumping the data into an automated import software 
was out of the question. Even though the detection rate is very high, there are still false 
positives in our detected crosswalk data and we do not want them to contaminate the 
OpenStreetMap data. Further, in OpenStreetMap, a crosswalk is tagged on the individual 
node (i.e. point) of the way (linestring) representing the section of the street that it crosses 
(OpenStreetMap Wiki contributors, 2017c), information which is not available in our results 
dataset.6  

There are gamification tools that integrate data into OpenStreetMap or help users to edit 
data. One of them, MapRoulette, is an open source project and web platform on 
http://maproulette.org/ which allows everyone to create challenges with multiple tasks. 
These challenges can then be solved by other users (or ‘the crowd’) by editing 
OpenStreetMap using their own accounts. In contrast to some other OpenStreetMap 
gamification tools, the editing functionality is not built into the MapRoulette platform itself. 
Instead, the user can choose which generic OpenStreetMap editor to launch amongst several 
popular ones with which MapRoulette is able to interact. 

MapRoulette is meant to be used from home rather than in the field, so tasks should be 
solvable using only the information provided by available imagery. Deciding from the 
imagery whether there is a crosswalk in a small area (step (7) in Figure 11) is a suitable task 
for MapRoulette, because crosswalks usually only appear along paved streets (which are 
themselves usually easy to discern in aerial imagery), and have a distinctive pattern and a 
strong colour contrast with the environment. If a task doesn’t require map editing to be 
completed (e.g. because our software detected a crosswalk where there is none – i.e. a false 
positive), or when users can’t solve a task (e.g. because they cannot discern whether there is a 
crosswalk in the picture, or exactly where), users can indicate this on the MapRoulette 
platform. 

3 Results 

This project yielded (a) a workflow for detecting objects on orthophotos and (b) a software 
application implementing this workflow, as well as (c) positions of 18,036 potential 
crosswalks that weren’t already mapped in OpenStreetMap, found by applying our approach 
region by region over the complete area of Switzerland. 

                                                        

6  For the OpenStreetMap data model, see Ramm, Topf, & Chilton (2011), pp. 51–56 or 
OpenStreetMap Wiki contributors (2017a). 

http://maproulette.org/
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We posted 20 challenges on MapRoulette to get these positions vetted and (if genuine) added 
to OpenStreetMap. We observed a weekly increase in the number of crosswalks in 
OpenStreetMap within Switzerland, both before and during these challenges, and their 
positive influence was clearly visible. During 33 weeks before the first challenge started, we 
had an average growth of 63.2 crosswalks per week. During the first 24 weeks of the 
challenges, we measured a weekly increase of 370.5 crosswalks. Within those 24 weeks, the 
number of identified crosswalks in Switzerland rose from 41,788 to 50,584.7 This means that 
almost one in five crosswalks present in OpenStreetMap after 24 weeks of our challenges 
were added during that period. 

We are therefore confident that we have reached our aim of helping to increase the 
completeness of the OpenStreetMap dataset with regard to crosswalks. 

4 Discussion 

It should be noted that the very high accuracy (98.5%) reported for the training applies to a 
validation set taken from the input data and stashed apart by TensorFlow’s retrain.py script. 
While this validation data was not used by the script for the actual training, so the high value 
should not be the result of overfitting to the training set, the input data to the script could 
have been biased as a whole. Consequently, this result may not correspond to the real 
accuracy of the actual classification performed after the training in the object-detection steps. 

To estimate the actual accuracy, the error rate (false positives and false negatives in relation 
to the total number of classified images) could be approximated by using the number of 
crosswalks previously in OpenStreetMap that haven’t been re-found by the detection 
procedure as a lower bound for the false negatives. A lower bound for the number of false 
positives is more directly available if the assessment by MapRoulette volunteers is treated as 
the ground truth, which we think should be close enough to reality. 

The decision to leave images of partially covered crosswalks out of the training set was made 
arbitrarily, without being based on actual findings. Whether including these pictures in the 
training improves or degrades the detection rate should be tested. 

5 Conclusion and Outlook 

We have demonstrated that software developers and GIS-domain experts can apply state-of-
the-art computer vision technology to automate previously manual tasks in their field. The 
libraries and frameworks available nowadays have enabled us to do so without extensive 
prior knowledge of AI. 

                                                        

7  See http://zebrastreifen-safari.osm.ch/ for an up-to-date graph of recent development. 

http://zebrastreifen-safari.osm.ch/
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While (near) ready-made routines from the framework used were employed for the 
classification part at the core of our process, our contribution comprises the workflow and 
steps around that: (a) ways of efficiently and semi-automatically obtaining sufficient training 
data; (b) framing the object search/detection/coarse-localization problem as a problem of 
classification of focal data within candidate regions; (c) using domain knowledge for limiting 
the candidate region within the complete area of interest to decrease the classification 
expenditure; (d) verification and integration of the results into OpenStreetMap in accordance 
with the community’s rules through use of an existing targeted crowd-editing platform, and 
(e) some (limited) automation of the individual steps as a re-usable and adaptable open 
source application, available at https://github.com/geometalab/OSMDeepOD. 

With the flexibility and the various configuration parameters of OSMDeepOD, it is possible 
to search for other objects, such as streets, buildings, swimming pools, solar panels, football 
fields, tennis courts, agricultural areas, among many other things. Collecting a suitable data 
set and re-training the convolutional neural network should be all that is needed. 

Other varieties of object recognition on satellite imagery include the use of oblique 
photographs and detecting the number of storeys of buildings, which is very useful 
information for the 3D visualization of maps. The same techniques could also be used to 
localize objects on the images and determine their shapes. 

For further work to improve detection, a good starting point would be to look at the most 
recent designs of neural network models (Szegedy, Ioffe, & Vanhoucke, 2016). Advances in 
machine learning have been so rapid that better networks are created almost every week. For 
localization tasks, Fast Region-based Convolutional Neural Network (Fast R-CNN; see 
Girshick, 2015) would seem like the right place to start. The goal of Fast R-CNN is to 
classify multiple objects on images and to be able to draw a bounding box around them 
(Uijlings, van de Sande, Gevers, & Smeulders, 2013). 

  

https://github.com/geometalab/OSMDeepOD
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Images 

All orthophoto imagery shown in our figures or their backgrounds is taken from 

 Federal Office of Topography (SwissTopo): SWISSIMAGE - The Digital Color 
Orthophotomosaic of Switzerland, 
https://shop.swisstopo.admin.ch/en/products/images/ortho_images/SWISSIMAGE 

All visualizations other than these are our own work (lineart etc.) or screenshots taken by us (mouse 
pointer). 
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