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Abstract

Nogueira has shown that the 2-dimensional Parry—Daniels map is ergodic. The proof
uses the fact that appropriate sequences of cylinders shrink to points. The purpose of
this note is to give a proof of this property which shows how the appearance of
different types of digits is related to the convergence rate.
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*k

Let X = {x = (x0,x1,x2) : 0 < xp,x1,% < 1,x0 +x; +x, = 1}. The
2-dimensional Parry—Daniels map T : ¥ — ¥ is defined as follows.
Let 7 be a permutation such x,o < x;; < x» then

X0 Xrpl — Xp0 Xq2 — xwl)
X2 Xn2 Xn2

T (x0,x1,%2) = < ; ;

Then (X, T) is a fibred system (Schweiger 1995, 2000) with the time-
I-partition B(m) = {x € ¥ : m = m(x)}. The digits are the six permu-
tations €, (01), (02), (12), (021), (012). As usual we put 7; = 7(7/"'x),
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j=1,2,....Itis well known that T admits an invariant measure with
density
1
h(ix) =———
(x) xo(xo + x1)

Daniels (1962) asked if T'is ergodic with respect to Lebesgue measure.
Parry (1962) proved that the 1-dimensional Parry—Daniels map is
ergodic. A further step in this direction was given in Schweiger
(1981). Let

I'={x € ¥ :m(x) =c oder (01) forany j =1,2,...}
then A\(I') > 0. Therefore 7T is not conservative. It was reasonable to
conjecture that I' is an absorbing set (i.e. for almost all x € 3 there is
an n = n(x) such that 7"x € T"). Nogueira (1995) eventually showed

that in fact, I' is an absorbing set and 7 is ergodic. The proof uses the
following result.

Theorem 1. ( “Shrinking Lemma”). Let 7y(x) € {(012), (021), (02),
(12)} for infinitely many values of s then limdiam B(ry,...,m,) = 0.

We first point out that without an additional condition on the digits
mj,j = 1,2,..., the Shrinking Lemma is not generally true. We
consider (o, 3,7) € ¥, = —2++/5,8= 7‘%¢§,'y = ‘1;‘/5. Then
(o, 8,7) is a fixed point for 7. Therefore the segment
Ma, B,7) + (1 = X)(0,0,1),0 < A <1, is invariant under 7. This
shows that

diam B((01),...,(01)) >2v5 —4>0.

On the other hand geometric considerations strongly suggest the
validity of the Shrinking Lemma. The purpose of this note is to give
an arithmetic proof of this important fact. We introduce the matrices

1 0 0 1 1 0
Me)=[1 1 o), mMon=[1 0 0
11 1 11 1
10 0 1 1 0
Ma2)=(1 1 1), MO)=(1 1 1
1 1 0 10 0
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If
asy by cs0
M(my)...M(mg) = | agq by cq
asp by Cs2
and

Ay i=ag +ag +an, By:=by+bg +bp, Cs:i=co+ca+cn
then the map

Vs:V(’Nl?"'a”TS):Z_>E<7rla"'77rs)7 st:y

asoxo + byoxi + c0x2

Yo = Agxo + Box; + Cyxp
3= asi1xo + bs1x1 + cs1x2
Agxo + Boxp + Coxo
apxo + bpxi + cox2
Y2 =

ASX() + Bsxl + nyz
maps the simplex X onto the cylinder (7, ..., ).

We put A(my, ..., m) := diam X(my, ..., 7). The following lemma
is straight-forward.

Lemma 1. Ler x = (x¢,x1,x2),y = (Yo, ¥1,¥2),2 = (20,21, 22) be three
collinear points, 7 = MAx + py, say. Then

d(Vix,Viz)  |Agyo + Boyr + Coya

d(Vix,Viy) g Ayzo + Bz + Csza |
Lemma 2. Let Jy = V,(1,0,0), J; =V,(0,1,0), J, = V,(0,0,1),

M, = Vs(%yoa%)7 M, = Vs(%7%70)a My = VS(Oa%a%)v Z= VS(%7%7%)
then we find the following ratios.

d(]z,Ml) _ AS d(.]o,M]) _ CS
d(Jo, ) A;+Cy0 d(Jo,J2)  Ag+C
d(Jo,M;) B, dJi,My) A,
d(Ji,Jo)  Bi+A; d(,Jo) By + A,
d(Ji,My) G, d(J»,My) By
d(J»,J\) Cs+Bs' d(J,J;) C,+ B
d(Jo,Z)  B+C, d(My,Z) A,

d(Jo,Mo) A, +B,+C," d(Jo,My) A+ B+ Cs
d(J\,Z)  C,+A, dM,,Z) B,
d(fl,Ml) As-f-BS—I-CS’ d(fl,Ml)
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d(1,Z)  A;+B; d(M>,Z) C,
d(J,,My) A+ B+ C,"  d(J),My) A+ B + C;

Lemma 3. If 7y = (02) or (012) then

ATy, Ty Tory) < %A(Trl,...,ﬂ's).

Proof: Observe that My, Z, Jy are the vertices of X (7, ..., m, (012))
and Jy,Z, M, are the vertices of X(my,...,my, (02)). Since for all
s > 1 the inequalities

Cs < Bs < As
are valid we see that

( C, B, B, G Bs—i—CS) 2
max <

As+Cs7As+Bs7As+l7As+1’ As+1 _3.

Lemma 4. If 71 = (021) or (12) and =, € {(01), (012), (021),
(02)} then

ATy, Ty Topn) < %A(ﬂ'l,...,ﬂ's).

Proof: The vertices of X(my,...,m, (021)) are J;,Z,M, and the
vertices X(my, ..., 7, (12)) are My, Z, J;. An inspection of the list of
ratios shows that the ratio

d(J1, M) Cs 1

= < =
d(J1,J2) B, +Cy 2

is not problematic. A more careful analysis is required for the other
ratios. We illustrate the method for 7wy = (012), 7,1 = (021). Then

As As1 + B+ Gy <%

A, +B, 2A, | +B.,+2C,, "3
A+C 2A 4B +Coy 3
A+ B, +C, 3A,  +B, 1 +2C, | 4

Lemma 5. Let 7y = (021) or (12).
Assume m; € {¢,(12)} for s—w+1<j<s but m,_, € {(01),
(012), (021), (02)}. Then

ATy, Ty Top1)) < %A(T(l, ey Te)-
Proof: I w,_,, € {(01), (012), (021), (02)} then A,_,, < 2B,_,.
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We note that the cylinder X(e,...,¢) = {x: 7j(x) =¢,1 <j < w}
has the vertices (0, 0, 1), Q,, = (O L _w ), and

Tw+17 w4l

R — 2 2w w
v <(w+1)(w+2)’(w+1)(w+2)’w+2>'

Then the cylinder X(e, ..., &, (12)) has the vertices Q,,, Q,,+1, and

Rw+1-
The cylinder X(e,...,&,(021)) has the vertices Q,,, R,,+1, and

B 2 2 w(w + 3)
Sw = <(w+1)(w+4)’w+4’(w+1)(w+4))'

We apply Lemma 1 to the map V,_,, : ¥ — X(7q, ..., Ty_y)-

Now assume 7, = (021) or (12). Let =, € {(012),(02),
(021),(01)} and 7; € {e, (12)},s —w+ 1 <j <'s. We first consider
the case mj =¢,s —w+1<j<s.

Let w = 1. Then the line through Q| = (O 1 1) and R, = (1 2 3)

, , 1202 6766
meets x; = 0 in the point 7 = (1,0,1). Therefore

d(QlyRZ) _ As—l + Cs—l < l

d(Q1,T1) As1+2Bs 1 +3Cs; — 2
since A;_; < 2B,_;. We also find

d(Q1,51) _ A5 L

d(Ql)"Z) As—l + 2BS—1 + 2Cs—l 2

and

d(Si,Ry) Cs1 < 1
d(S1,J) A1 +2B 1 +3C1 T 6

The line through O, = (O, %,%) and R, = (% , % , %) meets x, = 0 in the
point ¥, = (%,%,O). Therefore, again

d(Q27R2) _ 2As—1 + Bs—l < %
d(02,Y)) 2A, 1 +4B; 1 +6Cs; — 3

Clearly
d(Ql ) QZ) 1

d(0i,J») 3



86 F. Schweiger

Now consider w > 2. The line through Q, = (Ovﬁ’%ﬂ) and
Ry = <(W +2)2(W +3>7<wi(zw><f§ig)’$—i§> meets x, = 0(!) in the point

_ 2w w2—w—2
T, = ((W+2)(W_1) s ) ,0). Then we find

d(Qwa RW+1) < 2WAx—w + (W2 -—w—- 2)Bs—w < 1
d(Qy,Ty) — 2wAs,, + (2w? +2w)Bs_,, — 2~

Furthermore, the line through Q.. = (0’#27%) and

2(w+1 . .
Ry = ((W +2>2(W 3 +(2)(WJ)F3) ,%) meets x, =0 in the point

Yurr = (533.5%3,0). Then
d(QW+] ) Rw+l) < 2Asfw + WBsfw < %
d(Qw+17 Yw+1) T 2A, .+ (2W + 2)Bs7w -3
Last but not least we find

d(QW7Qw+1) 1 < 1

d(Qy,J)) w+2" 4

The estimate

d(SW)RWJrl) o 2Cs71
d(S,,Ja)  2A, 1 +2(w+ 1B + (w+ 1) (w+2)Cs_y
2 1

<— < -
“(w+2)(w+3) 76
is unconditionally true.

The line through Q, and R, meets x, =0 in the point

_ (2 w1
Y, = (W—+1 Wl 0) and we find as before

d(Qu.S,) _d(QuRy) _2
d(Q:Y,) = d(Qu,Y,) 3

In the other case let mj=¢,s —w+1<j<t and 7w = (12),
t+ 1 < s. Since clearly

A(my, e o) S AT )
we are back to a situation already considered and we find

Ay, .o o) < %A(m, ey Te)-

The only remaining case is 7; € {e, (12)} for all j > j,.
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Lemma 6. Let w; € {,(12)} for all j > 1. Then

A(’ﬂ'l, e ) —
\/_

Proof- LetJo = (52,5252 ) /1 = (go,i;,l;) and = (32,%,%)

be the three vertices of B(my,..., 7). Note that by = c50 = O but this

fact does not help very much To estimate the distances d(Jy,J1),
d(Jy,J2), and d(J5,Jy) we need estimates for the determinants

. ag; by
A, B =Y V]
A, B,
; by ¢y
B,c)/ =Y VI j=0,1,2.
B, C;
[C A]j = o Ay
) Ky CS AY )

Since the estimate is the same for j = 0, 1, 2 we may omit the index j.
Note that for 7, = € or (12)

As+1 :As + By + Cs
Bs+1 = B, + C;

but
Cerl =Cs if Ts41 = €
CS+1 :BS if Ts+1 = (12)

Since Ay =3,B; =2,C, =1, we get A; < (s + 1)B;.
Since |[B, C|, | = |[B, C],| we find by induction that |[B, C] | < 1.
This shows

I[B,Cl,| 1 1

< <
B,C; — By~ 1
Put 0(s) = max(ABx , CC ) Then
14, Blyl _ [[A, B]| + [IC, Al
AS+1BS+1 - A ( S+CS)

A s+ 1
0(s) ———— < 0(s) —.
- (S)AS+BS+CA-_ (s)s+2
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Now assume that 7, ; = (12). Then

|[C’A]s+1| < HAvB]s| + |[B’ C]s|
Ag1Copr — Asy1By

smax<”f"3h| A |[B,c1x|>

AB; As;+ By’ C,By
1 1
< max <6(s) S > .

s+2’s+1
If my11 = € then we find

|[C’A]s+1’ < |[C7A]s| + HB? C]s’
As+1Cs+l - As—&—lcs

If 7, = € we expand further and find
(C ALl _I[CAL | +2I[B,C, |
Ag1Cor1 — (Agm1 + 2By +3C5-1)Csy

cmas(lCA] 2l
- AsCs—y "By_1Cs_q +2C%

< max(e(s— N L)

s+1'By1+2

gmax(e(s—l) s 2 >

s+1's+2

If my = (12) we obtain

HCvA]s+1‘ < ’[A7B]s71| +2HBv C]sfl‘
As+1Cs+1 o (As—l + 3Bs—1 + 2Cs—1)Bs—l

< (Bl 2080 )
o AsBsfl ’2B%_1 + Bs—le—l

s 2
Smax(@(s— 1)s+—1’s+2>

Hence (s + 1) < max(6(s — I)H%,G(s)ﬁ—%,ﬁ%). It is easy to see
1

that 6(s) < 7 satisfies these recursive conditions.

Remark: In fact one can show that

E={xeX:mx)=¢cor (12) forallj > 1} = {x € ¥ : xy = 0}.
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This follows from the fact that 0 < xo < % implies

(V(E))y = (VO1))g = 2 1

= < .
14+2x0+x1 — s+1
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