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Abstract

The MHD theorems by Kaplan and Crocco are re-derived and their
consequences for analytical and numerical MHD calculations are
discussed. It is demonstrated that the Kaplan theorem restricts the
magnetic fields which admit potential flow and that the Crocco theorem
describes entropy production due to vorticity. The consequences of
these two theorems also for numerical codes are discussed.

1. Introduction

In these days various numerical fluid codes are in use in plasma
physics. These codes use various systems of MHD equations. There
are static codes for plasma containment devices and other codes
consider flow equilibria. Equations of motion have been used for
inviscid plasmas and other codes introduced an artificial or a Navier-
Stokes viscosity.

The two theorems by Kaplan and by Crocco may help to investi-
gate, if a system of MHD-equations is consistent or not. The Kaplan
theorem describes the conditions to be satisfied that a plasma flow is
a potential flow. The Crocco theorem connects plasma flow with
thermodynamics. The most important quantity in thermodynamics is
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the entropy S. If a reversible process supplies heat g, =cdT to a
thermodynamic system, then entropy S increases according to
dS = cdT/T, where c is the (constant) polytropic specific heat and T
designes temperature. The heat may be transformed into another form
of energy and finally one will have §dS =0 for reversible processes.
All polytropic processes are reversible and for an ideal gas they are
described by

p(p) = const - p", (1)
where

c—c
n= L

(2)

c—cy

¢, 1s the specific heat for isobaric and cy for isochoric processes.
For adiabatic (isentropic) processes (¢ =0) (1) becomes the Poisson
(adiabatic) law with n =~y = ¢, /cy.

For an irreversible process like dissipation by viscosity, the system
may not be restored to its initial state without producing any change
in the rest of the universe. Thus §dS>0 will be valid for the
system. A small viscosity may allow the generation of significant
vorticity and completely destroy a potential flow. But even if the
dissipation would only have a negligible effect on the entropy in-
crease, the Crocco theorem demonstrates the entropy increase due to
the vorticity of the flow.

Therefore, a caloric state equation (1) is valid for reversible
processes only and can not be assumed for irreversible processes like
viscous stresses or rotational flow. If the plasma exhibits viscosity 7,
electric conductivity o and heat conductivity ¥, then the energy
theorem written per unit mass reads

as U B
pT<E—|— (W)s> = p +PFVIU PP P v

3 2
B ov; Ovy 2 L\ Ovp )
=1 E (an + ox 3 by div U> . + . +div(xVT) (3)

and (1) has to be replaced by

p(p,S) = const - p’RY exp(S — %0 >7 (4)
Cy

[9].
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2. The Kaplan Theorem and Its Consequences

We now consider the flow of an ideal plasma (n=0, x =0, o= 0).
In this case (3) becomes

s oS

o + (¥V)S=0. (5)
Some remarks concerning isentropy and Eq. (3) seem to be appro-
priate. Isentropy may be described by (5). For a steady flow this
becomes (7V)S = 0. These two equations express that entropy is
constant along a stream line. It should however be mentioned that the
constant value of the entropy may differ for different fluid elements
on different streamlines [9].

From (5) we thus conclude that the flow of an ideal plasma is

isentropic and the equation of motion reads

ov ov 2
5?—1— (TV)o = 5?4— V%— [V % curl U]
1 Y
— — [curl B x B] - 2. (6)
PHo P
We now apply the operator curl on (6). Using the identity
1 1 1
Curl(—Vp) :—curIVp+V<—> x Vp (7)
P P p

we obtain from (6)

0 1 1 5 o
—curl ¥ — curl[¢ X curl 7] = — curl[— -curl B X B} . (8)
ot Lo p

The last rhs term in (7) vanishes, since due to the adiabatic law one
has

v(%) < Vp = 0. )

Assuming now an isentropic potential flow (curl 7 = 0), (8) gives the
Kaplan theorem [2, 5, 10]

1 S
curl(— [curl B x B]) =0. (10)
p
We thus conclude that isentropy is only a necessary but not sufficient

criterion for the occurrence of potential flow. It might be of interest
to mention that a similar condition like (10) but for p=-const is a
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consequence of the Kelvin theorem on the conservation of the
circulation along closed field lines [8]. The condition (10) also im-
plies a twodimensional flow ¢’ perpendicular to the magnetic field B
[11]. The Kaplan condition is also satisfied by a forcefree magnetic
field (Beltrami field) [6].

We furthermore conclude that the use of a caloric state equation of
the type of Poisson’s law has the consequence that the plasma flow is
isentropic and can be potential only if (10) is satisfied. Such a poten-
tial flow is, however, restricted to special, i.e. apparently cases with
straight field lines or to force-free fields. A further consequence
would be that numerical codes including Poisson’s law can not treat
(non-forcefree) toroidal devices exactly.

3. The MHD Crocco Theorem and Its Consequences

If Navier-Stokes viscosity is taken into account when establishing a
system of differential equations, the situation changes completely.
The same is true for the assumption of an artificial friction term —af,
where « is a constant. Such models have been used by many authors
([1,13] and others). It seems to be clear that viscous effects are
irreversible and increase the entropy. Due to the entropy increase an
equation p(p) should not be used. In aerodynamics of ideal gases the
well-known Crocco theorem connects vorticity curl ¥ with entropy
increase [7, 14]. For a compressible frictionless steady (0/0t = 0) gas
flow defined by the equation of motion

(FV)5 = —~vp, (11)
p
the Crocco theorem reads
Uxcurlt=Vh—TVS. (12)
Here & is given by
h:U—I—];j—F%vz. (13)

Using a combination of the equation of motion (3) for a dissipative
gas (n#0, c=o00, x =0) and the energy equation, Vazsonyi finds

dh 10p 1

Nof o 1 -
— =4 —¢p+-7 AT+ =-grad d 14
= p8t+p¢+pv< v+ gra wv), (14)
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where ¢ is the dissipation function. For a steady frictionless gas flow
it thus follows h = const (‘isoenergetic flow’). Due to the missing
friction and due to the energy theorem one has Vi =0 for an ideal
isoenergetic gas. Thus the Crocco theorem for gasdynamics states
that ¥ x curl = —T VS. The importance of this equation lies in the
fact that it relates the vorticity of the gas to the rates of change of
the entropy S. Every irrotational steady isoenergetic flow of a gas
must be isentropic and every anisentropic isoenergetic steady flow
has vortices [12].

A similar situation should occur in plasma physics. The MHD
Crocco theorem for a viscous plasma (n#0, y =0, 0 =00) may be
derived from the equation of motion (6) in the form including now
viscosity

2
VU——[E’xcurlﬁ']:—@+i[curll§x§]+5. (15)
2 P PHo p
The vector R designates any friction term. Now we use the second
law of thermodynamics for a plasma with constant specific heat cy,

—

1 1

Adding (15) 4 (16) gives the MHD Crocco theorem [3,4, 8]

1 _ R
Vh ——/|curl B x B] — [V X curl 7] — — = TVS, (17)
Plo p
where h is again given by (13).
We now consider the consequences of the MHD Crocco theorem:

1. Isentropic flow: VS =0, therefore R =0 and VA=0. In order
that this flow becomes a potential flow (curl?=0) or a
Beltrami flow o]|curl?} the Kaplan theorem (10) must be
satisfied. .

2. Potential flow: curl? = 0, R = 0, VA=0. From (17) we obtain

1 - —
——/[curl B x B] =TVS. (18)
Plo
We conclude that forcefree magnetic fields admit an isentropic
potential flow. The application of the operator curl on the
Crocco theorem delivers

1 -
curl [— [curl B x B]} = —VT x VS. (19)
Plo
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We see that according to (10) a potential flow is possible only if

a)VS=0 or b)VI'=0 or c)VT|VS. (20)
. For an isoenergetic Beltrami flow ¥ x curl ¥ = 0 one has
1 .
———curl B x B =TVS. (21)
PHo

In this case non-forcefree magnetic fields produce entropy.

. For forcefree magnetic field curl B x B = 0 with n=0, R = 0,

one obtains (12).
Dissipative static equilibrium (7= 0): from (13), (14) one has
1 . - R
V<U+l—7) ——/curlBx B| -—=TVS. (22)
P Plo p
Due to the dissipation, VS #0 and an equation p = p(p) is not
admitted and the equation of state p=pRT as well as heat
conduction have to be taken into account.

4. Conclusions

Exact analytical and accurate numerical calculations need a system of
consistent equations. If not consistent equations like (1) are used or
necessary conditions are not taken into account, the calculations will
deliver wrong or inaccurate results only.

Based on these considerations, the main conclusions are:

1.

Plasma processes which include dissipative effects can not be
described by a state equation p = p(p), but only by p =p(p, T) or
p(p,S) etc.

. If dissipative processes occur, temperature 7 and heat conduc-

tion must be included even for a plasma with infinite electric
conductivity.

. Numerical plasma codes which take into account dissipative

effects are inaccurate and inconsistent, if an equation p(p)
is included in the system of equations on which the code is
based.

. Potential flow is isentropic, allows p(p), but must satisfy the

Kaplan condition. If this is not the case, no potential flow and
no p(p) can exist.

. A numerical code which uses p(p) can describe a potential flow

and must have (EV)E = 0. Thus 3D codes with curved non-
forcefree magnetic field lines will be inaccurate.
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